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Abstract

Within the nonparametric regression model with unknown regression function
l and independent, symmetric errors, a new multiscale signedrank statistic is in-
troduced and a conditional multiple test of the simple hypothesisl = 0 against a
nonparametric alternative is proposed. This test is distribution-free and exact for
finite samples even in the heteroscedastic case. It adapts ina certain sense to the
unknown smoothness of the regression function under the alternative, and it is uni-
formly consistent against alternatives whose sup-norm tends to zero at the fastest
possible rate. The test is shown to be asymptotically optimal in two senses: It is
rate-optimal adaptive against Hölder classes. Furthermore, its relative asymptotic
efficiency with respect to an asymptotically minimax optimal test under sup-norm
loss is close to one in case of homoscedastic Gaussian errorswithin a broad range of
Hölder classes simultaneously.

1 Introduction

Consider the nonparametric regression model withn independent observations

Yi = l(Xi) + εi, i = 1, ..., n,

some unknown regression functionl on the unit interval and design points0 ≤ X1 <
... < Xn ≤ 1. Throughout this paper, the errors are assumed to be independent and
symmetrically distributed around zero, which in particular includes the heteroscedastic
case. We postulate Lebesgue continuous error distributions in addition for the sake of
simplicity. Within this model, we are interested in identifying subintervals in the design
space wherel deviates significantly from some hypothetical regression curve lo. For this
aim, we develop an exact multiple test of the simple hypothesis “l = lo” against a non-
parametric alternative. The method does not require a priori knowledge of the explicit
error distributions, and it provides simultaneous confidence statements about deviations
of l from lo with given significance level for arbitrary finite sample size.

For the power investigation of our test, we follow the minimax approach introduced by
Ingster (1982, 1993), which permits the set of alternativesto consist of an entire smooth-
ness class, separated from the null hypothesis by some distanceδn converging to zero.
Typically, the distance to the null hypothesis is quantifiedby some seminorm‖.‖. Then
for a given significance levelα and some positive numberδ the goal is to find a statistical
testφ whose minimal power

inf
l∈F :‖l−lo‖ ≥ δ

Elφ

1



is as large as possible under the constraint thatEloφ ≤ α. Approximate solutions for this
testing problem are known for various classesF and seminorms‖.‖, see, for instance, In-
gster (1987, 1993) for the case ofLp-norm and Hölder and Sobolev alternatives, Ermakov
(1990) for sharp asymptotic results with respect to theL2-norm and Sobolev alternatives
and Lepski (1993) and Lepski and Tsybakov (2000) in case of the supremum norm. It is
a general problem that the optimal testφ may depend onF .

In case of an integral norm‖.‖, the problem of adaptive (data-driven) testing a simple or
parametric hypothesis is investigated for example in Eubank and Hart (1992), Ledwina
(1994), Ledwina and Kallenberg (1995), Fan (1996), Fan et al. (2001), Spokoiny (1996,
1998), Hart (1997) and Horowitz and Spokoiny (2001, 2002). The general procedure is
to consider simultaneously a family of test statistics corresponding to different values of
smoothing parameters, respectively. As Spokoiny (1996) pointed out, the adaptive ap-
proach in case of theL2-norm leads necessarily to suboptimal rates by a factorlog log n.
In particular, the tests in Fan (1996) and Spokoiny (1996) are based on the maximum
of centered and standardized statistics and (up to this constraint) rate-optimal adaptive
against a smooth alternative, see also Fan and Huang (2001).For our purpose, the supre-
mum norm seems to be the most adequate distance. Within the continuous time Gaussian
white noise model, Dümbgen and Spokoiny (2001) have shown that in contrast to theL2-
case, adaptive testing with respect tosup-norm loss is actually possible without essential
loss of efficiency. They propose a test based on the supremum of suitably standardized
kernel estimators of the regression function over different locations and over different
bandwidths in order to achieve adaptivity. Unfortunately,their testing procedure depends
explicitly on homoscedasticity and Gaussian errors or errors with at least subgaussian
tails. If these assumptions are violated, the test may lose its exact or even asymptotic
validity. Moreover, its asymptotic power can be arbitrarily small.

In the following section, a new multiscale signed rank statistic is introduced and a condi-
tional test of a one-point hypothesis against a nonparametric alternative is developed. In
the third section, its asymptotic power is studied in the setting of homoscedastic errors. A
lower bound for minimax testing with respect tosup-norm loss is provided, which is ex-
plicitly given in terms of Fisher information. The test turns out to be rate-optimal against
arbitrary Hölder classes, provided that the Fisher information of the error distribution is
finite. Moreover, a lower bound for its relative asymptotic efficiency with respect to an
asymptotically minimax optimal test under sup-norm loss isdetermined, and the classical
efficiency bound3/π is recovered even over a broad range of Hölder classes simultane-
ously. A numerical example illustrating our method is presented in section 4. Possible
extensions are briefly discussed in section 5. All proofs aredeferred to section 6.

For asymptotic investigations, the design variables are supposed to be deterministic and
sufficiently regular in the sense of the condition

(D) There exists a strictly positive and continuous Lebesgue probability densityh on
[0, 1] of finite total variation such thatXi = H−1(i/n), with H the distribution function
of h.
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Substractinglo from the observations, we may assume without loss of generality that
lo = 0. Depending on the design densityh, it is then assumed that under the alternative
the regression functionl belongs to some smoothness class

Hh(β, L) :=
{
l
/√

h
 l ∈ H(β, L; [0, 1])

}
,

where for any intervalI ⊂ R, H(β, L; I) denotes the class of Hölder functions onI with
parametersβ, L > 0. In case0 < β ≤ 1,

H(β, L; I) :=
{
f : I → R

 |f(x) − f(y)| ≤ L|x− y|β for all x, y ∈ I
}
.

If k < β ≤ k+ 1 for an integerk ≥ 1, letH(β, L; I) be the set of functions onI that are
k times differentiable and whosekth derivative belongs toH(β − k, L; I). We also write
H(β, L) for H(β, L; [0, 1]). In particular,Hh(β, L) coincides withH(β, L) for h(.) = 1,
corresponding to equidistant design pointsXi = i/n, i = 1, ..., n.

2 The multiscale signed rank statistic

Inspired by the high asymptotic efficiency of Wilcoxon’s signed rank test in simple loca-
tion shift families (see Hájek anďSidak 1967), the idea is to define a multiscale testing
procedure combining suitably standardized local signed rank statistics. The construction
is related to Dümbgen (2002), who used local rank statistics for a test of stochastic mono-
tonicity. In the present context it will turn out that the highest asymptotic efficiency is
achieved by weighted local signed rank statistics.

For some kernel functionψ on [0, 1] to be specified later and any pair(s, t) with 0 ≤ s <
t ≤ 1, letψst be the shifted and rescaled kernel on the interval[s, t], pointwise given by

ψst(x) := ψ
(x− s

t− s

)
.

For notational convenience, we simply writeψjk for ψXjXk
, Xj < Xk. For any1 ≤ j <

k ≤ n letRjk := (Rjk(i))
k
i=j , with Rjk(i) the rank of|Yi| among thek − j + 1 numbers

|Yl|, l = j, ..., k. Define the local test statistic

Tjk :=

∑k
i=j ψjk(Xi) sign(Yi)Rjk(i)√∑k

i=j ψjk(Xi)2Rjk(i)2

(2.1)

if the denominator is not equal to zero; and setTjk equal to zero otherwise. The law of
Tjk depends heavily on the unknown error distributions, but under the null hypothesis,
the conditional distributionL

(
Tjk|Rjk

)
does not – even in case of heteroscedastic errors.

Hence distribution-freeness may be achieved via conditioning on the ranks. Note that
the denominator in (2.1) is the conditional standard deviation of the numerator givenRjk

under the null hypothesis.

The question is how to combine these single test statistics in an adequate way. The fol-
lowing theorem acts as a motivation for our approach.

3



Theorem 1. Let the test statisticTn be defined by

Tn := max
1≤j<k≤n

{
|Tjk| −

√
2 log

(
n/(k − j)

) }
,

based on a continuous kernelψ : [0, 1] → R of bounded total variation with
∫
ψ(x)dx >

0. Let assumption (D) be satisfied. Then in case of independentidentically distributed
errors,

L0(Tn|R1n) →w,P0 L(T0),

where

T0 := sup
0≤s<t≤1

{∫ t
s
ψst(x)

√
h(x) dW (x)



‖ψst
√
h‖2

−
√

2 log
(
1/(H(t) −H(s))

)
}

,

withW a Brownian motion on the unit interval.

