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Abstract

Within the nonparametric regression model with unknowrresgion function
I and independent, symmetric errors, a new multiscale sigaekl statistic is in-
troduced and a conditional multiple test of the simple higpeisi = 0 against a
nonparametric alternative is proposed. This test is Oigion-free and exact for
finite samples even in the heteroscedastic case. It adaptEdntain sense to the
unknown smoothness of the regression function under teenalive, and it is uni-
formly consistent against alternatives whose sup-norrdstda zero at the fastest
possible rate. The test is shown to be asymptotically optimévo senses: It is
rate-optimal adaptive against Holder classes. Furthexits relative asymptotic
efficiency with respect to an asymptotically minimax optirtest under sup-norm
loss is close to one in case of homoscedastic Gaussian aiithiis a broad range of
Holder classes simultaneously.

1 Introduction

Consider the nonparametric regression model withdependent observations
}/;l = l<XZ> + Eis L= 17"'7”7

some unknown regression functiéron the unit interval and design poinis< X; <

. < X, < 1. Throughout this paper, the errors are assumed to be indepteand
symmetrically distributed around zero, which in particulzcludes the heteroscedastic
case. We postulate Lebesgue continuous error distribtaifiomddition for the sake of
simplicity. Within this model, we are interested in idewtifg subintervals in the design
space wheré deviates significantly from some hypothetical regressiowel,,. For this
aim, we develop an exact multiple test of the simple hypaghds= [,” against a non-
parametric alternative. The method does not require aipgamowledge of the explicit
error distributions, and it provides simultaneous conftdestatements about deviations
of [ from [, with given significance level for arbitrary finite sampleesiz

For the power investigation of our test, we follow the minkregproach introduced by
Ingster (1982, 1993), which permits the set of alternatigesonsist of an entire smooth-
ness class, separated from the null hypothesis by somencdesta converging to zero.
Typically, the distance to the null hypothesis is quantifiydsome seminornj.||. Then
for a given significance level and some positive numbérthe goal is to find a statistical
testy whose minimal power

inf Elqb
leF:ll-l|| > 6
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is as large as possible under the constraintlihat < «. Approximate solutions for this
testing problem are known for various clasgéand seminormé.||, see, for instance, In-
gster (1987, 1993) for the casef-norm and Holder and Sobolev alternatives, Ermakov
(1990) for sharp asymptotic results with respect tofherorm and Sobolev alternatives
and Lepski (1993) and Lepski and Tsybakov (2000) in caseeo$tipremum norm. It is

a general problem that the optimal teésthay depend otF.

In case of an integral norh||, the problem of adaptive (data-driven) testing a simple or
parametric hypothesis is investigated for example in Eklzard Hart (1992), Ledwina
(1994), Ledwina and Kallenberg (1995), Fan (1996), Fan.et28101), Spokoiny (1996,
1998), Hart (1997) and Horowitz and Spokoiny (2001, 2002)e §eneral procedure is
to consider simultaneously a family of test statistics esponding to different values of
smoothing parameters, respectively. As Spokoiny (199@)ted out, the adaptive ap-
proach in case of thé,-norm leads necessarily to suboptimal rates by a fdotgiog n.

In particular, the tests in Fan (1996) and Spokoiny (1996)kmased on the maximum
of centered and standardized statistics and (up to thistredmg rate-optimal adaptive
against a smooth alternative, see also Fan and Huang (Ze@1gur purpose, the supre-
mum norm seems to be the most adequate distance. Within tii@@ous time Gaussian
white noise model, Dimbgen and Spokoiny (2001) have shbaiin contrast to thé-
case, adaptive testing with respectt@-norm loss is actually possible without essential
loss of efficiency. They propose a test based on the supremgoitably standardized
kernel estimators of the regression function over diffetenations and over different
bandwidths in order to achieve adaptivity. Unfortunatdigir testing procedure depends
explicitly on homoscedasticity and Gaussian errors orremath at least subgaussian
tails. If these assumptions are violated, the test may kssexact or even asymptotic
validity. Moreover, its asymptotic power can be arbityagimall.

In the following section, a new multiscale signed rank statiis introduced and a condi-
tional test of a one-point hypothesis against a nonpararedternative is developed. In
the third section, its asymptotic power is studied in thérsgbf homoscedastic errors. A
lower bound for minimax testing with respectsiap-norm loss is provided, which is ex-
plicitly given in terms of Fisher information. The test tgraut to be rate-optimal against
arbitrary Holder classes, provided that the Fisher infation of the error distribution is
finite. Moreover, a lower bound for its relative asymptotiftoeency with respect to an
asymptotically minimax optimal test under sup-norm losdatermined, and the classical
efficiency bound/~ is recovered even over a broad range of Holder classestsineul
ously. A numerical example illustrating our method is preed in section 4. Possible
extensions are briefly discussed in section 5. All proofsiaferred to section 6.

For asymptotic investigations, the design variables appssed to be deterministic and
sufficiently regular in the sense of the condition

(D) There exists a strictly positive and continuous Lebesgrobability density: on
[0, 1] of finite total variation such thakX; = H~'(i/n), with H the distribution function
of h.



Substracting, from the observations, we may assume without loss of gahethht
l, = 0. Depending on the design densityit is then assumed that under the alternative
the regression functiohbelongs to some smoothness class

Hu(B,L) = {1/Vh | 1 € H(3,L; [0,1])},

where for any interval C R, H(f3, L; I) denotes the class of Holder functions bwith
parameterg, L > 0. Incase) < § < 1,

H(B, L; 1) := {f:[—ﬁR‘ |f(z) = f(y)| < Lz —y|® forall x,yEI}.

If £ < g <k+1foranintegek > 1, letH(3, L; I) be the set of functions ohthat are
k times differentiable and whogeh derivative belongs té{ (5 — k, L; ). We also write
H(5, L) for H(B, L; [0,1]). In particular,H,,(3, L) coincides withH (53, L) for h(.) =1,
corresponding to equidistant design poifis=i/n,i = 1, ..., n.

2 The multiscale signed rank statistic

Inspired by the high asymptotic efficiency of Wilcoxon’sisagl rank test in simple loca-
tion shift families (see Hajek ansidak 1967), the idea is to define a multiscale testing
procedure combining suitably standardized local signa#l statistics. The construction
is related to Dumbgen (2002), who used local rank stasi$tica test of stochastic mono-
tonicity. In the present context it will turn out that the hast asymptotic efficiency is
achieved by weighted local signed rank statistics.

For some kernel functiorh on [0, 1] to be specified later and any péif, t) with 0 < s <
t <1, letyy, be the shifted and rescaled kernel on the intejal, pointwise given by

bale) = (7).

t—s

For notational convenience, we simply write,. for ¢x x,, X; < Xj. Foranyl < j <
k < nlet Ry, := (R (i))k;, with Rj(i) the rank oflY;| among the: — j 4+ 1 numbers

\Yi], L = j, ..., k. Define the local test statistic
7, o i Yo (X0) sign(¥) Ry (1)
JR T
Vo k(X2 Ry (0)?

if the denominator is not equal to zero; and gt equal to zero otherwise. The law of
T;, depends heavily on the unknown error distributions, buteartde null hypothesis,
the conditional distributior (7},| R;,) does not — even in case of heteroscedastic errors.
Hence distribution-freeness may be achieved via conditgoon the ranks. Note that
the denominator in (2.1) is the conditional standard dewiabf the numerator giver;;,
under the null hypothesis.

