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YET ANOTHER ALGORITHM FOR THE SYMMETRIC EIGENVALUE

PROBLEM∗

JARED L. AURENTZ∗, THOMAS MACH†, RAF VANDEBRIL†, AND DAVID S. WATKINS‡

Dedicated to Bill Gragg on the occasion of his 80th birthday.

Abstract. In this paper we present a new algorithm for solving the symmetric matrix eigenvalue problem that

works by first using a Cayley transformation to convert the symmetric matrix into a unitary one and then uses

Gragg’s implicitly shifted unitary QR algorithm to solve the resulting unitary eigenvalue problem. We prove that

under reasonable assumptions on the symmetric matrix this algorithm is backward stable and also demonstrate that

this algorithm is comparable with other well known implementations in terms of both speed and accuracy.

Key words. eigenvalue, unitary QR, symmetric matrix, core transformations, rotations
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1. Introduction. In the past few decades a considerable number of fast and stable al-

gorithms have been developed for the solution of the symmetric matrix eigenvalue problem.

Arguably no other class of matrices has enjoyed such success, with one exception, unitary

matrices. Unitary matrices share many of the same properties as symmetric ones: normality,

localized eigenvalues, and special condensed forms. These similarities often allow one to

immediately adapt the symmetric algorithms to the unitary ones.

In this paper we will work in the other direction, albeit in a roundabout way. Instead of

developing a new algorithm that works directly with the symmetric matrix we first convert the

symmetric matrix into a unitary one via a Cayley transformation and then solve the unitary

eigenvalue problem using Gragg’s unitary QR algorithm [8].

Moving between symmetric and unitary matrices using Cayley transformations is not a

new idea. Perhaps the first instance involving spectrum was in 1930 when von Neumann used

a Cayley transformation to prove the spectral theorem for self-adjoint differential operators

[11]. In 1968 Franklin used Cayley transformations to count the eigenvalues of a general

matrix that lie in a half-plane [6]. More recently Gemignani used a Cayley transformation

to turn a unitary eigenvalue problem into a symmetric one, which is ultimately where our

inspiration comes from [7].

The curious reader might be thinking Why would one do this? The answer, at least for us,

is twofold. First, a fast and stable version of Gragg’s algorithm is now freely available as part
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of the Fortran 90 library eiscor [2, 3]. Previously such an implementation was not available

and now that it is, it seems only fitting to put it to good use. Second, we will show in this

paper that transforming between symmetric and unitary problems can be done stably and

efficiently, which leads to a new fast and provably stable QR algorithm for solving symmetric

eigenvalue problems that is comparable with other well known implementations.

The paper is organized as follows. In Section 2 we discuss the main idea of using a

Cayley transformation to transform a symmetric eigenvalue problem into a unitary one and

then state our algorithm. We also discuss the details of our implementation and show that

the complexity is O(n2) where n is the size of the matrix. In Section 3 we give a proof of

backward stability. In Section 4 we perform some numerical experiments that illustrate the

speed and accuracy of our algorithm. Finally, in Section 5 we give our concluding remarks.

Unless otherwise stated the following are assumed true. The matrix T is real, symmetric

and tridiagonal. The matrix I is the identity. The letter u denotes the unit round off. The

letter i is the imaginary unit, i2 = −1. If A is an n × n matrix we denote the entry of A in

row j and column k by Ajk . We denote by A the matrix whose entries satisfy Ajk = Ajk

and we denote by AT the matrix whose entries satisfy (AT )jk = Akj for all j, k = 1, . . . , n.

Similarly we define AH by the identity AH = AT .

2. Solving the symmetric eigenvalue problem. Let ϕ be the following Cayley trans-

formation1

ϕ(z) = (i − z)(i+ z)−1.

The function ϕ maps the interval [−1, 1] to the semicircle {z = eiθ : θ ∈ [−π/2, π/2]} and

all other points on the real line into the remainder of the unit circle. Figure 2.1 illustrates ϕ
graphically using a few isolated points.

−100 −2 −1 1 2

−i

i

ϕ(T )

ϕ−1(T )

Fig. 2.1: Illustration of how ϕ maps points from the real line to the unit circle. Points in

[−1, 1] (dots) are mapped to the right half of the unit circle. All other points (squares and

triangle) are mapped to the left half. The yellow dot shows how ϕ maps real numbers with

large absolute value close to the point −1 on the unit circle.