Here,→w,P refers to weak convergence in probability. It follows from results in Dümb-
gen and Spokoiny (2001) thatT0 is finite almost surely. The additive correction in the
limiting statistic appears as a suitable calibration for taking the supremum. For it is well
known that the maximum ofn independentN (0, 1)-distributed random variables equals
(2 logn)1/2 + op(1) asn→ ∞.

For the testing problem as described in this section, we propose the conditional test

φα(Y ) :=

{
0 if Tn ≤ κα(R)

1 if Tn > κα(R)

whereκα(R) := arg minC>0{ P(Tn ≤ C | R) ≥ 1−α} denotes the generalized(1−α)-
quantile of the conditional distributionTn|R under the null hypothesis. For explicit appli-
cations, we determineκα(R) via Monte-Carlo simulations which are easy to implement.
This test is distribution-free and keeps the significance level for arbitrary finite sample
size also in the heteroscedastic case. Since the test statistic is discrete valued, exact level
α is attained only for certain valuesα ∈ (0, 1). In order to achieve arbitrary significance
levels exactly, the test can be canonically extended to a randomized procedure.

REMARK . Simultaneous detection of subregions with significant deviation from zero
The conditional multiscale test may be viewed as a multiple testing procedure. For a given
vector of ranks, the corresponding test statisticTn exceeds the(1 − α)-significance level
if, and only if, the random family

Dα :=
{

(Xj, Xk)
 1 ≤ j < k ≤ n; Tjk >

√
2 log

(
n
/
(k − j)

)
+ κα(R)

}

is nonempty. Hence one may conclude that with confidence1−α, the unknown regression
function deviates from zero oneveryinterval(Xj, Xk) of Dα.

REMARK . The choice of the kernel functionψ
If the design density is equal to one, the limitT0 under the null hypothesis as given in
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Theorem 1 appears as combination of standardized kernel estimators for the regression
function in the standard Gaussian white noise modeldY (t) = l(t)dt + n−1/2dW (t),
0 ≤ t ≤ 1. With a certain choice of the kernelψ depending on the class of alternatives, it
coincides there with an asymptotically minimax optimal test statistic with respect to the
supremum norm of the testing problem “l = 0” against Hölder alternatives (Dümbgen
and Spokoiny (2001)). This indicates that in the homoscedastic situation, our conditional
test may achieve the highest asymptotic efficiency with the same choice of the kernel
function. Here, the construction is as follows: For some Hölder alternativeH(β, L), let
γβ be the solution to the following minimization problem:

Minimize ‖γ‖2 over allγ ∈ H(β, 1; R) with γ(0) ≥ 1. (2.2)

It is known thatγβ is an even function with compact support, say[−R,R], andγβ(0) =
1 > |γβ(x)| for x 6= 0. To be consistent with the notation introduced above, the optimal
kernelψβ on [0, 1] is then pointwise defined byψβ(x) = γβ(2Rx−R). It is worth noting
that the solutionγβ only depends on the first parameterβ which shows that the procedure
is automatically adaptive with respect to the second parameter L. In case0 < β ≤ 1,
the solution of (2.2) is given byγβ(x) = I{|x| ≤ 1}(1 − |x|β). For β > 1 an explicit
solution is known only forβ = 2 (Leonov 1999). For details on how this function can be
constructed numerically, see Donoho (1994) and Leonov (1999).

3 Asymptotic power and adaptivity

In this section, the asymptotic power of our test is investigated in case of independent
identically distributed errors. The asymptotic power of the above defined conditional test
surely depends on the unknown error distribution as well as the design regularity. The
subsequent Theorem 2 provides an extension of Lepski and Tsybakov’s (2000) lower
bound for the nonparametric regression setting with Gaussian errors to general symmetric
error distributions with finite Fisher information. Additionally, the result includes the case
of non-equidistant design points.

Let f denote the Lebesgue density of the error distribution. In order to formulate the
result on the asymptotic lower bound, let us introduce the following assumptions:

(E1) f is strictly positive and absolutely continuous onR with finite Fisher information

I(f) :=

∫ (f ′(x)

f(x)

)2

f(x)dx.

The required positivity of the error densityf in (E1) just ensures that for anyθ ∈ R, the
shifted distributionLθ(Yi) = L(εi + θ) is absolutely continuous with respect toL0(Yi) =
L(εi). Since we are dealing with non-contiguous alternatives, weare in need of a slightly
stronger assumption than differentiability in quadratic mean, which would be equivalent
to (E1).
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(E2) There exists some positive constantδ0 such that we have the expansion
∫ {(f(z + θ)

f(z)

)1+δ

− 1
}
f(z)dz =

1

2
δ(1 + δ) θ2I(f)(1 + r(θ, δ))

with a sequencer(θ, δ) = O(1/ log(1/|θ|)) for |θ| → 0, uniformly in δ ∈ (0, δ0].

EXAMPLES. (i) (Normal distribution)

If f denotes the Lebesgue density of theN (0, σ2)-distribution, thenI(f) = σ−2 and
∫ {(f(z + θ)

f(z)

)1+δ

− 1
}
f(z)dz =

1

2
δ(1 + δ)θ2I(f)

(
1 +O(θ2)

)

for δ uniformly bounded from above.

(ii) (Double exponential distribution)

Let f denote the density of the centered double exponential distribution with parameter
λ, i.e. f(z) = 2−1λ exp(−λ|z|). Simple calculation provide the expansion

∫ {(
f(z + θ)/f(z)

)1+δ

− 1
}
f(z)dz =

1

2
δ(1 + δ)θ2λ2

(
1 +O(θ)

)
,

for δ uniformly bounded from above, whereλ2 = I(f).

Via Taylor expansion of(1 + x)1+δ up to the second order and the theorem of dominated
convergence, assumption (E2) can be verified for several classical error laws, in particular
for thelogistic distributionwhich is of exceptional interest in the theory of rank tests.For
anyJ ⊂ [0, 1], let ‖.‖J denote the sup-norm restricted onJ , i.e. ‖l‖J := supx∈J |l(x)|.

Theorem 2. Letρn :=
(
(log n)/n

)β/(2β+1)
and define

d∗ :=
( 2L1/β

(2β + 1)I(f)‖γβ‖2
2

)β/(2β+1)

.

Let the assumptions (D), (E1) and (E2) be satisfied. Then for arbitrary numbersεn > 0
with limn→∞ εn = 0 andlimn→∞(log n)1/2εn = ∞ we obtain

lim sup
n→∞

inf
l∈Hh(β,L):

‖l
√
h‖J≥(1−εn)d∗ρn

Elφn(Y ) ≤ α

for any fixed nondegenerate intervalJ ⊂ [0, 1] and arbitrary testsφn at significance level
≤ α.

Even in the knowledge of both smoothness parameters(β, L) and the explicit error distri-
bution which is unrealistic for many practical purposes, for any testφn of {0} at signifi-
cance levelα, there exists an alternativel with ‖ l

√
h ‖J ≥ (1 − εn)d∗ρn which will not

be detected with probability1 − α − o(1) or larger. As expected, the smaller the design
density in some location, the more difficult it is to detect there a deviation from zero.
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The next theorem is about the asymptotic power of the multiscale signed rank test, based
on the kernel being the solution to the minimization problem(2.2). We restrict our atten-
tion to Hölder alternatives with smoothness parameterβ ≤ 1. Here the resulting kernel
ψβ is pointwise given byψβ(x) = (1 − |2x − 1|β). For β > 1, an explicit solution of
(2.2) is known forβ = 2 only; see above. For the sake of simplicity, we consider com-
pact subintervals of(0, 1), which can be avoided by the use of suitable boundary kernels
similar to those in Lepski and Tsybakov (2000).

Theorem 3. Let β ∈ (0, 1]. Let φ∗
n denote the multiscale signed rank test based on the

kernelψβ . Assume that the first derivative of the error density exists, is uniformly bounded

and integrable. Denote furthermoreρn :=
(
(log n)/n

)β/(2β+1)
and

d∗ :=

(
2L1/β

(2β + 1)12
(∫

f(y)2dy
)2

‖γβ‖2
2

)β/(2β+1)

.

Let the condition (D) be satisfied and suppose that the modulus of continuity of the design
densityh is decreasing with at least logarithmic rate, i.e.sup|x−y|≤δ |h(x) − h(y)| =
O(1/ log(1/δ)) as δ → 0. Then for arbitrary numbersεn > 0 with limn→∞ εn = 0 and
limn→∞(log n)1/2εn = ∞ we obtain

lim inf
n→∞

inf
l∈Hh(β,L):

‖l
√
h‖J≥(1+εn)d∗ρn

Pl

(
φ∗
n = 1

)
= 1

for any fixed compact intervalJ ⊂ (0, 1).

