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The organizers of this meeting on graph theory were Reinhard Diestel and Paul Seymour. Besides the

normal formal lectures, the meeting included a number of \informal sessions." Each session was concerned

with a particular area of graph theory, and anyone interested was welcome to attend. During these informal

meetings, participants presented results and open problems concerning the topic and the audience was en-

couraged to interrupt with questions, counter-examples, proofs, etc. These sessions resulted in the resolution

of a number of conjectures as well as stimulating collaboration outside the structure of the conference. The

following is a summary of the sessions followed by a collection of abstracts of the formal talks.

Session on In�nite Graphs

Convenor: Reinhard Diestel

1. Cycle space in locally �nite in�nite graphs

Bruce Richter asked how the fact that the fundamental cycles of a �nite graph form a basis of its

cycle space can be adapted appropriately to in�nite graphs. In the discussion it emerged that end-faithful

spanning trees would play a signi�cant role here, and various models based on these were discussed. Richter's

objective was to prove a uniqueness-of-embedding theorem for 3-connected locally �nite graphs with suitable

compacti�cation such as one point at in�nity for every class of ends pairwise not separated by a �nite cycle.

This led to further informal collaboration later in the week.

2. Transitive graphs and Cayley graphs

Recalling Woess's problem of whether every locally �nite connected vertex-transitive graph is quasi-

isometric to a Cayley graph, Leader presented a limit construction of transitive non-Cayley graphs obtained

jointly with Diestel, whose limit they conjecture not to be quasi-isometric to a Cayley graph. The limit

graph admits a simple direct de�nition. Details will appear in a paper by Diestel and Leader soon to be

available in preprint form.

3. Arbitrarily vs. in�nitely many disjoint substructures of a given type

Andreae posed the following general problem: for which in�nite graphs H is it true that every graph

containing k disjoint copies of H for every k 2 N also contains in�nitely many disjoint copies of H? This was

proved by Halin in the 1960s for H a ray, and in the 1970s by Andreae for various trees. Andreae conjectures

that if the containment relation is weakened from \subgraph" to \topological minor" then this should hold

for all trees. If containment is weakened further to the minor relation, he conjectures that this may hold

for all locally �nite connected H . He presented an uncountable graph H without this property (for minors),

but no countable counterexample for minors appears to be known.

4. Classifying the (@

0

;@

1

)-regular bipartite graphs

Diestel brie
y presented his recent characterization with Leader of the graphs not admitting a normal

spanning tree. The characterization is by two types of forbidden minor, and one of these types are the

(@

0

;@

1

)-regular bipartite graphs (A;B). They asked how these graphs might be classi�ed up to minor

equivalence. They know of two types of such graphs: the \ever-splitting" binary tree with tops (where A

is the tree and B the set of tops), and a \non-splitting" example in which the subsets A

0

of A that have

uncountably many neighbours in B each sending in�nitely many edges to A

0

form a non-principal ultra�lter

on A. Neither of these two types has a minor of the other type, but it is an open problem whether every

(@

0

;@

1

)-regular bipartite graph has a minor of one of these two types. A preprint is available from Diestel

and Leader.
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5. Hamiltonian double rays in planar graphs

Yu indicated his recent proof of Nash-Williams's conjecture that every 4-connected in�nite planar graph

with at most two ends contains a spanning double ray. A preprint is available from the author.

Session on Coloring and the Colin de Verdi�ere Number

Convenor: Alexander Schrijver

1. Relation between Colin de Verdi�ere's � and the Hadwiger number on graphs with �(G) = 2.

Andre

�

i Kotlov asked if the equation 1 + �(G) = �(G) held for graphs G with no independent set of size

3 where � is Colin de Verdi�ere's graph invariant and � is Hadwiger's number. (The order of the largest

clique minor of G.) He noted that the inequality 1 + �(G) � �(G) holds for all G and equality holds for

cliques. It was discussed that graphs with �(G) = 2 must have chromatic number at least jV (G)j=2 and

so may give a counterexample to Hadwiger's conjecture which states in this case that such graphs have a

clique minor on at least jV (G)j=2 vertices. Kotlov sketched a proof that such graphs have a clique minor of

size

jV (G)j

3

+O(

p

jV (G)j). Bojan Mohar provided a counterexample to 1 + �(G) = �(G) when �(G) = 2 by

considering compliments of triangle-free planar graphs.

2. Equitable k-colorings

A. Kostochka introduced equitable k-colorings and began with the general question of when a graph with

maximum degree k has an equitable k-coloring. He presented various results concerned with such colorings.

He also indicated methods to obtain such colorings and gave conditions under which these methods worked.

3. The graph invariant �

Heine Van der Holst gave a de�nition of his graph-invariant �. He then de�ned the k-closure of a graph

and de�ned a graph to be k-
at if k is even and the k=2-closure of G can be embedded in R

k

. This notion

generalizes planar as a graph is 2-
at i� it is planar. Heine asked if it was true that G being k-
at implies

that �(G) is at most k + 1. He also asked if being k-
at implies �(G) is at most k + 1. Both of these are

true in the case that G is 2-
at. It was pointed out by Alexander Schrijver that 4-
at is weaker than being

linklessly embeddable in R

3

and indicated that the relationship between linkless-embeddable and 4-
at is

the same as that between outer-planar and planar.

Session on Graphs on Surfaces

Convenor: Bojan Mohar

1. Chromatic numbers of graphs of girth at least �ve embeddable on surfaces

Robin Thomas recalled that Thomassen proved that if � is the torus or projective plane and G is a graph

with girth at least 5 which can be embedded in �, G is 3-colorable. Thomas stated that he and Barret Walls

proved a similar result for the case when � is the Klein bottle. Thomas conjectured that for any surface �

there are only �nitely many 4-critical graphs of girth at least 5 embeddable on �.