Assume that the matrix T ∈ Rn×n is symmetric and tridiagonal. We will use ϕ to convert

T into a unitary matrix. To see how to do this first consider the spectral decomposition of

T . Since T is real and symmetric there exists a real orthogonal matrix V and real diagonal

matrix Λ such that

T = V ΛV T .

1The original transformation used by von Neumann is −ϕ(z).
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The matrix ϕ(T ) is defined by applying ϕ to the diagonal entries of Λ,

(2.1) ϕ(T ) = V ϕ(Λ)V T .

The matrix ϕ(Λ) is still diagonal but instead of having real entries it now has entries on the

unit circle. This means that the matrix ϕ(T ) has unimodular eigenvalues and orthonormal

eigenvectors, or in other words, ϕ(T ) is unitary.

This definition of ϕ(T ) is informative but not practical since it requires the spectral

decomposition of T . A more useful definition makes use of the fact that ϕ is a rational

function and when this is combined with the spectral mapping theorem ϕ(T ) can be written

as

ϕ(T ) = (iI − T )(iI + T )−1.

Since both definitions give the same matrix the product (iI − T )(iI + T )−1 must also be

unitary. This product can be computed using the QR factorization of (iI − T ).
Let QR = (iI − T ) be a QR factorization of (iI − T ) such that the diagonal entries of

R are strictly real. Since (iI + T ) = −(iI − T ) we have that (iI + T ) = −QR and we can

now write ϕ(T ) using Q and R

ϕ(T ) = −QRR−1QT .

Since Q, QT , and ϕ(T ) are unitary we know that the product RR−1 must also be unitary.

This, together with the fact that RR−1 is upper triangular, implies that RR−1 is a diagonal

matrix. Since the diagonal entries of R are also real we have that RR−1 = I . This gives the

following factorization for ϕ(T )

ϕ(T ) = −QQT .

The unitary matrix Q will always have complex entries and thus QT is not the inverse of Q.

We will show that Q requires only O(n) storage and can be computed in O(n) operations.

With the matrix ϕ(T ) in hand we now wish to compute its eigenvalues, which we will

later use to recover the eigenvalues of T . To compute the eigenvalues of ϕ(T ) we will use

a variant of the implicitly shifted unitary QR algorithm first proposed by Gragg [8]. This

algorithm reduces a unitary upper Hessenberg matrix to diagonal form in O(n2) operations

using Francis’s implicitly shifted QR algorithm [4, 5]. Since the product −QQT is unitary

but not upper Hessenberg we must first reduce it to upper Hessenberg form. We will show

that this reduction can be done stably in O(n2) operations. For now all we need to know is

that there exist unitary matrices U and Y in Cn×n with U upper Hessenberg such that

Y Hϕ(T )Y = U.(2.2)

It is well known that unitary upper Hessenberg matrices can be represented using O(n)
parameters. One such representation uses a factorization in n − 1 rotations and a diagonal

matrix. Once U is in such a compressed form the unitary QR algorithm of Gragg [8] can now

be applied to U . This algorithm iteratively computes unitary Z and diagonal Σ such that

ZHUZ = Σ.

Thus the diagonal entries of Σ are the eigenvalues of ϕ(T ). Letting W = Y Z we get the

following eigendecomposition of ϕ(T )

ϕ(T ) = WΣWH .
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To recover the eigenvalues of T one simply needs to apply ϕ−1 to the eigenvalues of ϕ(T ).
It is straightforward to show that the inverse of ϕ is

ϕ−1(z) = i(1− z)(1 + z)−1.

Applying this to ϕ(T ) we get the following

T = ϕ−1(ϕ(T )) = Wϕ−1(Σ)WH .

This is an alternative eigendecomposition for the matrix T . Comparing this with (2.1) we

see that the main difference with using this eigendecomposition of ϕ(T ) is that the resulting

eigenvectors are complex when they could be chosen to be real. Using complex arithmetic

appears to be unavoidable since the matrix ϕ(T ) will almost surely have complex entries.

The steps described above are summarized in Algorithm 1.