The Theorem says that if the underlying regression linel multiplied by the square root of
the design density deviates from{0} by at least(1+ εn)d

∗ρn, then the test rejects the null
hypothesis with probability close to one. Note that the testing procedure does not require
knowledge of the design densityh. Via the choice of the optimal kernel function, the test
depends on the smoothness parameterβ, but in contrast to the tests proposed by Lepski
and Tsybakov (2000) it remains independent ofL.

RELATIVE ASYMPTOTIC EFFICIENCY The ratio(d∗/d
∗)(2β+1)/β may be interpreted as

lower bound for the relative asymptotic efficiency in the following sense: Let(φn) be a
sequence of arbitrary level-α-tests for the simple hypothesisl = 0. Let δn > 0 such that

lim inf
n→∞

inf
l∈Hh(β,L):

‖l
√
h‖J≥δn

Elφn = α′ > α.

Letm(n) be (smallest possible) sample sizes such that

inf
l∈Hh(β,L):

‖l
√
h‖J≥δn

Elφ
∗
m(n) ≥ α′.
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Then under the conditions of Theorems 2 and 3,

lim inf
n→∞

n

m(n)
≥
(
d∗/d

∗)(2β+1)/β
= 12

(∫
f(y)2dy

)2/
I(f).

In case of a Gaussian error densityf = φ0,σ2 , the former bound equals

12 σ2
(∫

φ0,σ2(y)2dy
)2

=
3

π
,

which is well known from the classical theory for the Wilcoxon test under the assumption
of constant alternatives. The existence of optimal tests for arbitrary error densitiesf is yet
an open problem. In case of homoscedastic Gaussian errors, minimax optimal tests are
provided by Dümbgen and Spokoiny (2001). Thus one single test has relative asymptotic
efficiency close to one with respect to an asymptotically minimax optimal test under sup-
norm loss for arbitrary Hölder alternativesHh(β, L);L > 0. Sharp asymptotic adaptivity
is attained in addition over any range of Hölder classesHh(β, L);L1 ≤ L ≤ L2, for some
arbitrary constants0 < L1 < L2 <∞. This follows from the fact that the approximations
in the proof hold uniformly inL as long asL stays uniformly bounded away from0 and
∞.

Sharp asymptotic adaptivity with respect to both parameters, β andL, is still an open
problem. Nevertheless, under the conditions of Theorems 2 and 3 we obtain the following

Theorem 4 (Rate-optimality). Let φn be the conditional multiscale signed rank test at
level α ∈ (0, 1), based on some positive continuous kernelψ of bounded total varia-
tion with

∫ 1

0
ψ(x)d(x) = 1. Then for arbitraryβ > 0, L > 0, there exist constants

c(β, L, ψ) ≥ d∗(β, L) such that

lim inf
n→∞

inf
l∈Hh(β,L):

‖l
√
h‖[0,1]≥c(β,L,ψ)ρn

Pl

(
φn = 1

)
= 1.

ADAPTIVITY. Without the knowledge of the first parameterβ, the test achieves the opti-
mal rate nevertheless. Note thatφn neither depends onβ nor onL. The same considera-
tions concerning the proof as indicated above show that if the range of(β, L) is restricted
to some compact subset[β1, β2] × [L1, L2] ⊂ (0,∞)2, φn is rate-adaptive in the usual
setting, i.e.

lim inf
n→∞

inf
(β,L)∈[β1,β2]×[L1,L2]

inf
l∈Hh(β,L):

‖l
√
h‖[0,1]≥c(β,L,ψ)ρn

Pl

(
φn = 1

)
= 1.

REMARK . Non-trivial power along a sequence of local alternatives
(
l/
√
n
)
n∈N

In the literature, the power of a goodness-of-fit test is often investigated along a sequence
of alternatives

(
l/
√
n
)
n∈N

. Against such local (but directed) alternatives, the proposed
test has non-trivial power as well: Ifl is continuous with‖l‖sup > 0, then there exists
some compact subintervalJ of [0, 1] with |l(x)| > τ > 0 for all x ∈ J and some
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constantτ > 0. The single test statistic|Tjk| −
(
2 log(n/(k − j))

)1/2
with maximal

distance|Xj −Xk| under the constraint[Xj, Xk] ⊂ J detects a deviation from{0} with
asymptotic probability arbitrarily close to one for sufficiently largeτ . Thus, the test is
consistent against local alternatives(anl)n∈N wheneveran ·

√
n→ ∞.

4 Numerical examples

We illustrate the method with a sample of sizen = 100 and independent errors drawn
from the Student law with three degrees of freedom. The design points are equidistant
Xi = i/n, the test statistic is based on the Epanechnikov kernel. Figure 1 shows the
regression line with the observations. The estimated quantiles of the conditional test

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

6

8

Figure 1:

statisticTn given the vector of ranks of the absolute observation valuesare based on 999
Monte Carlo simulations. Here we obtainedκ0.1(R) = 1.4171. Figure 2 (a) presents the
minimal intervals ofD0.1, vizualized as horizontal line segments and ordered along the
y-axis in a place-saving manner. Figure 2 (b) presents the minimal intervals of rejection
at the0.1-level for an application of the multiscale test (Dümbgen and Spokoiny 2001),
which is based on the idea of homoscedastic Gaussian errors (the standardization by

√
3 =

Var(Student3)1/2 included). Based on 999 Monte Carlo simulations as well, we found
κ0.1 = 1.8187. The procedure detects a wrong region[0.56, 0.6].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) FIG 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b) FIG 2.
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5 Extensions

1. PARAMETRIC HYPOTHESES. Suppose that the null hypothesisl ∈
{
lθ|θ ∈ Θ

}
for

some parameter spaceΘ ⊂ R
d. If θ̂n denotes a

√
n-consistent estimator of the unknown

parameter, the above described procedure is supposed to be applied to the vector of resid-
uals,

(
Yi − lbθn

(Xi)
)n
i=1

. In case of equidistant design points and the rectangular kernel,

we conjecture that under sufficient regularity conditions on θ̂n and the parametric model,
the limit under the null hypothesis of Theorem 1 has the form

T0 := sup
0≤s<t≤1

{ |W (t) −W (s) +
(
g(t) − g(s)

)′
Z|√

t− s
−
√

2 log
(
1/(t− s)

) }
,

with W a Brownian motion on the unit interval, some continuousR
d-valued functiong

andZ ad-variate standard normally distributed random vector.Z comes in via linear ex-
pansion of̂θn. The additional estimation of the parameter does not influence the additive
correction. However, it destroys the finite sample validityof the conditional test, and a
bootstrap procedure may be applied as an approximation.

2. SOBOLEV ALTERNATIVES. Forβ ∈ N and1 ≤ p <∞ with βp > 1, let

F(β, L; p) :=
{
l
 l is absolutely continuous and‖l(β)‖p ≤ L

}
,

where‖.‖p denotes theLp-norm. Replacing in the definition ofρn, hn andd∗ the constant
β by γ := β−1/p and using thatLhγnl(./hn) ∈ F(β, L; p) if l ∈ F(β, 1; p), the results of
Theorem 2 extend to Sobolev classes of alternatives as long as the solution of (2.2) (with
a Sobolov ballF(β, 1; p) instead ofH(β, 1)) has compact support and is of finite total
variation. Theorem 3 can be modified in the same way if in addition the corresponding
solution of (2.2) is non-negative – the final argument in step3 (proof Theorem 3) may be
replaced with a consideration as in the proof of Theorem 4. The non-negativity constraint
however reduces the range of possible Sobolev classes toβ = 1. An explicit solution in
caseβ = 1 andp > 2 has been derived by Sz. Nagy (1941), which satisfies the above
requirements in particular.

3. RANDOM DESIGN. We conjecture that the design assumption (D) can be extended to
(D’) There exists some constantc > 0 such that

lim inf
n→∞

Hn(bn) −Hn(an)

bn − an
≥ c

whenever0 ≤ an < bn ≤ 1 andlim infn→∞ log(bn − an)/ logn > −1.
Here,Hn denotes the empirical distribution function of the design points. Note that
(D) implies (D’). The latter condition is satisfied in particular with probability one if
X1, ..., Xn are the order statistics ofn iid random variables with a density which is
bounded away from zero.

4. MULTIVARIATE DESIGN . A further perspective is the extension of the test to two-
or even multi-dimensional design. One application is to detect simultaneously objects on
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a surface of different shape and size. However, there is no natural class of subsets like
intervals one has to look at. Additionally, computational aspects play an increased role: In
the univariate case the supremum is taken overO(n2) single statistics. In two dimensions
already, the choice of all rectangles leads toO(n4).