2. Large independent sets and fractional chromatic number

Robin Thomas announced that he and Christopher Heckman have proved a conjecture of Albertson that

every planar sub-cubic triangle-free graph has an independent set containing at least 3=8 of the vertices.

Based on this result, Thomas conjectured that every sub-cubic triangle-free planar graph has fractional

chromatic number less than 8=3. Thomas also conjectured that every sub-cubic triangle-free graph has

fractional chromatic number less than 14=5 (based on a result of Staton that such graphs have an independent

set of size at least 5=14). This led to collaboration throughout the week.

3. Generalization of Dirac's Map-Coloring Theorem

Riste

�

Skrekovski recalled that Dirac showed that if G is embedded on a surface � that is neither the plane

nor the projective plane, the chromatic number of G is less than the chromatic number of the surface �(�)

i� G does not contain K

�(�)

as a subgraph. He then announced a new theorem generalizing this result. If

s is an integer and G is embedded on a surface � of genus g � f(s) (f(s) is given explicitly), the chromatic

number of G is at most �(�)� s� 1 i� G does not contain a sub-graph which is �(�)� s-critical on at most

�(�) vertices.

4. Counting perfect matchings in 3-dimensional grids

Martin Loebl was concerned with �nding a formula for counting the number of perfect matchings in

a general 3-dimensional grid. He de�ned acceptable orientations of the edges of such grids and de�ned

their determinants. He then presented a formula relating the number of perfect matchings to a certain sum

involving the determinants of acceptable orientations. He noted that this gives a relation between the number

of perfect matchings and the average of functions depending linearly on the determinants of orientations.

This is an improvement over previous results which use quadratic dependence.

2



5. Cycles containing many vertices in graphs embedded on surfaces

Yu began by recalling Whitney's result that 4-connected planar triangulations are Hamiltonian. A similar

result does not hold for 3-connected planar graphs. However, Jackson and Wormald have shown that in this

case there is a cycle containing at least cn

0:2

where c is a constant and n is the total number of vertices. It

has been conjectured that the correct answer is cn

log(2)=log(3)

and examples show that this would be tight.

Yu announced that he and Chen have proved this conjecture and similar results for graphs on surfaces of

small genus.

6. Non-contractible separating cycles in embedded graphs

Bruce Richter stated that Zha conjectured that 3-representable graphs on a surface of genus at least 2 have

a non-contractible, separating cycle (separating the surface, not the graph). Richter announced a theorem

that there are such cycles in 6-representable graphs in the case of orientable surfaces and 5-representable in

the case of non-orientable. Richter conjectures that the correct answer is 5 for all surfaces.

7. A conjecture of Randby

Neil Robertson mentioned a conjecture of Randby that if G is triangle-free, 4-connected, and more than

4-representable on a surface, G contains a topological K

5

minor.

8. Progress on Negami's conjecture

Petr Hlin�en�y stated Negami's conjecture that a graph G has a planar cover (map from a planar graph

to G which preserves neighborhoods) i� G can be embedded in the projective plane. Hlin�en�y indicated that

the reverse direction is easy and the forward direction uses the forbidden minors for the projective plane.

To prove the conjecture, it only remains to prove that K

1;2;2;2

has no planar cover. To do so has proven

di�cult. Hlin�en�y announced a theorem joint with Robin Thomas that there are at most 16 graphs which

are counterexamples to Negami's conjecture.

9. Isomorphism testing for graphs embedded on a surface

Martin Grohe described a polynomial-time algorithm to test if two graphs embeddedable on a surface

are isomorphic. He began by describing a color re�nement algorithm that colors the vertices in stages based

on the colors of the neighbors in the previous stage. He announced a theorem that this process stabilizes

after a determined number of steps for graphs embeddable on a surface (depending on the surface) and

determines the graph up to isomorphism. He mentioned another theorem that this algorithm also works in

polynomial-time for graphs of bounded tree-width.

Session on Odd Minors

Convenor: Bruce Reed

1. Excluding an odd K

5

minor

Bert Gerards began the session by introducing odd minors (minors with parity conditions) and presenting

a way of thinking of them as minors of a graph with signed edges and rules about which edges may be

contracted and how the signs of edges may be switched. He then gave the complete list of graphs which do

not contain an odd K

4

minor. He presented a list of graphs which do not contain an odd K

5

minor, but it

is not known if this list is complete.

2. Erd}os-Posa property and odd cycles

Bruce Reed presented the family of Escher walls as an example showing that a graph may not have

two vertex-disjoint odd cycles while still requiring an unbounded number of vertices to hit all odd cycles.

However, he did announce the following theorem. For every u there exists f(u) such that G has either u

vertex-disjoint odd cycles or a large odd minor (Reed said he preferred the term \parity minor".) Escher

wall, or a set X � V (G) with jX j � f(u) such that GnX is bipartite.

3. Disjoint odd cycles and odd cycle covers

While the Escher walls show that the Erd}os-Posa property does not hold in general for odd cycles, Dieter

Rautenbach recalled that Thomassen has proved that for any integer k, a 2

39k

-connected graph either has a

setX � V (G) with jX j � 2k�2 such that GnX is bipartite orG has k vertex-disjoint odd cycles. Rautenbach

announced that he and Reed have improved the bound on connectivity to 2000k, which is essentially best

possible. He introduced \auxiliary" graphs and indicated their use in the proof.

Session on Flows

Convenor: Luis Goodyn

1. Packing and hitting theorems for even cycle matroids

Bertrand Guenin began the session by describing the even cycle matroid of a graph. The cycles of this

matroid are the even cycles of the graph together with pairs of odd cycles that share at most one vertex. He
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then presented packing and hitting theorems that held fractionally by LP-duality but which could also be

shown to hold integrally. He also considered the even cut matroid and obtained similar results.