Algorithm 1 Symmetric eigenvalues via unitary QR

Require: T real, symmetric and tridiagonal

1) compute QR = (iI − T ) and form ϕ(T ) = −QQT

2) compute unitary Y such that U = Y Hϕ(T )Y is upper Hessenberg

3) compute unitary Z such that Σ = ZHUZ is diagonal

4) let W = Y Z and recover T via T = Wϕ−1(Σ)WH

As we will see in Section 3, Algorithm 1 is provably normwise backward stable whenever

the norm of T is close to 1. To avoid instabilities our implementation first computes α > 0
such that α‖T ‖2 ≈ 1. There are many ways to compute such an α and we have opted to use

a combination of Gerschgorin’s theorem and Newton’s method which guarantees that we can

compute a good α in O(n) operations. We consider this computation an important part of a

stable implementation but not necessary to the description of our algorithm.

2.1. Unitary core transformations. Steps 1-3 in Algorithm 1 are implemented using

unitary core transformations. A core transformation is any n × n matrix that is equal to the

identity everywhere except for a 2×2 diagonal block and a unitary core transformation is any

core transformation that is also unitary. In particular we use unitary core transformations that

are also complex Givens rotations, but have a real sine. The following matrix Q2 illustrates

such a core transformation for n = 5

Q2 =













1
c2 −s2
s2 c2

1
1













, c2 ∈ C, s2 ∈ R.

The subscript 2 means that the nontrivial 2×2 diagonal block is located at the intersection

of rows and columns 2 and 3 of Q2. Since Q2 is also a rotation the entries c2 and s2 satisfy

|c2|
2 + s22 = 1. Such a matrix can be represented by 3 real numbers, the real and imaginary

parts of c2 and the real number s2, and by an integer locating the nontrivial diagonal block,

in this case the number 2.

To simplify the presentation we denote a core transformation graphically using an ar-

rowed bracket. For example, given the 5×5 matrix A the productQ2A is denoted graphically

as
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��

×
×
×
×
×

×
×
×
×
×

×
×
×
×
×

×
×
×
×
×

×
×
×
×
×

.

The arrows point to the rows of A that are affected by Q2. Using this notation it is easy to

see that two core transformations Qi and Qj commute if |i − j| > 1. When two core trans-

formations act on the same two rows or columns, their product is also a core transformation.

The multiplication of two such core transformations is known as a fusion

�� �� = �� .

Another important operation is called a turnover. A turnover takes the product of three core

transformations AiBi+1Ci and refactors them as Ãi+1B̃iC̃i+1. This can always be done

stably when the core transformations are unitary. Furthermore, the product of three rotations

with real sine can be refactored as a product of three rotations with real sine. Graphically a

turnover looks as follows

��

��
��

=
��
��

�� .

Unitary core transformations, along with these basic operations, are the building blocks of all

the algorithms in this section.

2.2. Computing ϕ(T ). In Step 1 of Algorithm 1 we compute the factorization −QQT

of ϕ(T ) by first computing the QR decomposition of iT −T . The matrix (iI−T ) is tridiago-

nal so its QR decomposition can be written as a descending sequence of core transformations

and a banded upper triangular R. For n = 8, which will be our running example, we have

×
×
×
×
×
×
×
×

×
× ×
× ×
× ×
× ×
× ×
× ×
×

=

��

��

��

��

��

��

�� γ

×
×
×
×
×
×
×
×

×
×
×
×
×
×
×

×
×
×
×
×
×

.

Since T is real the matrix (iI − T ) has a strictly real subdiagonal and using rotations with a

real s to compute Q guarantees that all but the (n, n) diagonal entries of R are real. To make

the last entry of R real we can use the core transformation Γn = diag {1, . . . , 1, γ}, with a

unimodular complex number γ. We denote this core transformation by γ in the figure above.

Each subdiagonal entry of (iI − T ) can be zeroed using one core transformation, which

can be computed and stored in O(1). Since there are only n − 1 subdiagonals the −QQT

factorization of ϕ(T ) can be computed in O(n) time and storage. Our implementation gives

the following factorization for the matrix ϕ(T )

ϕ(T ) = Q1Q2 · · ·Qn−1DQT
n−1 · · ·Q

T
2 Q

T
1 ,

where D = Γ2
n. Using the bracket notation the matrix ϕ(T ) can be depicted as (for n = 8)
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��

��

��

��

��

��

��

1
1
1
1
1
1
1
×

��

��

��

��

��

��

��

,

where × = γ2.

2.3. Reduction to upper Hessenberg. Once the −QQT factorization of ϕ(T ) is com-

puted it must be reduced to upper Hessenberg form before the unitary QR algorithm can be

applied. This can be done by a core chasing routine similar to the one used in the unitary QR

algorithm in [3]. We aim to represent the unitary Hessenberg matrix as a product of rotations

with real sine and a diagonal matrix with unimodular entries.