5. ERROR LAWS WITH POINT MASS AND NON-SYMMETRIC ERRORS. If the errors are
not restricted to be Lebesgue-continuously distributed, define the local ranks

Rjk(i) :=
k∑

l=j

(
1{|Yl| < |Yi|} +

1{|Yl| = |Yi|}
2

)
+

1

2
.

The resulting conditional test keeps the significance level.

When the assumption of symmetry is violated, the test is not valid anymore. However, if
it seems reasonable in some practical situation that at least Med(εi) = 0, i = 1, ..., n, one
may analyze the data with multiscale sign tests as used in Dümbgen and Johns (2004) for
the construction of confidence bands for isotonic median curves. Such a multiscale sign
test will be working in a more general setting, but presumably with a considerable loss of
efficiency in the Gaussian case.

6 Proofs

PROOF of Theorem 1 Let us first introduce some notation. LetTn := {(j, k)| 1 ≤ j <
k ≤ n} and define the processXn onTn pointwise by

Xn(j, k) :=
1√
n

k∑

i=j

ψjk(Xi) sign(Yi)
Rjk(i)

k − j + 2
.

Since the error distribution is assumed to be symmetric,sign(εi) is stochastically inde-
pendent of|εi|. Consequently under the null hypothesis, the vector of signs (sign(Yi))

n
i=1

is stochastically independent of the rank vectorR = R1n. Moreover,sign(εi) are iid
Rademacher variables. For notational convenience we writeξi for sign(εi).

The proof is partitioned as follows. In step I, the conditions of Theorem 6.1 in Dümbgen
and Spokoiny (2001) are verified for the conditional processXn given the vector of ranks
R. Secondly (step II), the weak approximation of the conditional process by a Gaussian
process in probability is established.

(STEP I) For any(j, k) ∈ Tn, letσ2
n,R(j, k) denote the conditional varianceVar(Xn(j, k)|R).

The subgaussian tails of the conditional processXn|R are an immediate consequence of

11



Hoeffding’s inequality:

P
(Xn(j, k)

 > σn,R(j, k) η
R
)

= P

(
k∑

i=j

ψjk(Xi)ξi
Rjk(i)

k − j + 2

 >
( k∑

i=j

ψ2
jk(Xi)

Rjk(i)
2

(k − j + 2)2

)1/2

η

R
)

≤ 2 exp
(
−η2/2

)

for anyη > 0, uniformly overR and1 ≤ j < k ≤ n. Let ρn be defined by

ρn((j, k), (j
′, k′))2 := |j − j′|/n + |k − k′|/n.

In order to show the subgaussian increments ofXn|R with respect toρn, it turns out to be
sufficient to consider pairs withj = j′ = 1 andk < k′ = n, by the same arguments as
used in Dümbgen (2002). For anyη > 0, an application of Hoeffding’s inequality yields

P

(
1√
n


n∑

i=1

ψ1n(Xi)
R1n(i)

n+ 1
ξi −

k∑

i=1

ψ1k(Xi)
R1k(i)

k + 1
ξi

 >
√

1 − k/n η

R
)

≤ 2 exp

(
−(1 − k/n)η2

/
(2B)

)

with

B = Var

(
1√
n

n∑

i=1

ψ1n(Xi)
R1n(i)

n+ 1
ξi −

1√
n

k∑

i=1

ψ1k(Xi)
R1k(i)

k + 1
ξi

R
)
.

First note thatB ≤ 2B1 + 2B2, where

B1 = Var

(
1√
n

n∑

i=1

ψ1n(Xi)
R1n(i)

n+ 1
ξi −

1√
n

k∑

i=1

ψ1k(Xi)
R1n(i)

n + 1
ξi

R
)

(6.1)

and

B2 = Var

(
1√
n

k∑

i=1

ψ1k(Xi)
R1n(i)

n+ 1
ξi −

1√
n

k∑

i=1

ψ1k(Xi)
R1k(i)

k + 1
ξi

R
)
. (6.2)

Hence it is sufficient to show thatBi ≤ K(1 − k/n) for i = 1, 2 with some constant
K > 0 independent ofR, k andn. Throughout this proof,K denotes a generic positive
constant depending only onψ and the design densityh. Its value may be different in
different expressions. Now

B1 =
1

n

k∑

i=1

(
ψ1n(Xi) − ψ1k(Xi)

)2 R1n(i)
2

(n+ 1)2
+

1

n

n∑

i=k+1

ψ1n(Xi)
2 R1n(i)

2

(n + 1)2

≤ 1

n

k∑

i=1

(
ψ1n(Xi) − ψ1k(Xi)

)2
+ K(1 − k/n). (6.3)
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For notational convenience, we denote the scale(Xk−X1) by t1k. The finite total variation
of ψ implies thatψ(x) =

∫
[0,x]

g(u)dP (u) for all but at most countably many numbers
x ∈ [0, 1], whereP is some probability measure on[0, 1] and g is some measurable
function with |g| ≤ TV (ψ). For 0 ≤ z1 ≤ z2 ≤ 1 let µ be defined byµ([z1, z2]) :=∫ z2
z1

|g(x)|P (dx). Note that|ψ(z1) − ψ(z2)| ≤ µ([z1, z2]). LetHn denote the empirical
distribution function of the design points and define

A(kn)
x :=

[x−X1

t1n
,
x−X1

t1k

]
.

The sum in (6.3) is then bounded by

1

n

k∑

i=1

(
ψ1n(Xi) − ψ1k(Xi)

)2
(6.4)

=
1

n

k∑

i=1

{
ψ
(
(Xi −X1)/t1n

)
− ψ

(
(Xi −X1)/t1k

)}2

≤
∫ Xk

X1

µ
(
A(kn)
x

)2
Hn(dx)

=

∫ {∫ Xk

X1

I
{
y ∈ A(kn)

x , z ∈ A(kn)
x

}
Hn(dx)

}
µ(dy)µ(dz) (6.5)

≤ K sup
y∈[0,1]

∫ Xk

X1

I
{
y ∈ A(kn)

x

}
Hn(dx)

≤ K sup
y∈[0,1]

(
Hn

(
yt1n +X1

)
−Hn

(
yt1k +X1

))
, (6.6)

where equality (6.5) follows by an application of Fubini’s theorem. But the design as-
sumption (D) implies thatH−1/n ≤ Hn ≤ H pointwise. Therefore, the latter supremum
in (6.6) is bounded by

sup
y∈[0,1]

(
H
(
yt1n +X1

)
−H

(
yt1k +X1

))
+ 1/n ≤ K

∫ Xn

Xk

h(x)λ(dx) + 1/n

which is bounded from above byK(1 − k/n) for some constantK independent ofn and
k. In order to boundB2 in (6.2), defineR̃1k(i) :=

∑n
l=k+1 I{|Yl| ≤ |Yi|}, thusR1n(i)

equalsR1k(i) + R̃1k(i) a.s. Then

B2 ≤ 2

n

k∑

i=1

ψ1k(Xi)
2
(k + 1

n+ 1
− 1
)2 R1k(i)

2

(k + 1)2
+

2

n

k∑

i=1

ψ1k(Xi)
2 R̃1k(i)

2

(n+ 1)2

≤ K(1 − k/n)2 + K
2

n

n∑

i=k+1

i2

(n + 1)2

≤ K(1 − k/n).
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Consequently,Xn|R has subgaussian increments with respect toρn.

For some totally-bounded pseudo-metric space(T , ρ), T ′ ⊂ T and anyε > 0, the cov-
ering numberN(ε, T ′, ρ) is defined as the infimum of♯T0 over all T0 ⊂ T ′ such that
inft0∈T0 ρ(t0, t) ≤ ε ∀t ∈ T ′. To finish step I, we need to establish the bound for the
covering numbers,

N
(
(δu)1/2, {(j, k) ∈ Tn : σ(j, k)2

n,R ≤ δ}, ρn
)
≤ Au−2δ−1

with a constantA > 0, independent ofR andn. Sinceψ is continuous with
∫ 1

0
ψ(x)dx >

0, there exists some nondegenerate interval[a, b] ⊂ [0, 1] with ψ(x)2 ≥ τ for some
strictly positive constantτ and anyx ∈ [a, b]. LetBjk := {i : (Xi − Xj)/tjk ∈ [a, b]}.
By assumption (D),

♯Bjk

n
=

∫ tjkb+Xj

tjka+Xj

dHn(x) ≥ H(tjkb+Xj) −H(tjka+Xj) −
1

n
≥ K

k − j − 1/K

n
.