(2.1)

The question is how to combine these single test statisties iadequate way. The fol-
lowing theorem acts as a motivation for our approach.
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Theorem 1. Let the test statisti;, be defined by

7= max { [Tl = \/210a(n/ (k) }

1<j<k<n

based on a continuous kerngl: [0, 1] — R of bounded total variation witlf ¢ (z)dz >
0. Let assumption (D) be satisfied. Then in case of independentically dlstrlbuted
errors,

Lo(Tn|Rin) —w,Py L(Tp),

where
| ft wst \/ dW
Ty = = 21 1
0 OSSsliIt)Sl{ ||¢stf||2 \/ og(1/(H HE) |

with W/ a Brownian motion on the unit interval.

Here,—,, p refers to weak convergence in probability. It follows froesults in Dumb-
gen and Spokoiny (2001) thd, is finite almost surely. The additive correction in the
limiting statistic appears as a suitable calibration féartg the supremum. For it is well
known that the maximum of independentV (0, 1)-distributed random variables equals
(2logn)t/? 4+ 0,(1) asn — oo.

For the testing problem as described in this section, weqa®the conditional test

)0 ifT, < ka(R)
Pa(Y) = {1 if T, > ko(R)

wherek, (R) := argmingso{ P(7,, < C'| R) > 1 — o} denotes the generalizétl — «)-
quantile of the conditional distributidfi, | R under the null hypothesis. For explicit appli-
cations, we determine, (R) via Monte-Carlo simulations which are easy to implement.
This test is distribution-free and keeps the significaneellér arbitrary finite sample
size also in the heteroscedastic case. Since the testistatidiscrete valued, exact level
« is attained only for certain values < (0, 1). In order to achieve arbitrary significance
levels exactly, the test can be canonically extended tod@oraized procedure.

REMARK. Simultaneous detection of subregions with significantaten from zero

The conditional multiscale test may be viewed as a multggéng procedure. For a given
vector of ranks, the corresponding test stati$tjexceeds th¢l — «)-significance level
if, and only if, the random family

D, — { (X, X) ‘ 1< j <k <n: Ty> \/2log(n/(k — ) + ka(R) }

is nonempty. Hence one may conclude that with confidérece, the unknown regression
function deviates from zero averyinterval (X, X},) of D,.

REMARK. The choice of the kernel functian
If the design density is equal to one, the lirfijf under the null hypothesis as given in
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Theorem 1 appears as combination of standardized kernelagsts for the regression
function in the standard Gaussian white noise mabié(t) = I(t)dt + n~/2dW (),

0 <t < 1. With a certain choice of the kerng¢ldepending on the class of alternatives, it
coincides there with an asymptotically minimax optimal t&satistic with respect to the
supremum norm of the testing problerh =+ 0” against Holder alternatives (Dimbgen
and Spokoiny (2001)). This indicates that in the homosdedsisuation, our conditional
test may achieve the highest asymptotic efficiency with #maeschoice of the kernel
function. Here, the construction is as follows: For soméddbalternativeH (3, L), let

s be the solution to the following minimization problem:

Minimize ||y||» over ally € H(3, 1; R) with y(0) > 1. (2.2)

It is known thatys is an even function with compact support, $ay?, k], andyz(0) =

1 > |vyg(x)| for z # 0. To be consistent with the notation introduced above, thenzp
kernelyz on [0, 1] is then pointwise defined by;(z) = v5(2Rx — R). Itis worth noting
that the solution/; only depends on the first parametewhich shows that the procedure
is automatically adaptive with respect to the second patemnie In case) < § < 1,
the solution of (2.2) is given by(z) = I{|z| < 1}(1 — |z|?). Forg > 1 an explicit
solution is known only for3 = 2 (Leonov 1999). For details on how this function can be
constructed numerically, see Donoho (1994) and Leonovq)199

3 Asymptotic power and adaptivity

In this section, the asymptotic power of our test is inveded in case of independent
identically distributed errors. The asymptotic power af Hbove defined conditional test
surely depends on the unknown error distribution as welhasdesign regularity. The
subsequent Theorem 2 provides an extension of Lepski andakey’s (2000) lower
bound for the nonparametric regression setting with Ganssirors to general symmetric
error distributions with finite Fisher information. Addinally, the resultincludes the case
of non-equidistant design points.

Let f denote the Lebesgue density of the error distribution. beoto formulate the
result on the asymptotic lower bound, let us introduce tileviong assumptions:

(E1) fis strictly positive and absolutely continuousRrwith finite Fisher information

1= [ (?((j)))Qf(x)dx.

The required positivity of the error densifyin (E1) just ensures that for ayc R, the
shifted distributionZ,(Y;) = L(e; + 0) is absolutely continuous with respectdg(Y;) =
L(g;). Since we are dealing with non-contiguous alternativesargen need of a slightly
stronger assumption than differentiability in quadratieam, which would be equivalent
to (E1).




(E2) There exists some positive consténsuch that we have the expansion

/{(f(;(l—)ﬁ))ué _ 1}f(z)dz = %5(1 +6) 21(F)(1 + (8, 5))

with a sequence(d, ) = O(1/log(1/|6])) for |#] — 0, uniformly iné € (0, o).

EXAMPLES. (i) (Normal distribution)
If f denotes the Lebesgue density of %i¢€0, o2)-distribution, then/(f) = ¢—2 and

/ {<f(;<i>9)>l+6 1}z = S50+ AT (1 +0(6%)

for § uniformly bounded from above.

(ii) (Double exponential distribution)

Let f denote the density of the centered double exponentialluliston with parameter
A i.e. f(z) = 27 N exp(—\|z]). Simple calculation provide the expansion

146 1
/ [(sG+0)/1) " — 15 = 560+ 6 (1+00)),
for § uniformly bounded from above, whedé = I(f).

Via Taylor expansion of1 + x)'* up to the second order and the theorem of dominated
convergence, assumption (E2) can be verified for seversdicka error laws, in particular
for thelogistic distributionwhich is of exceptional interest in the theory of rank tebts:
anyJ C [0, 1], let||.||  denote the sup-norm restricted @ni.e. ||I||; := sup,c, |I(x)|.

)/n)” Y and define

Theorem 2. Letp, := ((logn

2L1/8 B/(26+1)
d, =
<(2ﬁ+ 1)I(f>HwH%>

Let the assumptions (D), (E1) and (E2) be satisfied. Thenrtatrary numbersz,, > 0
with lim,, .. £, = 0 andlim,,_..(log n)"/%¢,, = co we obtain

lim su inf Eo0,(V) <«
n—»oop leH R (B,L): l¢ ( >_
”l\/EHJZ(l_En)d*Pn

for any fixed nondegenerate intervalC [0, 1] and arbitrary tests,, at significance level
< .