2. Flows in bi-directed graphs

Matt DeVos described how local tensions (related to colorings and equal in the plane) are dual to 
ows

in graphs embedded in orientable surfaces. In the case of non-orientable surfaces, the dual of local tensions

are bidirected 
ows where some edges (the ones that are signed in the embedding) are directed both ways.

For an ordinary (uni-directed) edge, sending a 
ow of x along an edge removes x amount of 
ow from its

tail and deposits x at its head. But with bi-directed edges assigning x to an edge deposits x amount of


ow at both ends. (So, 
ow is not generally conserved.) DeVos stated that Bouchet conjectured that any

bi-directed graph which has a nowhere-zero 
ow (Every edge gets some non-zero 
ow.) has a nowhere-zero

6-
ow. (Every edge gets an integer 
ow between �5 and 5 excluding 0.) Examples show this would be best

possible. DeVos has proven this holds with 6 replaced by 12, improving the previous best bound of 30. In

case the graph is 4-edge-connected, DeVos can �nd a nowhere-zero 4-
ow, improving the previous bound of

18.

3. Counterexample to a Conjecture of Goodyn

Andreas Huck produced a counterexample to the following conjecture of Goodyn: Let G be a cubic,

cyclically 4-connected graph which has a chordless cycle dominating all the vertices of G. Then G is 3-edge

colorable. The counterexample was obtained by starting with copies of I

5

and the Petersen and applying

the dot-product combining operation.

4. A result connected to Tutte's 4-
ow conjecture

Robin Thomas recalled Tutte's conjecture that if G is a bridgeless graph with no Petersen minor, then G

has a nowhere-zero 4-
ow. Robertson, Seymour, Sanders, and Thomas proved the conjecture in the case of

cubic graphs. For the general case, Thomas announced a theorem with Jan Thomson that if G is bridgeless

and has no minor isomorphic to the Petersen minus an edge, then G has a nowhere-zero 4-
ow. This is

based on their theorem that if G has minimum-degree 3, girth at least 5, and is non-planar, then G has a

minor isomorphic to the Petersen minus an edge.

5. Special colorings and Anti-Flows

Ne�set�ril considered the problem of determining the minimum number of colors needed to color the vertices

of a graph so that no cycle is colored with at most 2 colors. He also recalled the problem of determining

the minimum number of colors needed to color any orientation of a graph such that all edges between any

two color classes go in the same direction. He noted one could similarly ask for the coloring to be a map

from the vertices of G to those of a circulant with the directions on edges between any two color classes

preserved. He also described the anti-
ow problem. This problem asks if there is a �xed k such that every

3-edge connected graph with orientations on the edges has a 
ow such that every edge receives a non-zero

integer 
ow between �k and k but such that no edge receives the negative of another edge. This problem led

to further discussion throughout the week and appears to have been answered in the a�rmative by DeVos,

Johnson, and Seymour.

6. Open problems involving cycles and 
ows

Luis Goodyn presented a list of unsolved problems dealing with 
ows and cycles in graphs and matroids.

It appears that some of them can be solved using partial results of Goodyn and Seymour.

Session on Matroids

Convenor: James Oxley

1. Steps toward a structure theorem for (binary) matroids

Paul Seymour began the session by describing the recent attempts of Johnson, Robertson, and Seymour

to describe the structure of (binary) matroids G which do not contain a �xed binary matroid H as a minor.

Seymour stated that the kind of theorem they hoped to prove was that G could be obtained by \gluing"

together graphic and co-graphic matroids which themselves do not have H as a minor. Seymour indicated

that the new proof by Diestel, Gorbunov, Jensen, and Thomassen that large tree-width implies having a

large grid minor for graphs seems to be applicable to the matroid case. However, at least in the non-binary

case, it seems one needs to consider \gridles" and \girdles" in addition to grids when characterizing the

obstructions to small tree-width.

2. Matroid matching

Jim Geelen described the matroid matching problem in which a representable matroid has its elements

bijectively assigned to the vertices of some graph and it is to be determined if there is a basis of the matroid

which corresponds to a set of vertices covered in some matching of the graph. Geelen reduced the problem

to determining if some matrix of the form A + T has full rank where A is skew-symmetric and T is the
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Tutte matrix of the graph. Geelen presented a method of writing such matrices as the sum of smaller rank

matrices such that the sum of the ranks equals the rank of the original matrix.

3. Spine/cospine transformation

Dirk Vertigan introduced the spine and cospine transformation. Given a matroid M , he considered an

element e such that (A [ e;B) and (A;B [ e) are separations of the same order in M . This means that

e is either in the \guts" (in the case (A;B) is a separation of the same order in Mne) or the \coguts"

(in the case (A;B) is a separation of the same order in M=e) of (A;B). In the former case, Vertigan

considered the matroid N such that Mne = N=e and the dual equation in the later. N is said to be obtained

from M by performing a \spine/cospine transformation." Vertigan presented some results concerning such

transformations, including a result that the number of representations of M and N over a �eld P are equal.

4. Sharp bounds on the size of connected matroids

James Oxley presented some results concerning the maximum size of connected matroids given the size

of the largest circuit and cocircuit they contain. After a brief history of bounds previously obtained, Oxley

announced the new result that jE(M)j � cc

�

=2 where c is the size of the largest circuit in a connected

matroid M and c

�

is the size of a largest cocircuit. Similarly, jE(M)j � (c

e

� 1)(c

�

e

� 1) + 1 where c

e

and

c

�

e

are respectively the sizes of a largest circuit and cocircuit containing a given element e. Oxley presented

some corollaries of these results and also mentioned previously known results giving lower bounds on the

size of a connected matroid in terms of the size of the smallest circuit and cocircuit.