This entails the lower bound

σn,R(j, k)2 ≥ 1

n

∑

i∈Bjk

τ
Rjk(i)

2

(k − j + 2)2

≥ τ

n

♯Bjk∑

i=1

i2

(k − j + 2)2

=
1

n
τ

(♯Bjk)(♯Bjk + 1)(2♯Bjk + 1)

6(k − j + 2)2
≥ K

k − j − 1/K

n
,

with some constantK > 0, independent ofR, k, j andn. Therefore,

N
(
(δu)1/2, {(j, k) ∈ Tn : σn,R(j, k)2 ≤ δ}, ρn

)

≤ N
(
(δu)1/2, {(j, k) ∈ Tn : (k − j)/n ≤

(
δ + 1/n

)
/K}, ρn

)
,

If δ ≥ 1/n, thenδ + 1/n ≤ 2δ, and via the embeddingk 7→ k/n of Tn into [0, 1], the
covering number can be bounded byAu−2δ−1 for some constantA > 0 with the same
argument as given in Dümbgen and Spokoiny (2001). Note thatthe desired bound is
necessarily satisfied forδ ≤ 1/n: Then♯

{
(j, k) ∈ Tn : (k − j)/n ≤ (δ + 1/n)/K

}
≤

♯
{
(j, k) ∈ Tn : (k − j) ≤ 2/K

}
≤ 2K−1n ≤ 2K−1δ−1.

(STEP II) LetSn := {(Xi, Xj)|0 ≤ j < k ≤ n}, whereX0 := 0. Redefine the process
Xn onSn via

Xn(s, t) :=
1√
n

∑

i∈Ist

ψst(Xi)ξi
Rst(i)

♯Ist + 1
, (s, t) ∈ Sn,

whereIst := {i|Xi ∈ [s, t]} andRst denotes the rank of|Yi| among the♯Ist numbers
|Yk| : Xk ∈ [s, t]. Furthermore, let the processZ on S := { (s, t) | 0 ≤ s < t ≤ 1 }
pointwise be defined by

Z(s, t) :=
1√
3

∫ t

s

ψst(x)
√
h(x)dW (x), (s, t) ∈ S,
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with W some Brownian motion on the unit interval. In the sequel we prove the weak
convergence in probability of the conditional process under the null hypothesis, i.e.

dw
(
L
(
Xn|R

)
, L
(
Z(s, t)

)
(s,t)∈Sn

)
−→p 0,

wheredw denotes some metric generating the topology of weak convergence. It follows
by a standard chaining argument and the above established results that uniformly overR
andn,Xn|R is stochastically equicontinuous with respect toρ, pointwise defined by

ρ((s, t), (s′, t′))2 := |H(s) −H(s′)| + |H(t) −H(t′)|.

To prove the weak convergence in probability, it is therefore sufficient to show the con-
vergence of the finite dimensional distributions ofXn|R. Let

φi,n(s, t) :=
1√
n
I[s,t](Xi)ψst(Xi)ξi

Rst(i)

♯Ist + 1
, (s, t) ∈ Sn.

ThenXn(s, t) =
∑n

i=1 φi,n(s, t), and theφi,n are independent conditioned onR. One
verifies that

E

( n∑

i=1

‖φi,n‖2
Sn

R
)
≤ ‖ψ‖2

sup

and for arbitraryu > 0,

E

( n∑

i=1

I{‖φi,n‖2
Sn
> u}‖φi,n‖2

Sn

R
)

= o(1).

For any natural numberk, let now{(s1, t1), ..., (sk, tk) | 0 ≤ si < ti ≤ 1, i = 1, ..., k} and
Skn = {(s1n, t1n), ..., (skn, tkn)} ⊂ Sn such that(sni, tni) → (si, ti) for i = 1, ..., k. For a
given vectorR of ranks, let us introduce the processZnR onSn which is, conditioned on
R, a centered Gaussian process with conditional covariance structure asXn|R, i.e.

cov (ZnR(s, t), ZnR(s′, t′)|R) =
1

n

∑

i∈Ist∩Is′t′
ψst(Xi)ψs′t′(Xi)

Rst(i)

♯Ist + 1

Rs′t′(i)

♯Is′t′ + 1
. (6.7)

Since the conditional covariance function ofXn|R is uniformly bounded by±‖ψ‖2
sup re-

spectively, Lindeberg’s central limit theorem entails that dw
(
L(Xn|Sk

n
|R),L(ZnR|Sk

n
|R)
)
→

0, due to the compactness of[−‖ψ‖2
sup, ‖ψ‖2

sup]. It remains to be shown that

dw(L(ZnR|Sk
n
|R),L(Zn|Sk

n
)
)
−→p 0. (6.8)

Let (sn, tn) ∈ Sn with lim infn |sn − tn| > 0. Then


Rsntn(i)

♯Isntn + 1
−
(
F (|Yi|) − F (−|Yi|)

) ≤ sup
z


1

♯Isntn+ 1

∑

j∈Isntn

I{|Yj| ≤ |z|} −
(
F (|z|) − F (−|z|)

)
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and the latter quantity isop(1) by Glivenko-Cantelli’s Theorem. This shows that for
(sn, tn), (s

′
n, t

′
n) ∈ Sn with (sn, tn) → (s, t) ∈ S and(s′n, t

′
n) → (s′, t′) ∈ S, (6.7) is

equal to

cov
(
Xn(sn, tn), Xn(s

′
n, t

′
n)
R
)

= n−1
∑

i∈Isntn∩Is′nt′n

ψsntn(Xi)ψs′nt′n(Xi)
(
F (|Yi|) − F (−|Yi|)

)2
+ op(1).

The random variablessign(Yi){F (|Yi|) − F (−|Yi|)} = 2F (Yi) − 1, i = 1, ..., n, are
independent and uniformly distributed on[−1, 1]. Consequently, assumption (D) and an
application of Chebychef’s inequality finally yields

cov
(
Xn(sn, tn), Xn(s

′
n, t

′
n)
R
)
−→p

1

3

∫
ψst(x)ψs′t′(x)h(x)dx

which implies (6.8).

From (STEP I) and (STEP II) the asserted stochastically weakconvergence of our test
statistic can be deduced with the same argument as given in D¨umbgen (2002), page 528.
�

PROOF of Theorem 2 For a fixed smoothness classH(β, L), let γ = γβ be the solution
of the optimization problem (2.2). As pointed out in section2, γ is an even function with
compact support, say[−C,C]. Now define the following set of testing functions: For a
given bandwidthhn > 0 and any integerj let

γj,n(.) := γ
( . − (2j − 1)Chn

hn

)
and define gj,n(.) :=

1√
h(.)

Lhβnγj,n.

(Note thath(.) denotes the design density whereashn denotes then-dependent scale
parameter.) Let[a, a + b] ⊂ J for someb > 0 and define

Jn :=
{
j ∈ N : (2j − 1)Chn ∈ [a + Chn, a+ b− Chn]

}
.

Let Gn :=
{
gj,n : j ∈ Jn

}
. Note thatg ∈ Hh(β, L) for everyg ∈ Gn. Following the

arguments in Dümbgen and Spokoiny (2001) (proof Theorem 3.1a), one shows that for
any testφ : R

n → [0, 1] with significance level≤ α,

inf
g∈Gn

Egφ(X, Y ) − α ≤ E0


1

♯Gn
∑

g∈Gn

dPg
dP0

(X, Y ) − 1
.

The aim is to determinehn such that the right-hand side tends to zero asn goes to infinity.
Define the index setIg := {i| g(Xi) > 0}. By construction,Ig ∩ Ig′ = ∅ for g 6= g′ and
g, g′ ∈ Gn. Then for anyg ∈ Gn, the likelihood ratio equals to

dPg
dP0

(X, Y ) =
∏

i∈Ig

f(Yi − g(Xi))

f(Yi)
,
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which shows thatdPg/dP0(X, Y ), g ∈ Gn, are independent. Note that their expectation is
not the same for everyg. Using a standard truncation argument as Dümbgen and Walther
(2006) (proof Lemma 10), it turns out to be sufficient to findhn such that

inf
δ∈(0,δ0]

max
g∈Gn

1

(♯Gn)δ
E0

((dPg
dP0

(X, Y )
)1+δ

)

= inf
δ∈(0,δ0]

max
g∈Gn

1

(♯Gn)δ
n∏

i=1

{∫
f(y)

(f(y − g(Xi))

f(y)

)1+δ

dy

}
−→ 0 (6.9)

asn→ ∞. Using the expansion of assumption (E2), (6.9) is equal to

inf
δ∈(0,δ0]

max
g∈Gn

1

(♯Gn)δ
n∏

i=1

{
1 +

1

2
δ(1 + δ)I(f)g(Xi)

2
(
1 + r(g(Xi), δ)

)}
.