Even in the knowledge of both smoothness paraméters) and the explicit error distri-
bution which is unrealistic for many practical purposes,dny testp,, of {0} at signifi-
cance leveh, there exists an alternativevith || 1v/h ||, > (1 — &,)d.p,, Which will not

be detected with probability — o — o(1) or larger. As expected, the smaller the design
density in some location, the more difficult it is to detearha deviation from zero.
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The next theorem is about the asymptotic power of the malissigned rank test, based
on the kernel being the solution to the minimization prob(@x). We restrict our atten-
tion to Holder alternatives with smoothness paramgtet 1. Here the resulting kernel

g is pointwise given byys(x) = (1 — |2z — 1/°). For3 > 1, an explicit solution of
(2.2) is known for3 = 2 only; see above. For the sake of simplicity, we consider com-
pact subintervals of0, 1), which can be avoided by the use of suitable boundary kernels
similar to those in Lepski and Tsybakov (2000).

Theorem 3. Let 5 € (0,1]. Let¢} denote the multiscale signed rank test based on the
kernely ;. Assume that the first derivative of the error density existsniformly bounded

and integrable. Denote furthermoyg := ((log n)/n)ﬁ/(wﬂ) and

. ( o7 1/8 )ﬁ/(2ﬁ+1)
26+ 1)12( [ Fw)2dy) sl

Let the condition (D) be satisfied and suppose that the magdifloontinuity of the design
densityh is decreasing with at least logarithmic rate, i.eup,_,<s |(z) — h(y)| =
O(1/log(1/4)) as 6 — 0. Then for arbitrary numbers,, > 0 with lim,, ., £, = 0 and
lim,, . (logn)'/?¢,, = oo we obtain

lim inf inf P(or =1) =1
n—o0 L€M, (B,L): 1 )
Ill\/E”JZ(l"l‘an)d*Pn

for any fixed compact interval C (0, 1).

The Theorem says that if the underlying regression/limeiltiplied by the square root of
the design density deviates frofi} by at leas{1 + ¢,,)d*p,,, then the test rejects the null
hypothesis with probability close to one. Note that theingsprocedure does not require
knowledge of the design density Via the choice of the optimal kernel function, the test
depends on the smoothness param@gtdut in contrast to the tests proposed by Lepski
and Tsybakov (2000) it remains independentLof

RELATIVE ASYMPTOTIC EFFICIENCY The ratio(d, /d*)?%+1/8 may be interpreted as
lower bound for the relative asymptotic efficiency in thedeling sense: Leto,) be a
sequence of arbitrary level-tests for the simple hypothesis- 0. Letd,, > 0 such that

liminf inf E¢, = o > a.
n—oo [eH(B,L):
VR 7>6n

Letm(n) be (smallest possible) sample sizes such that

inf  E;¢F > o
1€ML (B,L): l¢m(") -
Hl\/ﬁlllzfsn



Then under the conditions of Theorems 2 and 3,
2
> (a.d) 0 = 1o [ i) 1)

In case of a Gaussian error densfty= ¢, ,2, the former bound equals

120°( [ ooty = 2

which is well known from the classical theory for the Wilcaoxtest under the assumption
of constant alternatives. The existence of optimal testaraitrary error densitieg is yet
an open problem. In case of homoscedastic Gaussian erronspam optimal tests are
provided by Dimbgen and Spokoiny (2001). Thus one singlehi@s relative asymptotic
efficiency close to one with respect to an asymptoticallyimax optimal test under sup-
norm loss for arbitrary Holder alternativég, (5, L); L > 0. Sharp asymptotic adaptivity
is attained in addition over any range of Holder clas¥g&3, L); L, < L < L,, for some
arbitrary constant8 < L, < L, < oo. This follows from the fact that the approximations
in the proof hold uniformly in as long ag. stays uniformly bounded away frofhand
.

lim inf
o m(n)

Sharp asymptotic adaptivity with respect to both parameterand L, is still an open
problem. Nevertheless, under the conditions of Theorenmsl Bave obtain the following

Theorem 4 (Rate-optimality) Let ¢,, be the conditional multiscale signed rank test at
levela € (0,1), based on some positive continuous kemedf bounded total varia-
tion with folw(x)d(x) = 1. Then for arbitrary3 > 0, L > 0, there exist constants
c(B, L,v) > d*(B, L) such that

lim inf inf Pi(o,=1) = 1.
minf - inf o Pi(gn=1)
1vRl0,11>¢(B,L%) pn

ADAPTIVITY. Without the knowledge of the first parametgrthe test achieves the opti-
mal rate nevertheless. Note thigt neither depends ofi nor onL. The same considera-
tions concerning the proof as indicated above show thaeifaéinge of 3, L) is restricted
to some compact subsgt;, 3] x [L1, Ly] C (0,00)?, ¢, is rate-adaptive in the usual
setting, i.e.

lim inf inf inf P(¢n=1) = 1.
n—oo (B,L)€([B1,62]x[L1,L2] leHL(B,L):
VR0, >¢(B,L) pn

REMARK. Non-trivial power along a sequence of local alternati\(é/s\/ﬁ)neN

In the literature, the power of a goodness-of-fit test isroftwestigated along a sequence
of alternatives(! /\/ﬁ)ne ~- Against such local (but directed) alternatives, the pssgb
test has non-trivial power as well: Ifis continuous with||/||s,, > 0, then there exists
some compact subinterval of [0, 1] with |i(x)| > 7 > 0 for all x € J and some
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constantr > 0. The single test statistitZ},| — (2log(n/(k — j)))l/2 with maximal

distance X; — X;| under the constrairjtX;, X;] C .J detects a deviation frofi0} with
asymptotic probability arbitrarily close to one for suféiotly larger. Thus, the test is

consistent against local alternaties!)..c v Whenevem,, - /n — co.

4 Numerical examples

We illustrate the method with a sample of size= 100 and independent errors drawn
from the Student law with three degrees of freedom. The dgsaints are equidistant
X; = i/n, the test statistic is based on the Epanechnikov kernelur€if shows the
regression line with the observations. The estimated geantf the conditional test

Figure 1:

statistic7,, given the vector of ranks of the absolute observation vadwedased on 999
Monte Carlo simulations. Here we obtaineg; (R) = 1.4171. Figure 2 (a) presents the
minimal intervals ofD, i, vizualized as horizontal line segments and ordered albag t
y-axis in a place-saving manner. Figure 2 (b) presents themalnntervals of rejection
at the0.1-level for an application of the multiscale test (Dimbgen &pokoiny 2001),
which is based on the idea of homoscedastic Gaussian ettierstandardization by'3 =
Var(Student)'/? included). Based on 999 Monte Carlo simulations as well, avand
ko1 = 1.8187. The procedure detects a wrong regjone, 0.6].