Session on Connectivity

Convenor: Wolfgang Mader

1. Splitting vertices to maintain edge-connectivity

Tibor Jord�an began the session by considering the problem of splitting o� edges from a vertex s (two

edges us, vs are replaced by the edge uv) so that the edge-connectivity between any pair of vertices disjoint

from s does not decrease. He presented a theorem of Mader that says if the degree of s is even and s is not

incident to a cut-edge, there is a pair of edges which may be split o� from s to maintain all connectivities as

described. Jord�an wanted to extend this result to the case when edges are \detached" instead of just split

o�. (So, edges come o� in bundles still incident to a common vertex instead of in pairs.) Given a degree

sequence (d

1

; :::; d

n

) with d(s) = �d

i

, Jord�an gave a theorem which exactly characterizes when the edges at

s can be detached into bundles of degree d

i

.

2. S-T Connectors

Alexander Schrijver presented a theorem which generalizes both Nash-Williams's theorem on edge-disjoint

spanning trees and K}onig's Theorem. Given a graph G with vertices partitioned into sets S, T , Schrijver

de�ned an S-T connector as a subset F � E(G) such that each component of (V (G); F ) intersects both S

and T . Schrijver's theorem states that there are k edge-disjoint S-T connectors i� for every sub-partition

of S or T into classes, the number of edges in G leaving at least one class is at least k times the number of

classes.

3. Finding vertex-disjoint even cycles and paths in digraphs

James Geelen considered the problem of �nding in a given digraph the maximum number of edges that

can be partitioned into vertex-disjoint even cycles and paths. He explained that this problem is related to

matching and S-T paths in undirected graphs but is NP -hard since it is also related to determining if a

graph is Hamiltonian. Geelen de�ned symmetric digraphs as those which have an edge from a to b if they

have an edge from b to a. Weakly symmetric digraphs were de�ned as digraphs with symmetric strong

components. Geelen can solve the problem in the case of weakly symmetric digraphs, which generalizes the

matching and S-T paths problems.

4. k-connected dominating sets

Given a �xed k, Yuster considered the problem of �nding k-connected dominating sets in k-connected

graphs. As �(G) grows, perhaps there is such a dominating set D with jDj �

nlog(�)(1+O

�

(1))

�

. This has been

proven for k = 0 by Lov�asz and for k = 1; 2 by Yuster and others. There are lower bounds of the same form

as well. The problem is open for k � 3.

Session on Matroids, Part 2

Convenor: James Oxley

1. Hadamard Conjecture

Martin Loebl began the session by discussing the Hadamard conjecture. After de�ning the Hadamard

matrix, he presented some results toward solving the conjecture. Loebl is interested in using simplicial
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complexes to de�ne binary codes and conversely answer which binary codes come from such complexes. A

related question is which (0; 1) matrices are incidence matrices of simplicial complexes.

2. Extent to which even cycle space determines underlying graph

Bert Gerards asked what one could conclude about two graphs if one knew they had the same even cycle

space. He presented a list of operations that may be performed on a (signed) graph which leaves its even

cycle space unchanged. The hope is that one may go between any two graphs with the same even cycle space

by performing a series of operations in the list, but this is not known.

3. Finding large grids in (binary) matroids of large tree-width

Thor Johnson continued Paul Seymour's presentation of progress that has been made in showing matroids

of large tree-width have large grid minors (or gridles or girdles in the case of non-binary). Johnson outlined

the �rst half of a proof that if two pairs of subsets of elements are highly linked, either the linkages can be

made \disjoint" or the matroid has a large grid or girdle or gridle minor.

4. Graph Minors for Matroids

Neil Robertson outlined a general scheme for applying the techniques used in the Graph Minors series

(Robertson and Seymour) to obtain similar results in the category of matroids. The presentation included

a statement of the types of theorems he hoped could be proven using these methods along with the main

\stepping stone" theorems that would need to be developed. Robertson's presentation was continued at a

subsequent informal meeting.

Session on Classical Minors

Convenor: Robin Thomas

1. Complete minors of the hypercube

Andre

�

i Kotlov began the session by asking what is the largest complete graph which is a minor of the

d-dimensional hypercube Q

d

. Kotlov presented a lemma which implies that Q

d

contains K

p

2

d as a minor.

He presented an upper bound of

p

d2

d

which is obtained essentially by counting edges. While the lower

bound holds for small values of d, it is not tight for larger values.

2. A splitter theorem for internally 4-connected graphs

Thor Johnson presented a result joint with Robin Thomas which concerns building an internally 4-

connected graph G from an internally 4-connected minor H . The steps involved in the construction are

either one element extensions or very restricted extensions of size two. Moreover, the intermediate graphs

are \nearly 4-connected" and Johnson indicated why maintaining internal 4-connectivity is not possible.

3. Connectivity vs. K

a;k

minors

Bojan Mohar was interested in what kind of connectivity for su�ciently large graphs implies having a

K

a;k

minor for �xed a and increasing k. (The connectivity may depend on a but not k) Mohar presented a

result that every large 7-connected graph contains K

3;k

as a minor. He presented an example showing that

6-connectivity was not su�cient. Mohar also presented a general theorem that for every a, there exists c(a)

such that every su�ciently large c(a)-connected graph of bounded tree-width contains K

a;k

as a minor.

Session on Extremal Graph Theory

Convenor: Hans Pr}omel

1. The Prague dimension of Kneser graphs

Zolt�an F�uredi pointed out another connection between the Prague dimension of graphs and the dimension

theory of partially ordered sets by giving a very short proof of a theorem of Poljak, Pultr and R�odl. He

showed that the dimension of the Kneser graph is bounded as dim

P

(K(n; k)) < C

k

log logn, where C

k

depends only on k.