The leftmost core transformation of QT can be fused into the rightmost core transforma-

tion of Q,

��

��

��

��

��

��

��

1
1
1
1
1
1
×
×

��

��

��

��

��

��

��

.

This changes the (n − 1)st and the nth entry of the diagonal matrix. However, all nonzero

entries of the diagonal matrix remain unimodular.

Before the remaining core transformations can be fused they have to be chased to the

bottom of the matrix. Let us assume now that we have merged three rotations, and that

i = 4. The ith core transformation has to be chased down (n − i − 1) rows. Chasing a core

transformation down one row is the same for all rows, hence we describe only one such step.

Ignoring the other core transformations (in gray) in the rightmost sequence we have only

one “misfit” core transformation. This can be depicted as

��

��

��

��

��

��

��

1
1
1
1
×
×
×
×

��

��

��

��
.

We have the identical picture in the unitary QR misfit chasing algorithm, hence we can do

the same here. We first swap the misfit with the diagonal, see arrow (a) in the following

figure. This changes two diagonal entries in D. Then we perform a turnover (b) after which

the misfit is in the row below. The turnover changes two rotations in Q. Now a similarity

transformations (c) brings the misfit back to the right-hand side of the diagonal. The chasing

can be depicted as
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��

��

��

��

��

��

��

1
1
1
×
×
×
×
×

��

��

��

��
(a)

��(b)

��

(c)

�� ,

where we mark the misfit and its path in red. We repeat the chasing until the misfit is in the

last row and can be fused with Qn−1.

We repeat the process for the remaining core transformations in the rightmost sequence.

Each of them has to be chased down one row more than the previous one. In total
(n−2)(n−1)

2
turnovers are necessary, which need O(n2) floating point operations. This corresponds to

roughly n
2 misfit chasings on a unitary Hessenberg matrix of dimension n × n. The product

of all the similarity transformations forms the matrix Y in (2.2).

2.4. Solving the unitary eigenvalue problem. After removing all of the core trans-

formations in the rightmost sequence the resulting unitary upper Hessenberg matrix is the

product of core transformations and a diagonal matrix. The matrix U has the form

U = Q1Q2 · · ·Qn−1D,

where all Qi’s and all diagonal entries in D have been chased during the reduction to Hes-

senberg form. The matrix U can be depicted as

��

��

��

��

��

��

��

×
×
×
×
×
×
×
×

.

Our implementation of Gragg’s unitary QR algorithm works efficiently on this structure and

can solve the problem in O(n2) operations [3]. This implementation, as well as the one for

the ϕ(T ) = −QQT factorization, are available as part of eiscor [2].

3. Assessing stability. In this section we examine the stability of Algorithm 1. The

main result is that Algorithm 1 is normwise backward stable when the norm of T is close to

1 and when the norm of T is far from 1 the backward error grows at most quadratically with

the norm of T . To prove this stability result we will first show that the errors in Steps 1-3 of

Algorithm 1 are small, then we will show that in Step 4 we can push this error back onto T
to get the final backward stability result.

The first step of the algorithm involves computing the −QQT factorization of ϕ(T )
which in turn requires the QR factorization of (iI−T ). In floating point arithmetic the matrix

Q will have some error, which leads to an error in the factorization of ϕ(T ). Lemma 3.1 gives

an upper bound on the error in the computed −QQT factorization of ϕ(T ).
LEMMA 3.1. Let T ∈ Rn×n be a symmetric tridiagonal matrix then there exists a

positive constant C such that

‖ϕ(T )− ϕ̂(T )‖2 ≤

{

2Cu + O(u2), ‖T ‖2 < 1,

C(1 + ‖T ‖2)u + O(u2), ‖T ‖2 ≥ 1,
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where ϕ̂(T ) = −Q̂Q̂T is the result of Step 1 of Algorithm 1 in floating point arithmetic and

where u is the unit round-off.

Proof. In Section 2.2 we showed that computing the −QQT factorization of ϕ(T ) re-

quires only the Q from the QR factorization of (iI − T ) so we will first give an upper bound

on the error of the computed Q. For convenience let A = (iI−T ). From [9, Theorem 19.10]

we know that the QR factorization A is backward stable so there exists a positive constant C1

and a matrix ∆A such that the computed Q̂ satisfies

A+∆A = Q̂R̂, ‖∆A‖2 ≤ C1‖A‖2 u.