— —

— H —

— — H —

— — H— —

— — H— —

— — —i— H
(a) ARG 2. (b) FiG 2.



5 Extensions

1. PARAMETRIC HYPOTHESES Suppose that the null hypothesis {ly|0 € ©} for

some parameter spaéeC R?. If 0,, denotes a/n-consistent estimator of the unknown
parameter, the above described procedure is supposed ppliedao the vector of resid-
uals, (Yi — g, (Xi)):‘zl. In case of equidistant design points and the rectangulaweke

we conjecture that under sufficient regularity condition@pand the parametric model,
the limit under the null hypothesis of Theorem 1 has the form

T ::O<S£<1{\W(t) - W(s);f(,;(t) —9(s) 2] \/QIOg(l/(t— 9) }

with W a Brownian motion on the unit interval, some continu®fsvalued functiong
andZ ad-variate standard normally distributed random vectbcomes in via linear ex-
pansion of,,. The additional estimation of the parameter does not inflee¢he additive
correction. However, it destroys the finite sample validifythe conditional test, and a
bootstrap procedure may be applied as an approximation.

2. SOBOLEV ALTERNATIVES. Forg € IN and1 < p < oo with gp > 1, let
F(B, L;p) := {l | 1is absolutely continuous and ||, < L},

where||.||, denotes thd.,-norm. Replacing in the definition @f,, 2, andd, the constant

B by~ :=[—1/pandusingthath)l(./h,) € F(5,L;p)if l € F(3,1;p), the results of
Theorem 2 extend to Sobolev classes of alternatives as btigeasolution of (2.2) (with

a Sobolov ballF (s, 1; p) instead ofH(/3,1)) has compact support and is of finite total
variation. Theorem 3 can be modified in the same way if in @mhlithe corresponding
solution of (2.2) is non-negative — the final argument in €proof Theorem 3) may be
replaced with a consideration as in the proof of Theorem 4. fdn-negativity constraint
however reduces the range of possible Sobolev classes-td. An explicit solution in
cases = 1 andp > 2 has been derived by Sz. Nagy (1941), which satisfies the above
requirements in particular.

3. RANDOM DESIGN. We conjecture that the design assumption (D) can be extieiode
(D’) There exists some constant> 0 such that
H —H
lim inf n(0n) n(an) > ¢
n—oo bn — Ap

wheneve® < a, < b, < 1 andliminf,, . log(b, — a,)/logn > —1.

Here, H,, denotes the empirical distribution function of the designngs. Note that
(D) implies (D). The latter condition is satisfied in padlar with probability one if
X4,..., X, are the order statistics of iid random variables with a density which is
bounded away from zero.

4. MULTIVARIATE DESIGN. A further perspective is the extension of the test to two-
or even multi-dimensional design. One application is t@desimultaneously objects on
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a surface of different shape and size. However, there is hoalaclass of subsets like

intervals one has to look at. Additionally, computatiorgdects play an increased role: In
the univariate case the supremum is taken ov@r?) single statistics. In two dimensions
already, the choice of all rectangles lead®tm*).

5. ERROR LAWS WITH POINT MASS AND NONSYMMETRIC ERRORS If the errors are
not restricted to be Lebesgue-continuously distributefine the local ranks

k

rfi) = 3 (1 < vy + L0

The resulting conditional test keeps the significance level

When the assumption of symmetry is violated, the test is alid anymore. However, if
it seems reasonable in some practical situation that atMéa¥c;) = 0,7 =1, ...,n, one
may analyze the data with multiscale sign tests as usedmkigan and Johns (2004) for
the construction of confidence bands for isotonic mediamesirSuch a multiscale sign
test will be working in a more general setting, but presumabth a considerable loss of
efficiency in the Gaussian case.

6 Proofs

PROOF of Theorem 1 Let us first introduce some notation. L&t := {(7,k)|1 < j <
k < n} and define the process, on 7, pointwise by

& .
X4, k) == % Z Vir(X;) sign(}@)%.

Since the error distribution is assumed to be symmetiga(c;) is stochastically inde-
pendent ofe;|. Consequently under the null hypothesis, the vector ofssigign(Y;))" ,
is stochastically independent of the rank vectbr= R;,. Moreover,sign(e;) are iid
Rademacher variables. For notational convenience we gyrite sign(e;).

The proof is partitioned as follows. In step I, the condisari Theorem 6.1 in Dimbgen
and Spokoiny (2001) are verified for the conditional procEsgiven the vector of ranks

R. Secondly (step 1), the weak approximation of the condiiqorocess by a Gaussian
process in probability is established.

(STEP 1) Foranyj, k) € 7y, leto?. z(j, k) denote the conditional varianer (X, (j, k)| R).
The subgaussian tails of the conditional procEgsk are an immediate consequence of
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Hoeffding’s inequality:

(‘X jv )‘>UTLR]7 77|R)

2
- o(| w2 | > (S )
< 2exp(—n /2)
for anyn > 0, uniformly overR and1 < j < k < n. Letp, be defined by
pul (G, K), (5 K)? = 1j = J'l/n + [k = K'|/n.

In order to show the subgaussian increment& pfR with respect tg,,, it turns out to be
sufficient to consider pairs with = j' = 1 andk < k¥’ = n, by the same arguments as
used in Dumbgen (2002). For any> 0, an application of Hoeffding’s inequality yields

)

k

1y Runi) Rie(i)
P(ﬁ\ D (XD TET6 = D (X)L

=/ )

with

1 " Rln le
B = Var (ﬁ;%n( ; n—i—(l) \/72101/& l{:+<1)£

First note thatB < 2B; + 2B,, where

B:var<i§n:¢( Rin (i) '—Zk: )
1 \/ﬁi:1 in Z?’L—}—]_Z \/7: z

).
R) 6

k
B = Var (= 3 vuixy 2t \FZW 17| ). 62
=1

Hence it is sufficient to show thas; < K(1 — k/n) for i = 1,2 with some constant
K > 0 independent of?, k£ andn. Throughout this proofX’ denotes a generic positive
constant depending only an and the design density. Its value may be different in
different expressions. Now

and

k

By = 3 (bn(X »—wlk(Xi))QRl" Ly ) Rl"()

z:l ( i=k+1 n+ 1)

X)) —vn(X)* + K(1—k/n). (6.3)

VAN
SENS
™

=

B
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For notational convenience, we denote the sc&le- X; ) by ¢1;. The finite total variation
of ¢ implies thaty)(z) = f[m] g(u)dP(u) for all but at most countably many numbers
x € [0,1], where P is some probability measure df, 1] and g is some measurable
function with |g| < TV (y). For 0 < z; < 2z, < 1 let u be defined byu([z1, 20]) =
f;f |g(x)| P(dz). Note that|t)(z1) — ¥(22)| < u([z1,29]). Let H,, denote the empirical
distribution function of the design points and define