But for hn sufficiently small, the latter expression is bounded by

inf
δ∈(0,δ0]

max
g∈Gn

exp
(
n

1

2
δ(1 + δ)I(f)‖g‖2

n,2

(
1 + r̄(g)

)
− δ log(♯Gn)

)
, (6.10)

using the series representation of the logarithm, where‖g‖n,2 := 1
n

∑n
i=1 g(Xi)

2 and
r̄(g) := supδ∈(0,δ0] supx∈[0,1] |r(g(x), δ)|. Furthermore,

1

n

n∑

i=1

gj,n(Xi)
2 −

∫
gj,n(x)

2h(x)dx

= L2h2β
n

∑

i∈Igj,n

∫ Xi

Xi−1

(γj,n(Xi)
2

h(Xi)
− γj,n(x)

2

h(x)

)
h(x)dx

≤ L2h2β
n

∑

i∈Igj,n

sup
x∈[Xi−1,Xi]


γj,n(Xi)

2

h(Xi)
− γj,n(x)

2

h(x)


1

n
.

The last expression is of orderO(h2β
n n

−1): Since the design densityh is of bounded
total variation as well as uniformly bounded away from zero,also 1/h is of bounded
total variation. In addition,γ is bounded and of bounded total variation (forβ ≤ 1, γ
is explicitly known and unimodal, while its first derivativeis Hölder-continuous in case
β > 1). Consequently,TV (γ2

j,n/h) ≤ K(TV (γ2) +TV (h)) <∞ with some constantK
independent ofj andn, which shows that‖gj,n‖2

n,2 = h2β+1
n ‖γ‖2

2(1 +O((hnn)−1). Thus
(6.10) is bounded by

inf
δ∈(0,δ0]

max
g∈Gn

exp
(
n

1

2
δ(1 + δ)I(f)L2h2β+1

n ‖γ‖2
2

(
1 + R(n, g)

)
− δ log(♯Gn)

)
, (6.11)

with a sequenceR(n, g) of orderO(max{(hnn)−1, r̄(g)}).
Let εn > 0 be arbitrary numbers withεn → 0 andεn

√
log n→ ∞. Define the bandwidth

hn :=
(d∗ρn

L

)1/β

(1 − εn)
1/β ,
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which implies thatsupg∈Gn
R(n, g) in (6.11) is of order(log n)−1. By the choice ofGn,

♯Gn ≥ b/(2Chn) − 1. Let δ = δn := εn. Then (6.11) is bounded by

exp
(
εn(1 + εn)(2β + 1)−1 log n(1 − εn)

(2β+1)/β

− εn(2β + 1)−1(log n− log log n) + o(1)
)

= exp
(
−1 + β

β
ε2
n(1 +O(εn)) logn + εn(2β + 1)−1 log log n+ o(1)

)
,

which tends to zero asn goes to infinity. �

PROOF of Theorem 3 By virtue of the proof of Theorem 1, the conditional process
Xn|R satisfies the conditions of Theorem 6.1 (Dümbgen and Spokoiny 2001) uniformly
in R andn. This entails that there exists some constantC > 0 independent ofn with
κnα(R) ≤ C, whereκnα(R) denotes the(1 − α)-quantile ofL(Tn|R) under the null hy-
pothesis. Consequently,

Pl(φ
∗
n = 1) =

∫
Pl

(
Tn > κnα(R)

R
)
dPl(R)

≥
∫

Pl

(
Tn > C

R
)
dPl(R) = Pl

(
Tn > C

)
.

Furthermore,Pl
(
Tn > C

)
≥ Pl

(
|Tjk| > C+

√
2 log

(
n/(k − j)

) )
for any1 ≤ j < k ≤

n. It is therefore sufficient to show that for any sequenceln ∈ Hh(β, L) with maximal
absolute value‖ ln

√
h ‖sup ≥ d∗ρn(1 + εn), there exists a sequence of pairs(jn, kn) with

1 ≤ jn < kn ≤ n such that

lim inf
n→∞

Pln

(
|Tjnkn

| > C +
√

2 log
(
n/(kn − jn)

) )
= 1.

The proof is organized as follows: At first (step I), theL2-approximation of the numerator
of Tjnkn

by a sum of independent random variables is established. Secondly (step II),
Taylor type expansions of its expectation and variance are provided, and the asymptotic
power of our test is determined along sequences of alternatives converging to zero at the
fastest possible rate. Finally (step III), we treat alternatives converging to zero at a slow
rate or staying uniformly bounded away from zero.

(STEP I) LetIn := {jn, ..., kn} be an interval of indices with1 ≤ jn < kn ≤ n
and ♯In = kn − jn + 1 → ∞. For notational convenience, denoteψn := ψjnkn

and
Rn(i) := Rjnkn

(i), i ∈ In. Let Sn be the (normalized) numerator of the single local test
statisticTjnkn

, i.e.

Sn :=
1√
♯In

∑

i∈In

ψn(Xi) sign(Yi)
Rn(i)

♯In + 1
(6.12)

a.s.
=
∑

i∈In

∑

j∈In

1

♯In + 1
sign(Yi)

ψn(Xi)√
♯In

I{|Yj| ≤ |Yi|}.
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In the sequel, we establish the approximation ofSn by a sum of independent random vari-
ables which is up toOp(1/♯In) its Hájek projection (see e.g. van der Vaart (1998)). For
that purpose the Hoeffding decomposition is applied. Withci = cn,i := (♯In)

−1/2ψn(Xi),
letAij := sign(Yi)ciI{|Yj| ≤ |Yi|} and defineHij := Aij + Aji. Then

Sn
a.s.
=
∑

i∈In

∑

j∈In:
j<i

1

♯In + 1
Hij +

∑

i∈In

1

♯In + 1
Aii.

With the definition H̃ij := E(Sn|Yi, Yj) − E(Sn|Yi) − E(Sn|Yj) + E(Sn)

= Hij − E(Hij |Yi) − E(Hij |Yj) + EHij

for i 6= j, we obtain the decomposition

Sn
a.s.
=
∑

i∈In

∑

j∈In:
j<i

1

♯In + 1
H̃ij +

∑

i∈In

( Hii/2

♯In + 1
+
∑

j∈In:
j<i

1

♯In + 1

(
E(Hij|Yi) + E(Hij |Yj) − EHij

))

=: S(0)
n + S(1)

n ,

whereS(0)
n andS(1)

n are uncorrelated. Note that in particularEH̃ij = 0 and cov(H̃ij, H̃kl) =
0 for (i, j) 6= (k, l). Consequently

Var
(
Sn − S(1)

n

)
=

1

(♯In + 1)2

∑

i∈In

∑

j∈In:j<i

Var
(
H̃ij

)
≤ 1

(♯In + 1)2

∑

i∈In

∑

j∈In:j<i

4c2n,i = O(1/♯In),

since by construction,Var(H̃ij) ≤ Var(Hij). Furthermore,S(1)
n is equal to

∑

i∈In

ci
♯In + 1

sign(Yi) +
∑

i,j∈In
j 6=i

ci
♯In + 1

sign(Yi)
(
Fj(|Yi|) − Fj(−|Yi|)

)

+
∑

i,j∈In
j 6=i

ci
♯In + 1

{ ∫

R\[−|Yj|,|Yj |]

sign(y)dFi(y) − E(Hij)

}

,

whereFi denotes the distribution function ofYi. For any distribution functionF , letG
be pointwise defined onR+ by G(t) := F (t) − F (−t−), with F (y−) the limit on the
left, i.e. limxրy F (x). We denoteF̄ := 1/(♯In)

∑
i∈InFi, Ḡ(t) := F̄ (t) − F̄ (−t−) and

F̄ ψ := 1/(♯In)
∑

i∈In ψn(Xi)Fi. ThenE(S
(1)
n − Ŝn)

2 = O(1/♯In), with

Ŝn :=
1√
♯In

∑

i∈In

{

ψn(Xi) sign(Yi)Ḡ(|Yi|) +

∫

R\[−|Yi|,|Yi|]

sign(y)dF̄ ψ(y) (6.13)

− E

∫

R\[−|Yi|,|Yi|]

sign(y)dF̄ ψ(y)

}
.
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(STEP II) For two functionsf andg inL2[0, 1], let〈f, g〉In := 1/(♯In)
∑

i∈In f(Xi)g(Xi)

and let‖f‖In,2 := 〈f, f〉1/2In
denote the corresponding norm. Let(ln) be a sequence of al-

ternatives. IfM(ln) denotes the maximal point of|ln|, let (Xjn, Xkn
) be the design points

which are closest toM(ln)−hn andM(ln)+hn respectively, wherehn := (δn/L)1/β with
δn := d∗ρn(1 + εn). Symmetry considerations show that we may assume without loss of
generality thatln is positive atM(ln). Besides the restriction‖ ln

√
h ‖sup ≥ d∗ρn(1+εn),

it is assumed in this paragraph that

‖ln‖sup/ρn = O(1), (6.14)

which is equivalent to‖ ln
√
h ‖sup/ρn = O(1). Note that (6.14) implies

√
♯In‖ln‖2

In,2 =
o(1).