2. Optimal H-packings

Raphael Yuster de�ned an optimal H-packing of K

n

as a maximum set of edge-disjoint copies of H in

K

n

and denoted the cardinality of an optimal packing by P (H;n). He considered an optimal H-packing, L,

of K

n

. He let �(L) denote the chromatic number of the intersection graph of L (the graph whose vertices

are the P (H;n) members of L and whose edges connect two members sharing at least one vertex of K

n

). He

de�ned the resolution number �(H;n) as the minimum of �(L) taken over all possible optimal H-packings

of K

n

. This corresponds to the minimum number of layers of vertex-disjoint copies of H whose union

forms an optimal packing. Yuster can prove that if H is any �xed graph with h vertices and m edges then

�(H;n) = (n� 1)

h

2m

(1 + o

n

(1)).
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3. Nice graphs

Alexander Kostochka de�ned an oriented graph G as \nice" if for every pair of vertices u,v and every

orientation of the edges of the path P of length k, there is a path in G from u to v with the same edge

orientations as those given to P . Similarly, an undirected graph G with its edges colored with c colors is

\nice" if \coloring" replaces \orientation" in the previous de�nition. In a joint paper, Kostochka has shown

that graphs are nice i� they do not contain \black holes". He has also shown that \niceness" of graphs is a

special case of a natural notion involving \nilpotency of semigroups of endomorphisms of certain algebraic

structures."

4. f -connectivity

Given a function f : N! N, Reinhard Diestel calls a graph G f -connected if for every separation (A;B)

of G with jAj < jBj there are at least f(jA � Bj) vertices in A \ B. (Thus, k- connectedness amounts

to f -connectedness for f having constant value k, but the n � n grid (say), which is only 2-connected, is

f -connected for some f growing like the root function.) Diestel presented the following problem: Is there a

function f : N ! N tending to in�nity such that for every n 2 N there is a k 2 N such that every graph

of chromatic number at least k has an f -connected subgraph of order at least n? (Diestel remarks that

such an f will be particularly interesting if replacing \chromatic number" with \average degree" makes the

statement false, at least for this f .)

5. A characterization of triangle-free graphs

Using a clever inductive counting argument Erd}os, Kleitman and Rothschild showed that almost all

triangle-free graphs are bipartite, i.e., the cardinality of the two graph classes is asymptotically equal. In

this talk we investigate the structure of the few triangle-free graphs which are not bipartite. Using similar

techniques as Erd}os, Kleitman and Rothschild we prove that with high probability these graphs are bipartite

up to a few vertices. This means that almost all of them can be made bipartite by removing just one vertex.

Almost all others can be made bipartite by removing two vertices, and then three vertices and so on.

Session on Digraph Minors

Convenor: Paul Seymour

1. Digraphs with dicycles of only one length

William McCuaig began the session by asking the question (originally asked by Paul Seymour) of when

all dicycles in a digraph have the same length. He was also interested in the more general question of when a

digraph has an arc-weighting such that all dicycles have the same non-zero weight. McCuaig de�ned an exact

transversal as a set of arcs such that every dicycle uses exactly one edge in the set. Finally, McCuaig de�ned

butter
y minors and considered the class of graphs which do not have double dicycle butter
y minors. It is

easy to see that if a digraph has an exact transversal, it has an arc-weighting so that all dicycles have the

same length. Also, if there is such a weighting, a digraph does not have a double dicycle butter
y minor.

McCuaig announced a theorem that actually all these are equivalent, i.e. digraphs with no double dicycle

butter
y minor have exact transversals.

2. Eulerian digraph immersion

Thor Johnson de�ned digraph immersion and asked the general question of the structure of Eulerian

digraphs which do not immerse a �xed Eulerian digraph H . Following the general outline of the Graph

Minors series of Robertson and Seymour, Johnson de�ned tree-width for Eulerian digraphs and showed that

having small tree-width is an obstruction to immersing H . According to Johnson, as in the case of Graph

Minors, having large tree-width implies immersing a certain type of grid from which a structure theorem

can be built. Johnson stated that it appears the main results of Graph Minors will hold in the category of

Eulerian digraphs and will yield, among other things, a polytime algorithm for solving the k edge-disjoint

linkage problem for �xed k.

3. Directed tree-width and havens

Robin Thomas presented a proof that the directed tree-width of a digraph (de�ned in his talk) is tied

to the size of the largest haven in the digraph. This is the �rst step in proving the conjecture that directed

tree-width is tied to containing a certain directed grid as a butter
y minor.
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Talks

Problems on In�nite Graphs

R. Halin (Hamburg)

The intention of the talk was to give an introduction to a recent collection of problems concerning in�nite

graphs, which, in my brief announcement, include the following topics.

1. R. Schmidt classi�ed the rayless graphs by introducing an ordinal valued order function. How can his

theory be extended to larger classes of graphs?

2. W.T. Tutte showed that the cycle space of every 3-connected �nite graph is generated by its non-

separating circuits. To what extent can Tutte's theorem be carried over to in�nite graphs?

3. In \tree partitions of in�nite graphs" (Halin 1991) pseudo-trees and quasi-trees were introduced. Open

problem: Characterize the pseudo-trees which are not quasi-trees.

4. Motivated by the fact that every connected locally �nite graph is a quasi-tree, the author introduced

the term \in�nity type" (1989). Characterize the in�nity types of locally �nite graphs, which would

yield a classi�cation of the locally �nite graphs.

5. Search for a spanning tree T of a graph G in which every end E is represented by a given number k(E)

of ends (of T ), when 0 � k(E) �m

1

(E) (= max. number of pairwise disjoint rays of E).

6. Which con�guration must be present if a graph contains an end E in which m

1

(E) �@

1

?

7. Characterize the connected graphs which admit a normal rooted spanning tree (in Jung's sense) by

forbidden minors.

8. Lattice theoretical problems in connection with Erd}os' conjecture concerning Menger's theorem for

in�nite graphs.

9. Study vertex minimization of in�nite n-connected graphs analogously to R. Halin, Minimization prob-

lems for in�nite n-connected graphs (1993).

10. In a note in JGT (1983) the author extended the notion of Hamiltonicity to graphs with more than two

ends. The question whether Thomassen's extension of Fleischner's theorem also holds if this notion of

Hamiltonicity is assumed is still open.

