This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Curbera, Guillermo P.Ricker, Werner J.2019-06-2820131864-7596https://doi.org/10.34657/3215https://oa.tib.eu/renate/handle/123456789/3419We introduce and study the largest Banach space of analytic functions on the unit disc which is solid for the coefficient- wise order and to which the classical Ces`aro operator C : H2 → H2 can be continuously extended, while still maintaining its values in H2. Properties of this Banach space H(ces2) are presented as well as a characterization of individual analytic functions which belong to H(ces2). In addition, both the multiplier space of H(ces2) and the spectrum of C : H(ces2) → H(ces2) are determined.application/pdfeng510Harmonic manifoldsgeodesic flowsLichnerowicz conjectureSolid extensions of the Cesàro operator on the Hardy space H2(D)Report