A(kn) — |:l' — Xl xr — Xl
v tin |t
The sum in (6.3) is then bounded by
k
Z VY1 (X5) ¢1k(Xz'))2 (6.4)
1 & 2
= > (X = X0)/t) = (X = X0/t |
i=1
Xk

< /X n(AS) Hy(de)
_ / { /XXk I{y €A > € AVYH, (d) uldy)p(dz)  (6.5)

Xk
< K sup / H{y e AP 1, (dz)
X1

y€[0,1]

< K Sup}<Hn(yt1n + Xl) - Hn(ytlk + X1)>, (66)

y€l0,1

where equality (6.5) follows by an application of Fubinifeebrem. But the design as-
sumption (D) implies that/ —1/n < H,, < H pointwise. Therefore, the latter supremum
in (6.6) is bounded by

Xn

sup (H(ytln + X1) — H(ytue + Xl)) +1/n< K h(z)A(dx) +1/n

y€e[0,1] Xk

which is bounded from above by (1 — k/n) for some constank” independent of. and
. In order to boundB, in (6.2), definel?y.(i) == >, ., I{|Yi| < |Y;|}, thus Ry, (4)
equalsle( ) 4+ Ry (i) a.s. Then

k ~

2 & k41 2 Rip(i)2 2 R (i)?
By < Ez¢lk(Xi)2<n+1 -1) (k:+1)2 * E;¢1k<Xi)2(n+1)z

K(1—k/n)? +K Z

K(1—k/n).

IA

n+1)

IN
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ConsequentlyX,, | R has subgaussian increments with respeg,to

For some totally-bounded pseudo-metric spgfep), 7' C 7 and any:= > 0, the cov-
ering numberN (e, 77, p) is defined as the infimum df7, over all7, C 7’ such that
inf; e p(to,t) < eVt € T'. To finish step I, we need to establish the bound for the
covering numbers,

N((6u)?,{(j,k) € T, : o (J, k)2 g <6},pn) < Au?6!

with a constantd > 0, independent oft andn. Sincey is continuous Wlthf x)dx >
0, there exists some nondegenerate intefwa] C [0,1] with o (x)?> > 7 for some
strictly positive constant and anyz € [a,b]. Let Bj, == {i : (X; — X,)/t;r € [a,b]}.
By assumption (D),

B' tjkb'i‘Xj 1 k_ _1 K
u—Jk:/ dHn({L')Z H(tjkb+Xj)—H(tjka+Xj)—— ZKJ#/

3

n tjk(l—i-Xj

This entails the lower bound

O-n,R(ju k)2 Z - Z

ZGB]k
n<—(k—j+2)
1 BB+ )@ +1) k= j—1/K
n 6(k—j+2)? - n ’
with some constank” > 0, independent ok, &k, j andn. Therefore,

N((0w)'? {(j, k) € T+ onr(j,k)* < 3}, pn)
< N((0u)' {(j, k) € T : (k—§)/n < (5 +1/n)/K}, pn),

If 0 > 1/n, thend + 1/n < 26, and via the embedding — k/n of 7, into [0, 1], the
covering number can be bounded Hy.~25~! for some constantl > 0 with the same
argument as given in Dumbgen and Spokoiny (2001). Notettietesired bound is
necessarily satisfied for < 1/n: Thent{(j, k) € T, : (k—j)/n < (6 +1/n)/K} <
8{(j,k) €Ty (k—j) <2/K} <2K'n <2K~ 15

Vv

(STEP Il) LetS,, := {(X;, X;)|0 < j < k < n}, whereX, := 0. Redefine the process
X, onS, via

Rt(i)
X, (s,t) \/_lest ﬂfst+1 (s,t) € Sy,

i€lst

wherel, = {i|X; € [s,t]} and Ry denotes the rank gf¥;| among thefl;, numbers
|Yi| : Xk € [s,t]. Furthermore, let the procegsonS = { (s,t) |0 < s <t <1}
pointwise be defined by

1 t
- / bt (D)VI@AW (),  (5,1) € S,
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with W some Brownian motion on the unit interval. In the sequel wavprthe weak
convergence in probability of the conditional process utide null hypothesis, i.e.

du) (»C (Xn|R)7 ‘C(Z(S7 t))(s,t)GSn) Hp 0’

whered,, denotes some metric generating the topology of weak coauery It follows
by a standard chaining argument and the above establiskelisréhat uniformly ove
andn, X,|R is stochastically equicontinuous with respecpt@ointwise defined by

p(s,), (s, 1))" == [H(s) = H(s)| + |H(t) — H(t)].

To prove the weak convergence in probability, it is therefsufficient to show the con-
vergence of the finite dimensional distributions’of| R. Let

(Xo)vst(X5)&, Rua(0) (s,t) € S,.

¢i,n(87t) = ﬁ]t“‘].

1
ﬁ] s.]
Then X, (s,t) = >, ¢in(s,t), and theg;, are independent conditioned ¢h One

verifies that .
E(D i,
=1

R) < v,

and for arbitraryu > 0,

(Z H{l[inllz, > u}|dinll2,

) =o(1).

For any natural numbé, let now{(sq,¢1), ..., (g, tx) |0 < s; < t; <1,i=1,...,k} and
SF = {(S1n,t1n), -, (Skn, ten)} C S, sUch that(s,;, t,;) — (s4,t;) fori = 1,..., k. Fora
given vectorR of ranks, let us introduce the processi on S,, which is, conditioned on
R, a centered Gaussian process with conditional covarianeetsre asX,, | R, i.e.

cov (Znr(s,t), Znr(s',t')|R) = % Z Vst (X)) s (X5)

iEIstﬂIS/t/

R.(1) Ry (1)
flg + 1810y + 1

(6.7)

Since the conditional covariance functionXf| R is uniformly bounded byt |||2,, re
spectively, Lindeberg’s central limit theorem entailstitha( £ (X, s:|R), L( nR\S};|R))
0, due to the compactness f||¢/||2,,. [|¥||3,,)- It remains to be shown that

Gl £(Zurys | R), £(Zujsy) — 0. (6.8)
Let (s,, t,) € S, with liminf, |s, — ¢,| > 0. Then

Rsntn (Z)
ﬁISntn + ]‘

~ (P(Yi) = F(= )| < sup | SO < 2} = (F(l2D) = F(=12D)|

Isntn

ﬁlsnt + 1
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and the latter quantity is,(1) by Glivenko-Cantelli's Theorem. This shows that for
(Snytn), (sh,t)) € S, With (s,,t,) — (s,t) € Sand(s),,t) — (s',t') € S, (6.7) is
equal to

cov (X (sn,tn),X (s, t,)| R)

n’ n

5N i (X, (X) (F(Yi]) = F(=YiD)* + o0p(1).

ZEISntnﬂI / ;1

The random variablesign(Y;){F(|Y;|) — F(—|Yi)} = 2F(Y;) -1, i=1,...,n, are
independent and uniformly distributed pn1, 1]. Consequently, assumption (D) and an
application of Chebychef’s inequality finally yields

cov (Xn(Sn, tn), Xn(sh, th) | R) —, %/@bst(x)wszt/(x)h(x)dx

which implies (6.8).