11. a) Which groups of order @ are isomorphic to the automorphism group of a countable graph? b) If

G is locally �nite, connected and jAut Gj = @

0

, must then Aut G contain a translation? c) If G is

countable with jAut Gj = @

0

, must then G contain a double ray?

12. A vertex pair (x; y) in G is tight if the Menger number of (x; y) is in�nite. G

�

arises from G by adding

all edges xy for tight (x; y), G

�

is G minus all edges xy with tight (x; y). G is collapsing if G contains

at least one edge xy with tight (x; y) such that (x; y) does not remain tight in G

�

. It is shown that

every collapsing graph contains 2 ground con�gurations each having T

!

as a topological minor. Several

open problems arise in this context.

For details see R. Halin, Miscellaneous problems for in�nite graphs.

Eigenvalues and Embeddings of Graphs

Alexander Schrijver (CWI & University of Amsterdam)

Joint work with L�aszl�o Lov�asz

In 1990, Y. Colin de Verdi�ere introduced the parameter �(G) of a graph G, being the maximum corank

of any V � V symmetric matrix M = (m

u;v

) having exactly one negative eigenvalue (of multiplicity 1), and

with m

u;v

< 0 if u and v are adjacent, and m

u;v

= 0 if u and v are nonadjacent, and satisfying the Strong

Arnold Hypothesis. This parameter was motivated by studies of the spectrum of Schr�odinger operators.

Colin de Verdi�ere showed that �(G) � 3 if and only if G is planar. We showed that �(G) � 4 if and only if G

is linklessly embedded. In the proof we use a Borsuk theorem for antipodal links, which may be interesting

in its own right. In the lecture, we give an introduction to the above, and we explain the methods.
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Some Algebraic Methods in Connection with the Chromatic Number

Carsten Thomassen (Technical University, Denmark)

Finding the chromatic number is one of the notoriously hard problems in graph theory. We discuss three

algebraic methods.

1. The color matrix (joint work with Tommy Jensen) whose rows consists of all k-colorings where the

colors are elements in a �xed �eld. Our main result says that the 3-color matrix of a planar triangle-free

graph has full rank.

2. The chromatic polynomial, introduced in 1913 by Birkho�. We describe a su�cient condition, in terms

of the roots of the chromatic polynomial, for a graph to contain a Hamiltonian path and discuss the

(unsolved) counterpart for Hamiltonian cycles.

3. Toft conjectured in 1976 that every 4-chromatic graph contains a totally odd K

4

-subdivision. This

was proved recently independently by Wenan Zang and myself. It is pointed out how the cycle space

is used in the solution.

Graphs on Surfaces

Bojan Mohar (University of Ljubljana)

Three recent results about graphs on surfaces have been presented. For each of them, there may be a

more general theory leading to important results.

1. Geometric structure of embeddings has been illustrated by the following results (joint work with Neil

Robertson): For each surface S, there is a �nite number of patch structures so that every planar graph

embedded in S can be turned into one of these patch structures after a series of Whitney 2�, 3�, and

4�
ippings.

2. Combinatorial structure of graphs embedded with large face-width. A recent theorem (joint work

with Thomas B}ohme and Carsten Thomassen) shows that every 4-connected graph embedded with

su�ciently large face-width contains two cycles C

1

, C

2

each of which contains more than 99:9% of the

vertices (\almost Hamiltonian") and C

1

[ C

2

covers the whole graph.

3. Coloring graphs on surfaces: A recent result is that locally bipartite graphs on nonorientable surfaces

with su�ciently large edge-width have chromatic number 2, 3, or 4 and those with chromatic number

4 are completely characterized. Such examples cannot occur on orientable surfaces. (Joint result with

Paul Seymour.)

Graphs and Curves on Surfaces

Alexander Schrijver (CWI & University of Amsterdam)

From a theorem on minimizing crossings of systems of closed curvers on a compact surface S by Reide-

meister moves, we derive a number of theorems on decomposing graphs on surfaces, on �nding circulations

of given homotopy types in a graph, on characterizing homotopies of systems of curves by their crossing

numbers, and on minimal graphs of given crossing-functions (\kernels").

Counting Problems Related to the Tutte Polynomial

Dominic Welsh (Oxford)

The Tutte polynomial of a graph, or more generally a matrix or matroid, is a two variable polynomial

T (G;x; y) which contains as specialisations a host of di�erent objects: These include

1. Along xy = 1 the Jones polynomial of the alternating link determined by G

2. The partition functions of the Ising/Potts models of statistical physics on G

3. The chromatic and 
ow polynomials of G

In 1990, with Jaeger and Vertigan we proved that evaluating T (G;x; y) is #P -hard except when (x �

1)(y � 1) = 1 or when (x; y) is one of (1; 1), (�1; 0), (0;�1), (�1;�1), (

+

�

i;

�

+

i) and (

+

�

j;

�

+

j) where i,j are

complex square and cube roots of unity. Since 1990 I have been trying to �nd fully polynomial approximation

schemes for the Tutte polynomial in the region x � 0, y � 0. As far as we are aware there is no obstacle
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to such a scheme existing but existing results are at best fragmentary. For example with Alon and Frieze

(1994) we show such schemes exist for x � 1, y � 1 for \dense" graphs. Two points of apparent simplicity

but on which progress has been remarkably slow are (2; 0) where T counts the number of acyclic orientations

and (2; 1) where T counts the number of forests. With Bartels and Mount (1998) we used the random walk

volume approximation method to attack the forest problem. This involves �nding a random integer point

in the base of the polyhedron �x

i

� e(U) where � � U � V and U runs through all the subsets of V . The

vertices of the polyhedron correspond bijectively with acyclic orientations. However we hit exactly the same

denseness barrier as with the earlier methods.

