This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Stephan, ArturStephan, Holger2022-07-052022-07-052021https://oa.tib.eu/renate/handle/123456789/9619https://doi.org/10.34657/8657We show that for a general Markov generator the associated square-field (or carré du champs) operator and all their iterations are positive. The proof is based on an interpolation between the operators involving the generator and their semigroups, and an interplay between positivity and convexity on Banach lattices. Positivity of the square-field operators allows to define a hierarchy of quadratic and positive energy functionals which decay to zero along solutions of the corresponding evolution equation. Assuming that the Markov generator satisfies an operator-theoretic normality condition, the sequence of energies is log-convex. In particular, this implies polynomial decay in time for the energy functionals along solutions.eng510Square-field operatorcarré du champs operatorGamma calculusMarkov generatorMarkov operatorBanach lattice positivityquadratic energiesasymptotic polynomial decaynormalPositivity and polynomial decay of energies for square-field operatorsReport22 S.