From (STEP I) and (STEP Il) the asserted stochastically veesiergence of our test
statistic can be deduced with the same argument as giveanmbDén (2002), page 528.
O

PROOF of Theorem 2 For a fixed smoothness cla&& 3, L), lety = ~5 be the solution
of the optimization problem (2.2). As pointed out in sectiyn is an even function with
compact support, say-C, C]. Now define the following set of testing functions: For a
given bandwidth,, > 0 and any integey let

(. —(2j-1)Ch, , 1 3
Yin(.) = 7( W ) and define g;,(.) == 0 Lk, jn.

(Note thath(.) denotes the design density wherdgsdenotes the:-dependent scale

parameter.) Lejfu, a + b] C J for someb > 0 and define

Jn={j €N: (2j —1)Chy € [a+ Chy,a+b— Chy]}.

LetG, = {g;n : j € Jn}. Note thatg € H,(3, L) for everyg € G,. Following the
arguments in Dumbgen and Spokoiny (2001) (proof Theorela)3one shows that for
any testp : R” — [0, 1] with significance levek «,

inf E,0(X,Y) —a <Eﬂ0‘ﬁg ZdPO Y)—1]|.

ge n

The aim is to determink,, such that the right-hand side tends to zere g®es to infinity.
Define the index sef, := {i| g(X;) > 0}. By construction], N I, = () for g # ¢’ and
9,9 € G,. Then for anyy € G, the likelihood ratio equals to

dP, f(Yi — g(Xi))
ar, X0 = 157

1€ly
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which shows thatP,/dPy(X,Y), g € G,, are independent. Note that their expectation is
not the same for every. Using a standard truncation argument as Dimbgen and &valth
(2006) (proof Lemma 10), it turns out to be sufficient to findsuch that

1 dP, 146
it (<crpo<X> )")
B X)) 1+6
= 6€1r01f60119ré%§ A 5£[{/f —) dy} — 0 (6.9)

asn — oo. Using the expansion of assumption (E2), (6.9) is equal to

mia s ] {14 500+ 91N (1+(0(X).9)}

1
6€(0,60] 9€Gn (

But for h,, sufficiently small, the latter expression is bounded by

,nf max exp(n 61+ )I(f)g22(1+7(9) — dlog(sGu)),  (6.10)

using the series representation of the logarithm, whetg,» == 1 >""  ¢(X;)? and
7(9) = SUPse(0,5) WP (0,1] [7(9(2), 6)|. Furthermore,

2> 060 = [ (bl

= [ Z / 'VJn i)? %;(%)2>h(x)dx

ZEI

< 72328 %',n(Xi)z _ Yjn(2)? l
= gg}n el ‘ h(X:) h(z) ‘n
The last expression is of ord€¥(h?’n~='): Since the design density is of bounded
total variation as well as uniformly bounded away from zeals01/h is of bounded
total variation. In additiony is bounded and of bounded total variation (for< 1, v
is explicitly known and unimodal, while its first derivative Holder-continuous in case
$ > 1). Consequentlyl'V (7, /h) < K(TV(y*)+ TV (h)) < co with some constank’
independent of andn, which shows thallg; ,.||Z , = 227" ||7]|3(1 + O((h,n)~"). Thus
(6.10) is bounded by

27268+1 2 .
nf mo exp (g0 + IR 30+ Rin,)) ~ dlog(:G,)),  (6.11)

with a sequencé(n, g) of orderO(max{(h,n)=t, 7(g)}).
Lete, > 0 be arbitrary numbers with, — 0 ande,v/logn — oo. Define the bandwidth

depp\1/8
hy, ::< l?) (1_571)1/6’
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which implies thatup,g, R(n,g) in (6.11) is of order(logn)~'. By the choice oG,
tG, > b/(2Ch,) — 1. Letd = ¢, := &,. Then (6.11) is bounded by

exp <€n(1 +e,) (28 + 1) Hogn(1l — &,)FV/P

—£,(28+1)"!(logn — loglogn) + 0(1))

= exp(—#ei(l + O(g,)) logn + £,(28 + 1) loglogn + 0(1)),

which tends to zero as goes to infinity. O

PROOF of Theorem 3 By virtue of the proof of Theorem 1, the conditional process
X,|R satisfies the conditions of Theorem 6.1 (Dumbgen and Spgk001) uniformly

in R andn. This entails that there exists some constant- 0 independent of, with
k(R) < C, wherex!(R) denotes th¢1 — «)-quantile of £(7,,| R) under the null hy-

«

pothesis. Consequently,
Pi(g;, =1) = /Pz(Tn > k2(R) | R) dP(R)

> /IP’Z(Tn > C|R) dP)(R) = P,(T,, > C).

FurthermoreP, (T, > C) > IP’Z<\Tjk\ > C+ \/2 log(n/(k — 7)) ) foranyl <j <k <
n. It is therefore sufficient to show that for any sequehce H, (5, L) with maximal

absolute valug 1.vVh lsup = d*pn(1 + €,), there exists a sequence of pdijs, k,,) with
1 < j, < k, < nsuch that

The proof is organized as follows: At first (step 1), theapproximation of the numerator
of T} x, by a sum of independent random variables is establishedon8ic(step II),
Taylor type expansions of its expectation and variance ereigied, and the asymptotic
power of our test is determined along sequences of altggsationverging to zero at the
fastest possible rate. Finally (step Ill), we treat altékes converging to zero at a slow
rate or staying uniformly bounded away from zero.

(STEP ) Letl, := {jn,...,k,} be an interval of indices with < j, < k, < n
andfl, = k, — j, + 1 — oo. For notational convenience, denatg := ; 5, and
R, (i) := R, 1, (1), © € I,. Let S, be the (normalized) numerator of the single local test
statisticTj, ,, i.€.

(6.12)

i€ly, jeln
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In the sequel, we establish the approximatios,pby a sum of independent random vari-
ables which is up t@,(1/11,,) its Hajek projection (see e.g. van der Vaart (1998)). For
that purpose the Hoeffding decomposition is applied. With c,,; := (£1,,) /%1, (X;),

let A;; = sign(Y;)c;I{|Y;| < |Y;|} and definefd;; := A;; + A;;. Then

1 1
Sp =YY Tt ;WA

1€l jEIL:
j<i

With the definition [7;; :=E(S,|Y;,Y;) — E(S,|V;) — E(S,|Y;) + E(S,)
= Hi; — E(H;|Y;) — E(Hy]Y;) + EHj;

for i # j, we obtain the decomposition

a.s. 1 % I{“/2 1
S = D2 gt Z(ﬁIle - Z T, 1 ) + B, ) ~EHy))
i€l J€In:

1€ln jeIn:
Jj<i Jj<i

= Sr(LO) + Sy(Ll)v

wheresy” andS!" are uncorrelated. Note that in particulal;; = 0 and co,;, Hy,) =
0 for (i,7) # (k,1). Consequently