Decomposition of Perfect Graphs, Balanced Matrices, and Ideal Binary Clutters

G�erard Cornu�ejols (Carnegie Mellon University)

In this talk, we survey recent decomposition results.

Conforti, Cornu�ejols, Gasparyan, and Vuskovic prove a special case of Chavatal's skew partition con-

jecture and introduce new perfection preserving decompositions. Conforti and Cornu�ejols use this result

to show that WP-free graphs can be decomposed into bipartite graphs and line graphs of bipartite graphs,

using perfection preserving operations.

In a graph, a double star consists of two adjacent nodes and some of their neighbors. Conforti, Cornu�ejols,

and Rao show that a balanced 0,1 matrix is totally unimodular or its bipartite representation has a double

star cutset. This result yields a polytime recognition algorithm for balancedness.

Seymour conjectured that a binary clutter is ideal if and only if it does not have F

7

, O

K

5

, or b(O

K

5

)

minors. Cornu�ejols and Guenin recently proved Seymour's conjecture for the class of clutters that do not

have Q

+

6

or b(Q

6

)

+

minors. This implies the Edmonds-Johnson T-join theorem as well as Guenin's theorem

on weakly bipartite graphs. The result is obtained by �rst showing that minimally nonideal binary clutters

are 3-connected and internally 4-connected.

Matroid 4-Connectivity

Geo� Whittle (Victoria University of Wellington)

Traditionally results in matroid structure theory and matroid representation theory have relied crucially

on 3-connectivity. Moreover there exists a collection of \solid tools" for obtaining such results. Examples

include the Wheels and Whirls theorem of Tutte and Seymour's Splitter Theorem. However, for various

technical reasons it is becoming clear that 3-connectivity is not enough. In particular there is hope for a

4-connectivity version of a conjecture of Kahn that fails for 3-connectivity. To do this analogues of the

Wheels and Whirls or the splitter theorem are needed. The talk discussed one such analogue; namely a

theorem whereby a chain theorem is developed for \sequentially 4-connected" matroids.

Extremal Graph Theory (A Survey)

Miklos Simonovits (Institute of Mathematics, Hungary)

Extremal graph theory is one of the wider areas of graph theory with many connections and possible

applications to other �elds of combinatorics and also to �elds outside of combinatorics.

The basic problem is if one has a given family L of so called sample graphs, how many edges can a graph

have if it has n vertices and does not contain any L 2 L. These type of problems were �rst investigated by

Mantel, Tur�an, Erd}os and developed into a wide area in the sixties, seventies.

The main topics

1. Historical remarks: Tur�an's theorem, Erd}os' application of graph theory to number theory, geometry,

etc.

2. The general theory

3. Degenerate extremal graph problems

4. Finite geometric constructions

5. Product conjecture

6. Ramsey-Tur�an theorem

7. Hypergraph extremal problems

8. Excluding topological subgraphs
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9. Extremal subgraphs of random graphs

10. Erd}os-Kleitman-Rothschild theory and related results

and many other �elds.

General Theory

The general theory started with a corollary of Erd}os-Stone theorem (=the Erd}os-Simonovits limit theo-

rem) stating that if one has two families of excluded subgraphs, with the same minimum chromatic number,

then their extremal numbers are the same, apart from an error term o(n

2

). Later Erd}os and Simonovits

proved that for every extremal graph problem the extremal graphs or the nearly-extremal graphs can be

changed into Tur�an graphs by adding and removing o(n

2

) edges. If the minimum chromatic number is 2,

i.e. there is a bipartite excluded graph in L, then the extremal number is o(n

2

), and the above assertions

are not too informative. This case will be called the theory of degenerate extremal problems. A large part

of extremal graph theory is related to this question and some other part is to analyze how one can reduce

complicated non-degenerate extremal graph problems to degenerate ones.

Degenerate extremal graph problems

Here we list just the most important bipartite graphs for which the corresponding extremal graph prob-

lems were investigated and completely or partly solved. The K

2

(p; q), C

2k

, the cube C

8

. Lower bounds were

given using �nite geometric constructions or other (even more) algebraic constructions.

The product conjecture

I will restrict myself to the simplest case. I conjecture that if the so called decomposition of an excluded

L of chromatic number p+1 does not contain trees or forests, then there are always extremal graphs which

can be obtained from a complete multipartite graph (of roughly equal classes) by only adding edges, never

deleting. The condition on the decomposition can be rephrased: one cannot color L in p+ 1 colors so that

the �rst two classes span a tree or a forest.

This conjecture means that in these cases the extremal graph problem can be reduced to degenerate ones.

Topological Minors and Girth

Wolfgang Mader (Hannover)

C. Thomassen noticed in 1983 that large girth has for the existence of minors the same e�ect as large

degree. We study the same for topological minors. So, for instance, we show that for every graph H with

maximum degree �(H) � 3, there is a t

H

such that every graph G with minimum degree �(G) � �(H) and

girth �(G) � t

H

contains a subdivision of H . This can be generalized in the following main result. For every

graph H with �(H) � 3, lim

t!1

f

t

(H) = (�(H)� 1)=2 holds, where f

t

(H):=inffc > 0 : jjGjj � c, jGj > 0

and �(G) � t) G contains a subdivision of Hg.

Furthermore, we show that every 2n-connected graph of su�ciently large girth contains a subdivision

with prescribed branch vertices of every graph H with jjH jj � n, but without isolated vertices.

Tree-width

Bruce Reed (CNRS)

We discuss tree-width, a connectivity invariant of graphs de�ned by Robertson and Seymour. We present

a duality result and a canonical decomposition theorem tied to this invariant. We also discuss a number of

applications of these results, including Robertson and Seymour's Graph Minors Project.