Now let ∆Q = Q− Q̂. From [10, Theorem 1.1] we know there exists a positive constant C2

such that

‖∆Q‖2 ≤ C2κ2 (A)
‖∆A‖2
‖A‖2

.

Combining this with the backward stability result gives the following bound on ∆Q

‖∆Q‖2 ≤ C1C2κ2 (A)u.

Now we can use the error bound for Q to bound the error of the computed ˆϕ(T ),

ϕ̂(T ) = −Q̂Q̂T = ϕ(T )−Q∆QT −∆QQT +O(∆2),

where O(∆2) summarizes higher order terms of the perturbation. Subtracting ϕ(T ) from

both sides and taking norms we have

‖ϕ(T )− ϕ̂(T )‖2 ≤ 2‖∆Q‖2 +O(u2),

and substituting the appropriate bounds gives

‖ϕ(T )− ϕ̂(T )‖2 ≤ 2C1C2κ2 (A)u+O(u2).

Now we use the fact that κ2 (A) is bounded

κ2 (A) = κ2 (iI − T ) ≤ 1 + ‖T ‖2,

and take C = 2C1C2 to get the final result

‖ϕ(T )− ϕ̂(T )‖2 ≤

{

2Cu + O(u2), ‖T ‖2 < 1,

C(1 + ‖T ‖2)u + O(u2), ‖T ‖2 ≥ 1.

Lemma 3.1 says that computing the −QQT factorization of ϕ(T ) using the QR factor-

ization of (iI − T ) gives a relative error that depends linearly on the norm of T . The next

lemma gives a bound on the relative backward error of our algorithm in terms of the error in

Steps 1-3 and the norm of T .

LEMMA 3.2. Let T ∈ Rn×n be a symmetric tridiagonal matrix and let

ϕ(T ) = (iI − T )(iI + T )−1.

Let ϕ̃(T ) be a small perturbation of ϕ(T ) and define T̃ as T̃ = ϕ−1(ϕ̃(T )), then the follow-

ing inequality holds

‖T − T̃‖2
‖T ‖2

≤

{
(

1 + ‖T ‖−1
2

)

‖∆ϕ(T )‖2 + O
(

‖∆ϕ(T )‖22
)

, ‖T ‖2 < 1,

(1 + ‖T ‖2) ‖∆ϕ(T )‖2 + O
(

‖∆ϕ(T )‖22
)

, ‖T ‖2 ≥ 1,
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where ∆ϕ(T ) = ϕ(T )− ϕ̃(T ).
Proof. Let ∆ϕ(T ) = ϕ(T )− ϕ̃(T ). From the definition of ϕ−1 we have

T̃ = ϕ−1(ϕ(T ) + ∆ϕ(T )) = i(I − ϕ(T )−∆ϕ(T ))(I + ϕ(T ) + ∆ϕ(T ))−1.

Given an n × n invertible matrix A the first order perturbation of (A + ∆A)−1 for a small

perturbation ∆A is

(A+∆A)−1 = A−1(I −∆AA−1) +O(∆2).

Using this fact we have

T̃ = [i(I − ϕ(T ))− i∆ϕ(T )](I + ϕ(T ))−1[I −∆ϕ(T )(I + ϕ(T ))−1] +O(∆2),

and combining this with T = i(I − ϕ(T ))(I + ϕ(T ))−1 gives

T̃ = [T − i∆ϕ(T )(I + ϕ(T ))−1][I −∆ϕ(T )(I + ϕ(T ))−1] +O(∆2).

Expanding the product and combining terms simplifies to

T̃ = T − (iI + T )∆ϕ(T )(I + ϕ(T ))−1 +O(∆2).

Subtracting T from both sides, taking norms and dividing by ‖T ‖2 gives

‖T − T̃‖2
‖T ‖2

≤ ‖(I + ϕ(T ))−1‖2
‖iI + T ‖2

‖T ‖2
‖ϕ(T )− ϕ̃(T )‖2 +O(‖ϕ(T )− ϕ̃(T )‖22).