1 1 ] 1 2
Var (S, — SV) = Ty > Var (i) < RS > > 4, =0(1/4l,),

1€ln jeln5j<’i i€ln jeln:j<i

since by constructiorVar(H;;) < Var(H;;). FurthermoreS. is equal to

> sien(Y) + > ——sign(¥) (F (1Y) - F(-[Yi])

icly, il +1 i,j€In tn +1
J#i
Ci .
+ ) T 1{ / sign(y)dFi(y) — E<Hz‘j)}a
IS R\[—[Y;1,1%;]]

where F; denotes the distribution function &f. For any distribution functior’, let G
be pointwise defined oR™ by G(t) := F(t) — F/(—t—), with F'(y—) the limit on the
left, i.e. lim, », F'(z). We denotel” := 1/(11,) > ;. Fi, G(t) = F(t) — F(~t—) and
FY = 1/(81) Yoy n(Xi) Fr. ThenE(SY — S,)2 = O(1/41,,), with

5, = ﬁz{%(xi)signm)@umw / sign(y)dF*(y)  (6.13)

I,
tEin R\[-|Yi],|¥;l]

—E / sign(y)dpw(y)}.

R\[—Yil,]¥4]]
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(STEP Il) For two functiong andg in L»[0, 1], let(f, )1, := 1/(81.) > ;e f(X:)g(Xs)

and let|| f||1,.2 :== ([, f>}£2 denote the corresponding norm. L(&t) be a sequence of al-
ternatives. IfM (,,) denotes the maximal point ¢f,|, let (X, X4, ) be the design points
which are closest t/(l,,) — h,, andM (1,,) + h,, respectively, wher,, := (5, /L)'/* with
on == d*pn(1 + £,). Symmetry considerations show that we may assume withestdd
generality that, is positive atM (1,,). Besides the restrictiofl,, v/ ||sup > d*pn(1+¢,),

it is assumed in this paragraph that

[ llsup/Pn = O(1), (6.14)

which is equivalent td| /,v'h ||sup/pn = O(1). Note that (6.14) implies/F1,,[|1.]13, , =
o(1).

Ouir first goal is to show that

E,, S, = V1241, ~ e (s bn /f Ydy + o(1) (6.15)

/Varl S H’(/)n”I ,2

for any sequencél,,) satisfying (6.14). The symmetry of the error distributicound
zero and the boundedness of the first derivafiverovide the expansion

sign(Y;)G(|Yi)

= sign(V; >{( (Vi) = F(=¥:) = (%) = F(= 1Y) (M > X )

= (2F(Y;) —1) + 0unif(||ln||§n,2)-
Here and in what follows, a sequence of random variapgs is O,.i(c,) with a se-

quence of positive numbefs, ), if limsup,, |Z,/c,| < ¢ < oo with some nonrandom
non-negative constant In order to treat the expectation

—~ 1 2
BuS) = 1 iezlnmxi){ [Crt) - ) + 0(||znufn,2)},

first observe that for ang € R, [, (2F(y) — 1) f(y + 0)dy = [, f'(t) [/ ,(2F(y) —
1)dy dt, using Fubini’'s Theorem and the symmetry of the error dgnfitTaylor expan-
sion of the inner integral entails that

Elﬁn:mwmznm{— / (2F(y) — 1) f( dy}+¢u7 O(lial7,2)  (6.16)
— 9\/H, (Y L), /f 2y} + VILO(ILI, o).
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where the last equality is obtained via partial integratiearthermore,

var MZ% )sign(1)G( ) )

- T an D2E, (2F(Y:) — 1) + O(LJI2 ). (6.17)

" el

In order to bound the variance of the second part in the apmiadion (6.13), namely

VarbL( \/ﬁTZ / Sign(y)dl:“"(y)> < iZE( / Sign(y)dpw(y)> :

IR\ [ [¥il, Vil Eln R\ [ |Yil, Y]
(6.18)
note that by the symmetry efgn(.) and Fubini’s Theorem,
‘/&gn YAFY (y ‘ ‘W an /f /—81gn ) I{y € [t,t+ 1,(X;)]}dy dt‘

—z,z]¢ —z,z]¢

< (s llalb, /R Pt

This shows that (6.18) i©(||l,||7, ,) by Cauchy-Schwarz. Furthermore,
Yy
[eFw - 12Rw - Fw) = [erm =17 [ —rwddy
R y=ln(X:)

tHn (X;)
/f / —(2F(y) — 1)*dy dt
X)) / P2 (2F (1) — 1)dt + O (X,)?),

where the latter integral is equal to zero by the symmetnhefdrror distribution. This
finally gives together with (6.17) and the bound of (6.18)

~ 4
Var;, S, = EH%H?H,Z + O(HlnH?nz)' (6.19)

Note at this point thaVarlngn is uniformly bounded from above and from below. Thus
the combination of (6.16) and (6.19) entails (6.15) for aeguencé!,,) satisfying (6.14).

In the next step, it will be shown that the denominatorIgf;,, is a sufficiently good

approximation for the standard deviation 8f under the sequence of alternativigs
Remember that it is the conditional standard deviationrgivee vector of ranks of the
numerator under the null hypothesis. Using the representat, (i) = >, ., I{|Yi| <
|Y:|} a.s., one verifies that

R _ 4
B (7 X0 G ) = el + Ol o)

i€ln

21



and analogously fof, j € I,, with i # j

R RaG)?
B (<ufn LG+ 1)

V%) = GOVIGVI? + Our(1/31,)
and

R.(i)® \ _
Varln(w Z¢n i) m) = O(1/tl,),

which by Chebychef’s mequallty shows in particular thatlencondition (6.14)
= OPLn (1)

wn, / R, (i) \1/2
Varln ﬁ] g ?/)n i) ﬁ] jzl) ) -1
(6.20)

||?/) ||1 2
SinceG(.) is uniformly bounded by, the Lindeberg condition is easily verified 6.
Then Lindeberg’s central limit theorem yields in combioativith the result from step |,
(6.15) and (6.20)

Pi, (Tt > €+ y/210g(n/21,))

:1—c1>(c+ 2log(n/tl,) — V12y/iI, ’TfZ’HI ’”/f Zdy +0()

with ® the standard normal distribution function. It remains tshewn that

V1281, (¥n, bn I”/f 2dy — y/2log(n/tl,) — oo (6.21)

asn goes to infinity under the constraints, v/A||s,, > d*pn(1 + ¢,) and (6.14).

