This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Arguin, Louis-Pierre2016-03-242019-06-2820080946-8633https://doi.org/10.34657/2124https://oa.tib.eu/renate/handle/123456789/1972We study point processes on the real line whose configurations $X$ can be ordered decreasingly and evolve by increments which are functions of correlated gaussian variables. The correlations are intrinsic to the points and quantified by a matrix $Q=q_ij$. Quasi-stationary systems are those for which the law of $(X,Q)$ is invariant under the evolution up to translation of $X$. It was conjectured by Aizenman and co-authors that the matrix $Q$ of robustly quasi-stationary systems must ex This was established recently, up to a natural decomposition of the system, whenever the set $S_Q$ of values assumed by $q_ij$ is finite. In this paper, we study the general case, where $S_Q$ may be infinite. Using the past increments of the evolution, we show that the law of robustly quasi-stationary systems must obey the Ghirlanda-Guerra identities, which first appear in the study of spin glass models. This provides strong evidence that the above conjecture also holds in the general case.application/pdfeng510Point processesUltrametricityGhirlanda-Guerra IdentitiesCompeting particle systems and the Ghirlanda-Guerra identitiesReport