To complete the proof we must bound the product ‖(I +ϕ(T ))−1‖2 ‖iI +T ‖2 ‖T ‖
−1
2 . First

we have

‖iI + T ‖2
‖T ‖2

≤

{

1 + ‖T ‖−1
2 , ‖T ‖2 < 1,

2, ‖T ‖2 ≥ 1.

To bound ‖(I + ϕ(T ))−1‖2 we use the fact that the eigenvalue of ϕ(T ) closest to −1 corre-

sponds to the norm of T . This gives the following identity

‖(I + ϕ(T ))−1‖2 = |1 + ϕ(‖T ‖2)|
−1.

For ‖T ‖2 < 1, ϕ(‖T ‖2) is in the right half of the unit circle, which means |1+ϕ(‖T ‖2)|
−1 <

1. When ‖T ‖2 ≥ 1 we can use ϕ to get the following bound

‖(I + ϕ(T ))−1‖2 = |1 + ϕ(‖T ‖2)|
−1 =

|i+ ‖T ‖2|

|i+ ‖T ‖2 + i− ‖T ‖2|
≤

1

2
(1 + ‖T ‖2).

Combining these with the above results and taking ∆ϕ(T ) = ϕ(T ) − ϕ̃(T ) gives the final

result

‖T − T̃‖2
‖T ‖2

≤

{
(

1 + ‖T ‖−1
2

)

‖∆ϕ(T )‖2 + O
(

‖∆ϕ(T )‖22
)

, ‖T ‖2 < 1,

(1 + ‖T ‖2) ‖∆ϕ(T )‖2 + O
(

‖∆ϕ(T )‖22
)

, ‖T ‖2 ≥ 1.

Lemma 3.2 says that pushing the error back onto T depends on the error in the com-

puted ϕ(T ) and the norm of T . Specifically if ‖T ‖2 ≥ 1 the backward error scales linearly



10 J. L. Aurentz, T. Mach, R. Vandebril, and D. S. Watkins

with ‖T ‖2 and if ‖T ‖2 < 1 the backward error scales inverse linearly with ‖T ‖2. Using

Lemma 3.1 and Lemma 3.2 we can now prove the main result.

THEOREM 3.3. Let T ∈ Rn×n be a symmetric tridiagonal matrix, then there exists a

linear polynomial p1 and a quadratic polynomial p2 such that the matrix T̃ computed using

Algorithm 1 satisfies

‖T − T̃‖2
‖T ‖2

≤

{

p1
(

‖T ‖−1
2

)

u + O(u2), ‖T ‖2 < 1,

p2 (‖T ‖2)u + O(u2), ‖T ‖2 ≥ 1.

Proof. Let ϕ(T ), W and Σ be the output of Algorithm 1 in exact arithmetic and let ϕ̃(T ),
W̃ and Σ̃ be the same but computed in floating point arithmetic. To prove Theorem 3.3 we

will first bound the error in the computed ϕ̃(T ) and then use ϕ−1 to push the error back onto

T .

From Lemma 3.1 we know there exists a positive constant C1 and a unitary matrix ϕ̂(T )
such that

‖ϕ(T )− ϕ̂(T )‖2 ≤

{

2C1u + O(u2), ‖T ‖2 < 1,

C1(1 + ‖T ‖2)u + O(u2), ‖T ‖2 ≥ 1.

In Steps 2 and 3 we compute an eigendecomposition of ϕ̂(T ) using the unitary core

chasing algorithm available in eiscor [2], which is based on [3]. This algorithm is backward

stable so there exist a positive constant C2 and unitary matrices W̃ and Σ̃, with Σ̃ diagonal,

such that

ϕ̃(T ) = W̃ Σ̃W̃H and ‖ϕ̂(T )− ϕ̃(T )‖2 ≤ C2u.

Combining the above results we have

‖ϕ(T )− ϕ̂(T )‖2 ≤

{

(2C1 + C2)u + O(u2), ‖T ‖2 < 1,

(C1(1 + ‖T ‖2) + C2)u + O(u2), ‖T ‖2 ≥ 1.

In Step 4 we compute the symmetric matrix T̃ using the eigendecomposition of ϕ̃(T )
and the map ϕ−1

T̃ = ϕ−1(ϕ̃(T )) = W̃ϕ−1(Σ̃)W̃H .