Under the assumptions about the kernelnd the design densify, arguments involving
bounded total variation ap andh yield the approximation

V12+4/4I, !ﬁZ’Hz I”/f )2dy — \/2log(n/t1,)

— V12vn mbl ||2f /f Vdy — /2log(n/(81,)) + o(1). (6.22)

Let (™ be the kernel rescaled to the intery@l (1,,) — h,,, M (l,,) + h,]. Then

(W V) _ @™, 1 V) .
ole e, LT o)),

using thatX;, — (M(l,) — h,) = O(n™') and Xy, — (M(l,) + h,) = O(n™') by
assumption (D). Bud,«/ by its construction as well ds+/h are elements of( (3, L).
Then as in Dumbgen and Spokoiny (2001), a convexity argtiyields the inequality

n " l \/_ ;1 671 (n) |12
i ﬁw Iz o ||HQ/;<:§}||2 b~ /el (6.23)
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One verifies that
VIzVn( [ £67dy) 6.v/Balalla(l + O((nha) ) = v/2Tog(1/R,) + o(1)
> e,(2/(26 + 1))1/2 logn+o(l) — oo
and therefore (6.21) follows in combination with (6.22) d623).

(STEP IlI) Suppose now that there exists a sequéhgevith

lim inf P, (Tjnkn >C + \/2 log(n/41;,x, ) ) =c < 1,

n—oo

where the indiceg,, k,, are chosen as in step Il. This implies the existence of a subse
quence (for simplicity also denoted by, )) without any subsubsequence having the prop-
erty (6.14); that is we may assumig, ||s.,/p» — oo. We will conclude the proof via con-
tradiction as follows: For any subsequence of a sequénteatistying||l,.||sup/rn — o0,
there exists a subsubsequence which either convergetatzeslow rate or whose max-
imal absolute value stays uniformly bounded away from zétence we need to show
that in both cases, our test attains asymptotic power one.

~

Note that the squared denominator@f,, is bounded byi|||2,,, while Var;, (S,) is

sup!?

uniformly bounded. Using again the approximation of the etator by§n, we obtain

Ei, Tk, — /210g(n/81,) > [[0]lnh Ei, S — \/2log(n/8L,) +o(1).  (6.24)

If there exists a sequencg,) with the propertyl|l,, ||s.p/pn — oo but which converges to
zero,

.5, = 2v/Etwn b { [ wPdy} + VRO, ). (629

as seen in step Il. But then the first term dominates in ordes#itond one as well as the
logarithmic correction which shows that that the right har® in (6.24) goes to infinity.

Otherwise, assume thgl,) stays uniformly bounded away from zero. First observe that
with I, := 1/(81,) > e In(X0), [1n(Xs) — [n(X5)| < L|X;, — Xy, |7 = O(R]). Taylor
expansion aroung, up to the first order provides the approximation

~ 1 ~ )
- \/;Tnszl){ /(F(y) = F(—y = 20)) f(y)dy + O(hg)}

=E; S, + O(n'/2hi+1/?)

If 1, is uniformly bounded away from zerE,;n@L is of order not smaller tha®(v/nh,,)

which dominates in order the approximation erﬁEfngn — Eln§n| as well as the loga-
rithmic correction.
O
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PROOF of Theorem 4 By virtue of the proof Theorem 3, it remains to be shown that (i
there exists some positive constant= C(3, L, 1), such that (6.21) goes to infinity for
alternatived,, with Kp, > ||ln\/ﬁ||Sup > Cp, for any constantX > C and (ii) Elng‘n
goes to infinity whenevell, ||sup /o — 00. To this aim, we establish the following: il
H(B, L) with [|l][sup < 1 andz™ := argmax,¢p 4 |/(7)], then there exist some constant
c=c(B, L) > 0and a closed intervdl(l) C [0, 1] such that\(1(1)) > c|l(x*)|*/# and

1
[l(x)] > §|l(:):*)| for everyz € I(1). (6.26)
Note that this is obviously correct in cage< 1 with ¢ = 1/(2L). Fors > 1, let | 3]

denote the largest integer strictly smaller thtarLet! € H(3, L) with ||{||s,, = D > 0.
Taylor expansion around any point [0, 1| provides the approximation

1) = 1)+ o = ) + o+ E=L000 ) 1 Riay)
with |R(x,y)| < Llx — y|° (< L). Thus,
(x— ' (y) + ... + wzﬂﬁﬂ(y) < 2D+ L. (6.27)

k!

Lemma. There exists a universal constaiRt = K, such that for any polynomiaP
of degreed > 0, say P(z) = Ei:e arz®, and || Plljp1 < D > 0, it holds true that
SUPy—,..q |ar] < Kq- D.

The lemma results from the fact that, for the polynonfték) = Zizo agz®, || Plla) =
| Plljo,1; @nd|| P||(2y = maxo<i<q |ar| are two norms in the¢d + 1)-dimensional space of
polynomials of degred, and these norms are equivalent. Its application impligstteer
with the bound (6.27) that there exists a const@nt K () such thati(z) — i(z*)| <
1]|sup|lz — 2] < K (2D + L)|z — 2*|. Then|l(z)| > 1/2|l(z*)| on[z* — D/(4KD +
2KL),z*+ D/(A4KD + 2K L)| N [0,1]. If now [,, € H(3, L) with ||/,,||sup = 6n < 1,
then at leasfz* — 2-16,/7, 2*] or [z*, 2* + 2716,/"] is fully contained in[0, 1]. Assume
without loss of generality thdt*, z* +275,/°] C [0, 1]. Theng, be defined by, (z) :=
Qﬁéglln(?lé}@/ﬁx + 2*) for z € [0,1] is element ofH(3, L) with || [sup = 9.(0) =
20, Thus the above lemma finally implies that(x)| > 6,/2 on [z*,2* + 1/(8K +
AK27PL)57).

The assumption about implies that there exists some interyald] C (0,1) on which
¥(x) > ¢ for some strictly positive constadt We first verify the claim (i). For
any alternativd,,, let ¢, be the kernel rescaled onto the interl; , X,|, where the
design pointsX;, < X, are those which are closest to the endpointd @f/h).
Let I, :== {i : X; € I(l,v/h)}. Then (¢, 1,vh);, is of order not smaller than
11,v/R|sup, Which implies the existence of a universal constant= C(3, L, ) such
that (6.21) goes to infinity fofil,v/h|lsuyp > Cpn and|l,|lsup/pn = O(1). The same
consideration also shows that (6.25) goes to infinity whené¥,||s.,/p, — oo and
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nllsep — 0, becausd|l,v/h||s,p, dominates in ordef{l,||7, , as well. To verify (ii),
note that||l,v/A||sup/ (4K ||1,Vh]|sp + 2K L) stays uniformly bounded away from zero
and infinity as soon a§l,,||s.p iS uniformly bounded away from zero. Thus in the lat-
ter case, there always exists an inter¥dl,v/2) with liminf, .. A(I(1,v/h)) > 0 and
11, (X) V(X)) > [[1aVR]|sup/2 fOr everyX; € I(1,v/h). With I, := {i| X; € I(I,vVh)}

Ey, (R, (i) sign(Y;))

S = =3 a(Xy) sign(Y)

Vil, = 8, +1
1 . R (i) — By, (R (4)] sign(¥7))
+ (X)) sign(Y; )
VAT, 2 V(X san() T
If 1,(X;) is uniformly bounded away from zero for everg I,,, the absolute expectation
of first term is of ordelO(y/n), while the second term i9,(1). O
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