On the Hanna Neumann Conjecture

G�abor Tardos (R�onni Institute of Mathematics, Budapest)

The history of this problem of combinatorial group theory is presented from the �fties up to the recent

equivalent graph theoretic formulations. The H.N. conjecture states that if two subgroups U and V of a free

group have ranks k + 1 and l + 1 then the rank of U \ V is at most kl + 1. A bound of 2kl+ 1 was proved

by Hanna Neumann herself, and most of this factor 2 gap is still present between the best upper bound

(2kl � 2k � 2l+ 5 of Dicks and Formanek) and the conjectured bound.

The following two graph theoretical conjectures are equivalent to the H.N. conjecture and a stronger form

of it (due to Walter Neumann):
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1. Conjecture: Let G,H be directed �nite graphs, edges colored red/green such that for every vertex the

in/out degree in either color is at most 1. Let G �H be the graph on the product of vertices with a

red/green edge put in whenever the two projections have a red/green edge. Let K be a component of

G�H . Then, c(K)� 1 � (c(G)� 1)(c(H)� 1) where c is the cyclomatic number.

2. Conjecture (due to Warren Dicks): Let G

1

, G

2

, G

3

be simple subgraphs of a �nite bipartite graph.

Suppose G

1

\ G

2

= G

2

\ G

3

= G

1

\ G

3

= G. Consider the disjoint union of G

1

[ G

2

, G

2

[ G

3

, and

G

1

[ G

3

and suppose it has an even number of components and they can be paired such that the

pairs are isomorphic (as bipartite graphs, i.e. \left" vertices map to \left" vertices, \right" vertices to

\right" vertices). Dick's Conjecture: Then G has at most half as many edges as the complete bipartite

graph on the same set of vertices. Note: G

i

can have vertices and edges outside G. If G

i

does not

have edges outside G that have both endpoints in G (i.e. G is a spanned subgraph of G

i

) then the

conjecture is proved.

Parity and Connectivity

Andr�as Frank (E}otu}os University, Budapest)

Connectivity (paths,trees,
ows) and parity (matchings) are two big branches of graph theory, with many

similar results. In an attempt to understand better their features in common, we study problems concerning

both connectivity and parity. For example, L. Nebesley characterized those undirected graphs which have

an orientation so that the in-degree of every node is odd and so that every node is reachable by a directed

path from a speci�ed root-node. Our main open problem is �nding a characterization of graphs having a

strongly connected orientation so that the in-degree of every node is odd. What we have is the following.

We call a subset T � V of nodes of an undirected graph G = (V;E) compliant if jT j � jEj (mod 2). An

orientation of G is called T -odd if the in-degree of v 2 V is odd for v 2 T and even for v 2 V � T .

Thm: For a graph G = (V;E) the following are equivalent.

1. G has a k-edge-connected, T -odd orientation for every compliant subset T � V .

2. For every partition P of V into at least two non-empty parts, the number i(P ) of edges connecting

distinct parts of P is at least (k + 1)t� 1.

3. G can be built from a node by a sequence of the following operations:(i) add a new edge connecting

existing nodes (it may be a loop) (ii) choose a set F of k (distinct) edges, subdivide each element of F

by a new node, identify the k new nodes into one, denoted by v, and connect v with an existing node.

The proof of implications (1)) (2) and (3)) (1) is rather straightforward. The di�culty lies in proving

(2) ) (3). By using an old result (from 1980), we �rst prove that a graph has a (k; l)-edge-connected

orientation i� i(P ) � kjP j � k + l for every partition P of V . Here, 0 � l � k, and a digraph is called (k; l)-

edge-connected if it has a node s so that there are k edge-disjoint paths from s to v and l edge-disjoint paths

from v to s for every v 2 V . Second, we provide a constructive characterization of (k; k� 1)-edge-connected

digraphs. Another recent result of similar vein:

Thm: An undirected graph G = (V;E) contains k edge-disjoint spanning trees after removing any of its

edges if and only if G can be built from a node by the following two operations:

1. add a new edge

2. choose j existing edges (1 � j � k � 1), subdivide each, identify the j subdividing nodes with a new

node z and add k � j new edges incident to z.

Directed Tree-Width

Robin Thomas (Georgia Institute of Technology)

The notion of tree-width for undirected graphs has found application in both theory and practice. For

instance, it is fundamental in the Graph Minors series of Robertson and Seymour. Also, many problems

which are NP-complete in general (coloring, Hamilton cycle, etc.) may be solved in polynomial (often linear)

time on graphs of bounded tree-width. Finally, besides giving theoretically fast algorithms, tree-width has

been used in real-world programs that are applied in industry. With these bene�ts in mind, it seems useful

to have a notion of tree-width for directed graphs.

Finding an appropriate de�nition has required some work. One explaination for this di�culty comes in

the form of a game. For undirected graphs, there is a certain cops and robbers game which is related to
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tree-width. It turns out that there is either a particularly nice strategy for the cops to catch the robber

or a nice strategy for the robber to elude the cops. However, for directed graphs and the corresponding

game, this is no longer true. In particular, there are digraphs in which the cops can win but do not have a

monotonic search strategy. (They must revisit some vertices they previously occupied and left.)

Despite these di�culties, we have formulated a de�nition of tree-width that seems correct. We have the

following justi�cations for this claim:

1. Our de�nition is monotone under taking directed minors (the so-called \butter
y minor")

2. The tree-width of an undirected graph G is the same as the tree-width of the digraph obtained from

G by replacing every undirected edge by two oppositely directed edges

3. The tree-width of an Eulerian digraph is within a factor (depending on the maximum degree) of the

tree-width of the underlying undirected graph

4. For undirected graphs, there is a notion of a haven, and a graph has small tree-width i� it does not

have a large haven. (This is related to the cops and robbers game.) There is a natural generalization

of havens to directed graphs, and we can show a digraph has small tree-width i� it has no large haven

5. Many NP-complete problems (directed Hamilton cycle, directed linkages) can be solved in polynomial

time in digraphs of bounded tree-width.
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