Our first goal is to show that

ElnŜn√
VarlnŜn

=
√

12
√
♯In

〈ψn, ln〉In
‖ψn‖In,2

∫
f(y)2dy + o(1) (6.15)

for any sequence(ln) satisfying (6.14). The symmetry of the error distribution around
zero and the boundedness of the first derivativef ′ provide the expansion

sign(Yi)Ḡ(|Yi|)

= sign(Yi)

{(
F (|Yi|) − F (−|Yi|)

)
−
(
f(|Yi|) − f(−|Yi|)

)( 1

♯In

∑

j∈In

ln(Xj)

)

+ Ounif

(
‖ln‖2

In,2

)}

= (2F (Yi) − 1) + Ounif

(
‖ln‖2

In,2

)
.

Here and in what follows, a sequence of random variables(Zn) is Ounif(cn) with a se-
quence of positive numbers(cn), if lim supn |Zn/cn| ≤ c < ∞ with some nonrandom
non-negative constantc. In order to treat the expectation

ElnŜn =
1√
♯In

∑

i∈In

ψn(Xi)

{∫ (
2F (y)− 1

)
dFi(y) +O

(
‖ln‖2

In,2

)}
,

first observe that for anyθ ∈ R,
∫

R

(
2F (y) − 1

)
f(y + θ)dy =

∫
R
f ′(t)

∫ t
t−θ
(
2F (y) −

1
)
dy dt, using Fubini’s Theorem and the symmetry of the error density f . Taylor expan-

sion of the inner integral entails that

ElnŜn =
√
♯In〈ψn, ln〉In

{
−
∫ (

2F (y) − 1
)
f ′(y)dy

}
+
√
♯InO

(
‖ln‖2

In,2

)
(6.16)

= 2
√
♯In〈ψn, ln〉In

{∫
f(y)2dy

}
+
√
♯InO(‖ln‖2

In,2),
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where the last equality is obtained via partial integration. Furthermore,

Varln

(
1√
♯In

∑

i∈In

ψn(Xi) sign(Yi)Ḡ(|Yi|)
)

=
1

♯In

∑

i∈In

ψn(Xi)
2
Eln

(
2F (Yi) − 1

)2
+O(‖ln‖2

In,2). (6.17)

In order to bound the variance of the second part in the approximation (6.13), namely

Varln

(
1√
♯In

∑

i∈In

∫

R\[−|Yi|,|Yi|]

sign(y)dF̄ ψ(y)

)
≤ 1

♯In

∑

i∈In

Eln

( ∫

R\[−|Yi|,|Yi|]

sign(y)dF̄ ψ(y)

)2

,

(6.18)

note that by the symmetry ofsign(.) and Fubini’s Theorem,

∫

[−z,z]c

sign(y)dF̄ ψ(y)
 =


1

♯In

∑

i∈In

ψn(Xi)

∫

R

f ′(t)

∫

[−z,z]c

− sign(y)I{y ∈ [t, t+ ln(Xi)]}dy dt


≤ 〈ψn, |ln|〉In
∫

R

|f ′(t)|dt.

This shows that (6.18) isO(‖ln‖2
In,2) by Cauchy-Schwarz. Furthermore,

∫

R

(2F (y) − 1)2d
(
Fi(y) − F (y)

)
=

∫

R

(2F (y)− 1)2

∫ y

y−ln(Xi)

−f ′(t)dt dy

=

∫

R

f ′(t)

∫ t+ln(Xi)

t

−
(
2F (y)− 1

)2
dy dt

= ln(Xi)

∫

R

4f(t)2
(
2F (t) − 1

)
dt+O(ln(Xi)

2),

where the latter integral is equal to zero by the symmetry of the error distribution. This
finally gives together with (6.17) and the bound of (6.18)

VarlnŜn =
4

12
‖ψn‖2

In,2 + O
(
‖ln‖2

In,2

)
. (6.19)

Note at this point thatVarlnŜn is uniformly bounded from above and from below. Thus
the combination of (6.16) and (6.19) entails (6.15) for any sequence(ln) satisfying (6.14).

In the next step, it will be shown that the denominator ofTjnkn
is a sufficiently good

approximation for the standard deviation ofŜn under the sequence of alternativesln.
Remember that it is the conditional standard deviation given the vector of ranks of the
numerator under the null hypothesis. Using the representationRn(i) =

∑
k∈In I{|Yk| ≤

|Yi|} a.s., one verifies that

Eln

(
1

♯In

∑

i∈In

ψn(Xi)
2 Rn(i)

2

(♯In + 1)2

)
=

4

12
‖ψn‖2

In,2 + O(‖ln‖2
In,2),
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and analogously fori, j ∈ In with i 6= j

Eln

(
Rn(i)

2

(♯In + 1)2

Rn(j)
2

(♯In + 1)2

Yi, Yj
)

= Ḡ(|Yi|)2Ḡ(|Yj|)2 + Ounif(1/♯In)

and

Varln

(
1

♯In

∑

i∈In

ψn(Xi)
2 Rn(i)

2

(♯In + 1)2

)
= O(1/♯In),

which by Chebychef’s inequality shows in particular that under condition (6.14)

√
♯In

〈ψn, ln〉In
‖ψn‖In,2



√
VarlnŜn

/( 1

♯In

∑

i∈In

ψn(Xi)
2 Rn(i)

2

(♯In + 1)2

)1/2

− 1

 = oPln
(1).

(6.20)
SinceḠ(.) is uniformly bounded by1, the Lindeberg condition is easily verified for̂Sn.
Then Lindeberg’s central limit theorem yields in combination with the result from step I,
(6.15) and (6.20)

Pln

(
Tjnkn

> C +
√

2 log
(
n/♯In

))

= 1 − Φ
(
C +

√
2 log

(
n/♯In

)
−

√
12
√
♯In

〈ψn, ln〉In
‖ψn‖In,2

∫
f(y)2dy

)
+ o(1),

with Φ the standard normal distribution function. It remains to beshown that

√
12
√
♯In

〈ψn, ln〉In
‖ψn‖In,2

∫
f(y)2dy −

√
2 log

(
n/♯In

)
−→ ∞ (6.21)

asn goes to infinity under the constraints‖ln
√
h‖sup ≥ d∗ρn(1 + εn) and (6.14).

Under the assumptions about the kernelψ and the design densityh, arguments involving
bounded total variation ofψ andh yield the approximation

√
12
√
♯In

〈ψn, ln〉In
‖ψn‖In,2

∫
f(y)2dy −

√
2 log

(
n/♯In

)

=
√

12
√
n
〈ψn, ln

√
h〉

‖ψn‖2

∫
f(y)2dy −

√
2 log(n/(♯In)) + o(1). (6.22)

Let ψ(n) be the kernel rescaled to the interval[M(ln) − hn,M(ln) + hn]. Then

〈ψn, ln
√
h〉

‖ψn‖2

=
〈ψ(n), ln

√
h〉

‖ψ(n)‖2

(1 +O((nhn)
−1)),

using thatXjn − (M(ln) − hn) = O(n−1) andXkn
− (M(ln) + hn) = O(n−1) by

assumption (D). Butδnψ(n) by its construction as well asln
√
h are elements ofH(β, L).

Then as in Dümbgen and Spokoiny (2001), a convexity argument yields the inequality

δ−1
n

〈δnψ(n), ln
√
h〉

‖ψ(n)‖2

≥ δ−1
n ‖δnψ(n)‖2

2

‖ψ(n)‖2

= δn
√
hn‖γβ‖2. (6.23)
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One verifies that
√

12
√
n
(∫

f(y)2dy
)
δn
√
hn‖γβ‖2(1 +O((nhn)

−1)) −
√

2 log(1/hn) + o(1)

≥ εn
(
2/(2β + 1)

)1/2√
logn + o(1) → ∞

and therefore (6.21) follows in combination with (6.22) and(6.23).

