This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Haller-Dintelmann, RobertKaiser, Hans-ChristophRehberg, Joachim2016-03-242019-06-2820090946-8633https://doi.org/10.34657/2233https://oa.tib.eu/renate/handle/123456789/2187We characterise the singularities of elliptic div-grad operators at points or edges where several materials meet on a Dirichlet or Neumann part of the boundary of a two- or three-dimensional domain. Special emphasis is put on anisotropic coefficient matrices. The singularities can be computed as roots of a characteristic transcendental equation. We establish uniform bounds for the singular values for several classes of three- and fourmaterial edges. These bounds can be used to prove optimal regularity results for elliptic div-grad operators on three-dimensional, heterogeneous, polyhedral domains with mixed boundary conditions. We demonstrate this for the benchmark Lshape problem.application/pdfeng510Elliptic transmission problemsmixed boundary problemsW1p regularityDirect computation of elliptic singularities across anisotropic, multi-material edgesReport