Setting ∆ϕ(T ) = ϕ(T )− ϕ̃(T ) and using Lemma 3.2 we have that

‖T − T̃‖2
‖T ‖2

≤

{
(

1 + ‖T ‖−1
2

)

‖∆ϕ(T )‖2 + O
(

‖∆ϕ(T )‖22
)

, ‖T ‖2 < 1,

(1 + ‖T ‖2) ‖∆ϕ(T )‖2 + O
(

‖∆ϕ(T )‖22
)

, ‖T ‖2 ≥ 1.

Combining the above bounds and letting p1(z) = (2C1 + C2)(1 + z) and

p2(z) = (C1(1 + z) + C2)(1 + z) gives the main result

‖T − T̃‖2
‖T ‖2

≤

{

p1
(

‖T ‖−1
2

)

u + O(u2), ‖T ‖2 < 1,

p2(‖T ‖2)u + O(u2), ‖T ‖2 ≥ 1.

Theorem 3.3 says that the relative backward error in Algorithm 1 depends on the norm of

T . Such a dependence is undesirable but it is not unexpected. The first step of the algorithm

requires a QR decomposition of (iI−T ) and if T is too large iI and T will be out of scale and

important information can be rounded away. Similarly when T is small so are its eigenvalues.

We recover these eigenvalues from the computed eigenvalues of ϕ(T ), thus the recovered

eigenvalues are accurate relative to 1 instead of the norm of T . Both of these situations can

be avoided if one first scales T to have norm close to 1, which is why we have included such

a step in our implementation.
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Fig. 4.1: Runtime and relative backward error for Toeplitz matrices.

4. Numerical experiments. In this section we report numerical experiments illustrat-

ing the stability bounds from the last section. We further report timings showing that com-

puting eigenvalues of tridiagonal matrices via the unitary QR algorithm is comparable with

LAPACK’s symmetric tridiagonal QR algorithm.

The numerical experiments were performed on an Intel Core i5-3570 CPU running at

3.40 GHz with 8GB of memory. GFortran 4.8.4 was used to compile the Fortran codes.

For comparison we use the symmetric QR algorithm (DSTEQR), the divide and conquer

method for symmetric tridiagonal matrices (DSTEVD), and the RRR method (DSTEGR)

from LAPACK 3.6.0 [1], which were built with the same compiler.

In our first example we consider the symmetric tridiagonal Toeplitz matrix with 0 on the

diagonal and − 1
2 on the sub- and super-diagonals. This matrix is a common test case, since

the eigenvalues are known exactly. The eigenvalues are cos(jπ/(n+1)), j = 1, . . . , n which

lie in [−1, 1]. This implies that ‖T ‖2 ≤ 1 and that the eigenvalues are mapped to the right

half of the unit circle.

In this example we computed only the eigenvalues and measured the runtime. For smaller

examples we measured the average runtime over many runs. After recording the timings we

ran the experiments again computing both eigenvalues and eigenvectors. We then used the

computed eigenvectors to measure the backward error. The results are shown in Figure 4.1.

We observe that our algorithm is about as fast and as accurate as DSTEQR. The divide and

conquer algorithm is six times faster and slightly more accurate, the RRR method is 5 times

faster and about as accurate. All four algorithms need O(n2) time for computing the eigen-

values only and O(n3) if also the eigenvectors are computed, only RRR can compute eigen-

vectors in O(n2).

In Section 3 we showed that the relative backward error depends on the norm of T . Our

second experiment illustrates this by scaling the n = 512 Toeplitz matrix from the previ-

ous example by α for α between 10−7 and 107. The result in Figure 4.2 shows that when
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Fig. 4.2: Backward error for n = 512 scaled Toeplitz matrix, with α = 10−7, . . . , 107.
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Fig. 4.3: Runtime and backward error for random tridiagonal matrices.

‖T ‖2 < 1 the backward error depends inverse linearly on ‖T ‖2. When ‖T ‖2 ≥ 1 the de-

pendence is quadratic. As expected scaling the matrix based on the Gershgorin discs and the

Newton correction keeps the relative backward error small.

For our third and final example we test our algorithm using random matrices. In Fig-

ure 4.3 we chose tridiagonal matrices with normally distributed entries. The results are very

similar to the Toeplitz matrix used above.

5. Conclusions. In this paper we presented a new algorithm for solving the symmetric

eigenvalue problem. This method works by converting a symmetric matrix into a unitary one

and then solving the resulting unitary eigenvalue problem. We proved that under reasonable

assumptions this method is backward stable and that it is comparable in terms of both speed

and accuracy with current well known implementations.
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