(STEP III) Suppose now that there exists a sequence(ln) with

lim inf
n→∞

Pln

(
Tjnkn

> C +
√

2 log
(
n/♯Ijnkn

) )
= c < 1,

where the indicesjn, kn are chosen as in step II. This implies the existence of a subse-
quence (for simplicity also denoted by(ln)) without any subsubsequence having the prop-
erty (6.14); that is we may assume‖ln‖sup/ρn → ∞. We will conclude the proof via con-
tradiction as follows: For any subsequence of a sequence(ln) satisfying‖ln‖sup/ρn → ∞,
there exists a subsubsequence which either converges to zero at a slow rate or whose max-
imal absolute value stays uniformly bounded away from zero.Hence we need to show
that in both cases, our test attains asymptotic power one.

Note that the squared denominator ofTjnkn
is bounded by‖ψ‖2

sup, while Varln(Ŝn) is

uniformly bounded. Using again the approximation of the numerator byŜn, we obtain

ElnTjnkn
−
√

2 log
(
n/♯In

)
≥ ‖ψ‖−1

sup Eln Ŝn −
√

2 log
(
n/♯In

)
+ o(1). (6.24)

If there exists a sequence(ln) with the property‖ln‖sup/ρn → ∞ but which converges to
zero,

ElnŜn = 2
√
♯In〈ψn, ln〉In

{∫
f(y)2dy

}
+
√
♯InO(‖ln‖2

In,2). (6.25)

as seen in step II. But then the first term dominates in order the second one as well as the
logarithmic correction which shows that that the right handside in (6.24) goes to infinity.

Otherwise, assume that(ln) stays uniformly bounded away from zero. First observe that
with l̄n := 1/(♯In)

∑
i∈In ln(Xi), |ln(Xi) − l̄n(Xi)| ≤ L|Xjn − Xkn

|β = O(hβn). Taylor
expansion around̄ln up to the first order provides the approximation

ElnŜn =
1√
♯In

∑

i∈In

ψn(Xi)
{∫ (

F̄ (y + ln(Xi)) − F̄ (−y − ln(Xi))
)
f(y)dy

}

=
1√
♯In

∑

i∈In

ψn(Xi)
{∫ (

F (y)− F (−y − 2l̄n)
)
f(y)dy + O(hβn)

}

= El̄nŜn +O(n1/2hβ+1/2
n )

If l̄n is uniformly bounded away from zero,El̄nŜn is of order not smaller thanO(
√
nhn)

which dominates in order the approximation error|El̄nŜn − ElnŜn| as well as the loga-
rithmic correction.

�
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PROOF of Theorem 4 By virtue of the proof Theorem 3, it remains to be shown that (i)
there exists some positive constantC = C(β, L, ψ), such that (6.21) goes to infinity for
alternativesln with Kρn ≥ ‖ln

√
h‖sup ≥ Cρn for any constantK > C and (ii) ElnŜn

goes to infinity whenever‖ln‖sup/ρn → ∞. To this aim, we establish the following: Ifl ∈
H(β, L) with ‖l‖sup ≤ 1 andx∗ := arg maxx∈[0,1] |l(x)|, then there exist some constant
c = c(β, L) > 0 and a closed intervalI(l) ⊂ [0, 1] such thatλ(I(l)) ≥ c |l(x∗)|1/β and

|l(x)| ≥ 1

2
|l(x∗)| for everyx ∈ I(l). (6.26)

Note that this is obviously correct in caseβ ≤ 1 with c = 1/(2L). For β > 1, let ⌊β⌋
denote the largest integer strictly smaller thanβ. Let l ∈ H(β, L) with ‖l‖sup = D > 0.
Taylor expansion around any pointy ∈ [0, 1] provides the approximation

l(x) = l(y) + (x− y)l′(y) + ...+
(x− y)⌊β⌋

k!
l(⌊β⌋)(y) +Rl(x, y)

with |Rl(x, y)| ≤ L|x− y|β (≤ L). Thus,

(x− y)l′(y) + ...+
(x− y)⌊β⌋

k!
l(⌊β⌋)(y)

 ≤ 2D + L. (6.27)

Lemma. There exists a universal constantK = Kd such that for any polynomialP
of degreed > 0, sayP (x) =

∑d
k=0 akx

k, and ‖P‖[0,1] ≤ D > 0, it holds true that
supk=0,...d |ak| ≤ Kd ·D.

The lemma results from the fact that, for the polynomialP (x) =
∑d

k=0 akx
k, ‖P‖(1) =

‖P‖[0,1] and‖P‖(2) = max0≤k≤d |ak| are two norms in the(d + 1)-dimensional space of
polynomials of degreed, and these norms are equivalent. Its application implies together
with the bound (6.27) that there exists a constantK = K(β) such that|l(x) − l(x∗)| ≤
‖l′‖sup|x − x∗| ≤ K

(
2D + L

)
|x − x∗|. Then|l(x)| ≥ 1/2|l(x∗)| on [x∗ − D/(4KD +

2KL), x∗ + D/(4KD + 2KL)] ∩ [0, 1]. If now ln ∈ H(β, L) with ‖ln‖sup = δn ≤ 1,
then at least[x∗ − 2−1δ

1/β
n , x∗] or [x∗, x∗ + 2−1δ

1/β
n ] is fully contained in[0, 1]. Assume

without loss of generality that[x∗, x∗ +2−1δ
1/β
n ] ⊂ [0, 1]. Thengn be defined bygn(x) :=

2βδ−1
n ln

(
2−1δ

1/β
n x + x∗

)
for x ∈ [0, 1] is element ofH(β, L) with ‖gn‖sup = gn(0) =

2β. Thus the above lemma finally implies that|ln(x)| ≥ δn/2 on [x∗, x∗ + 1/(8K +

4K2−βL)δ
1/β
n ].

The assumption aboutψ implies that there exists some interval[c, d] ⊂ (0, 1) on which
ψ(x) ≥ δ for some strictly positive constantδ. We first verify the claim (i). For
any alternativeln, let ψn be the kernel rescaled onto the interval[Xjn , Xkn

], where the
design pointsXjn < Xkn

are those which are closest to the endpoints ofI(ln
√
h).

Let In := {i : Xi ∈ I(ln
√
h)}. Then 〈ψn, ln

√
h〉In is of order not smaller than

‖ln
√
h‖sup, which implies the existence of a universal constantC = C(β, L, ψ) such

that (6.21) goes to infinity for‖ln
√
h‖sup ≥ Cρn and‖ln‖sup/ρn = O(1). The same

consideration also shows that (6.25) goes to infinity whenever ‖ln‖sup/ρn → ∞ and
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‖ln‖sup → 0, because‖ln
√
h‖sup dominates in order‖ln‖2

In,2 as well. To verify (ii),

note that‖ln
√
h‖sup/(4K‖ln

√
h‖sup + 2KL) stays uniformly bounded away from zero

and infinity as soon as‖ln‖sup is uniformly bounded away from zero. Thus in the lat-
ter case, there always exists an intervalI(ln

√
h) with lim infn→∞ λ(I(ln

√
h)) > 0 and

|ln(Xi)
√
h(Xi)| ≥ ‖ln

√
h‖sup/2 for everyXi ∈ I(ln

√
h). With In := {i|Xi ∈ I(ln

√
h)}

Sn =
1√
♯In

∑

i∈In

ψn(Xi) sign(Yi)
Eln

(
Rn(i)| sign(Yi)

)

♯In + 1

+
1√
♯In

∑

i∈In

ψn(Xi) sign(Yi)
Rn(i) − Eln

(
Rn(i)| sign(Yi)

)

♯In + 1
.

If ln(Xi) is uniformly bounded away from zero for everyi ∈ In, the absolute expectation
of first term is of orderO(

√
n), while the second term isOp(1). �
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[4] DÜMBGEN, L. AND WALTHER, G. (2006). Multiscale inference about a density.

Technical report, University of Berne.

[5] EFROMOVICH, S. (1998). Simultaneous sharp estimation of functions andtheir

derivatives.Ann. Statist.26, 273–278.

25



[6] ERMAKOV, M.S. (1990). Minimax detection of a signal in a white Gaussian noise.

Theory Probab. Appl.35, 667–679.

[7] EUBANK , R.L. AND HART, J.D. (1992). Testing goodness-of-fit in regression via

order selection criteria.Ann. Statist.20, 1412–1425.

[8] FAN , J. (1996). Test of significance based on wavelet thresholding and Neyman’s

truncation.J. Amer. Statist. Assoc.91, 674–688.

[9] FAN , J. AND HUANG, J.-S. (2001). Goodness-of-fit tests for parametric regression

models.J. Amer. Statist. Assoc.96, 640–652.

[10] FAN , J., ZHANG, C. AND ZHANG, J. (2001). Generalized likelihood ratio statistics

and Wilks phenomenon.Ann. Statist.29, 153–193.
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