This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Sprekels, JürgenWu, Hao2016-03-242019-06-2820080946-8633https://doi.org/10.34657/1878https://oa.tib.eu/renate/handle/123456789/2070We consider a semilinear parabolic equation subject to a nonlinear dynamical boundary condition that is related to the so-called Wentzell boundary condition. First, we prove the existence and uniqueness of global solutions as well as the existence of a global attractor. Then we derive a suitable Lojasiewicz-Simon type inequality to show the convergence of global solutions to single steady states as time tends to infinity under the assumption that the nonlinear terms f, g are real analytic. Moreover, we provide an estimate for the convergence rate.application/pdfeng510Parabolic equationdynamical boundary conditionglobal attractorconvergence to equilibriumLojasiewicz-Simon inequalityA note on a parabolic equation with nonlinear dynamical boundary conditionReport