This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.Hu, GuanghuiLu, YulongZhang, Bo2016-03-242019-06-2820130946-8633https://doi.org/10.34657/3349https://oa.tib.eu/renate/handle/123456789/1736This paper is concerned with the inverse scattering of time-harmonic elastic waves from rigid periodic structures. We establish the factorization method to identify an unknown grating surface from knowledge of the scattered compressional or shear waves measured on a line above the scattering surface. Near-field operators are factorized by selecting appropriate incident waves derived from quasi-periodic half-space Green’s tensor to the Navier equation. The factorization method gives rise to a uniqueness result for the inverse scattering problem by utilizing only the compressional or shear components of the scattered field corresponding to all quasi-periodic incident plane waves with a common phase-shift. A number of computational examples are provided to show the accuracy of the inversion algorithms, with an emphasis placed on comparing reconstructions from the scattered near-field and those from its compressional and shear components.application/pdfeng510Inverse elastic scatteringfactorization methodDirichlet boundary conditionNavier equationuniquenessThe factorization method for inverse elastic scattering from periodic structuresReport