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a b s t r a c t 

The adhesion of micron-scale surfaces due to intermolecular interactions is a subject of in- 

tense interest spanning electronics, biomechanics and the application of soft materials to 

engineering devices. The degree of adhesion is sensitive to the diameter of micro-pillars 

in addition to the degree of elastic mismatch between pillar and substrate. Adhesion- 

strength-controlled detachment of an elastic circular cylinder from a dissimilar substrate 

is predicted using a Dugdale-type of analysis, with a cohesive zone of uniform tensile 

strength emanating from the interface corner. Detachment initiates when the opening of 

the cohesive zone attains a critical value, giving way to crack formation. When the cohe- 

sive zone size at crack initiation is small compared to the pillar diameter, the initiation 

of detachment can be expressed in terms of a critical value H c of the corner stress inten- 

sity. The estimated pull-off force is somewhat sensitive to the choice of stick/slip boundary 

condition used on the cohesive zone, especially when the substrate material is much stiffer 

than the pillar material. The analysis can be used to predict the sensitivity of detachment 

force to the size of pillar and to the degree of elastic mismatch between pillar and sub- 

strate. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

 

 

 

 

1. Introduction 

Adhesion plays an important role in contact problems at small scale, such as (i) stiction of micro-electromechanical-

systems ( van Spengen et al., 2002 ), (ii) wafer bonding of silicon layers in electronics ( Plössl and Kräuter, 1999 ) and (iii) the

adhesion of insects and animals (such as the gecko) to smooth walls ( Arzt et al., 2003 ). The mechanics of adhesion falls into

two categories: conforming contacts such as a sphere on half-space, and non-conforming contacts such as a flat-bottomed

punch on half-space. We consider each in turn. 

Johnson et al. (1971) developed the so-called JKR theory to predict the effect of adhesion upon the Hertzian contact

between conforming elastic spheres, with adhesion characterized by a surface energy, which is equivalent to a toughness

measure G c in fracture mechanics. This approach assumes that the process zone size, over which adhesive tractions exist, is

much less than the contact size. To assess this, Maugis (1992) developed a cohesive zone model for adhesion and idealised
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Fig. 1. (a) A circular cylindrical pillar of material 1 is attached to a half-space of material 2, with a remote tensile stress σ ∞ applied to the top of the 

pillar; (b) the tensile traction on the interface is limited to the value σc , and this is treated as a cohesive zone of length � from the interface corner. The 

problem shown in (b) is solved by superposition of two problems (c) and (d). When the cohesive zone lies within the zone of dominance of the corner 

singularity, the problems for (c) and (d) reduce to the asymptotic problems as shown in (e) and (f), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the adhesive traction versus separation law by a constant normal traction σc for any separation less than a critical value δc .

The work of adhesion associated with this cohesive zone law is G c = σc δc . The length of cohesive zone is of order δc E 
∗/σc

where E ∗ is a combined measure of Young’s modulus (as defined in (1.2) below). Maugis thereby demonstrated that JKR

theory suffices when δc E 
∗/σc is a small fraction of the contact width. 

The mechanics of non-conforming contacts in the presence of adhesion has received much less attention. For example,

the adhesion of a flat-ended, frictionless rigid pillar on a half-space has been explored for both plane and axisymmetric

geometries ( Kendall,1971; Maugis, 20 0 0 ). These geometries give rise to an inverse square-root singularity in stress at the

interface-corner. Consequently, the pull-off force can be obtained by equating the elastic energy release rate of this crack-

like singularity to the interfacial work of adhesion, or toughness, G c . This inverse square-root singularity is relaxed somewhat

upon replacing the rigid pillar by a compliant pillar. Adams (2014) has recently explored the problem of a flat-ended, fric-

tionless compliant pillar on a half-space made from a dissimilar elastic solid. He assumed that the adhesive traction versus

separation law comprises a constant normal traction σc for any separation less than a critical value δc . The work of adhesion

associated with this cohesive zone law is again G c = σc δc . Adams (2014) assumed that the cohesive zone is sufficiently small

that it is embedded within the zone of dominance of the corner singularity. The present study complements this work by

considering the case of a compliant pillar bonded to a dissimilar half-space, and by considering the case where the cohesive

zone may occupy a significant fraction of the interface between pillar and substrate. 
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Our study builds upon the analysis of Khaderi et al. (2015) for the adhesion-energy-controlled detachment of an adhered

micropillar from a dissimilar elastic substrate. A flat-bottomed planar pillar of width D , or a flat-bottomed circular pillar of

diameter D , is bonded to a dissimilar half-space, see Fig. 1 . The pillar is made from material 1 and the half-space is made

from material 2. Both materials are elastic and isotropic, with shear moduli (μ1 , μ2 ) and Poisson ratios (ν1 , ν2 ) . For later

use, the elastic mismatch between these two materials is characterized by the two Dundurs’ parameters 

α = 

μ1 (κ2 + 1) − μ2 (κ1 + 1) 

μ1 (κ2 + 1) + μ2 (κ1 + 1) 
, and β = 

μ1 (κ2 − 1) − μ2 (κ1 − 1) 

μ1 (κ2 + 1) + μ2 (κ1 + 1) 
, (1.1) 

where κm 

= 3 − 4 νm 

for materials m = 1,2. We shall also make use of the combined modulus E ∗ as defined by 

16 

E ∗
= 

κ1 + 1 

μ1 

+ 

κ2 + 1 

μ2 

(1.2) 

1.1. Corner singularity between a sticking pillar and substrate 

Application of an axial tensile stress σ∞ to the free end of the bonded pillar results in a singularity in stress at the

interface-corner between pillar and substrate, as described by Khaderi et al. (2015) . An eigenvalue analysis reveals that

the stress field near the corner is dominated by two singular eigenfields having eigenvalues (λ1 , λ2 ) with corresponding

intensities (H 1 , H 2 ) , as follows. Introduce the polar co-ordinates of radius r from the corner and angle θ from the interface.

Then, the asymptotic stress σi j and displacement u j fields in the vicinity of the corner can be written as 

σi j = H 1 r 
λ1 −1 f i j (λ1 , θ ) + H 2 r 

λ2 −1 f i j (λ2 , θ ) (1.3) 

and 

u j = H 1 r 
λ1 g j (λ1 , θ ) + H 2 r 

λ2 g j (λ2 , θ ) (1.4) 

in terms of the eigenfunctions f i j and g j , with higher order terms neglected. The first two eigenvalues (λ1 , λ2 ) associated

with the leading 2 terms in the infinite series of eigenfunctions both lie within the interval [0.5, 1], and imply unbounded

stress as r → 0 whereas the higher terms in the asymptotic series give contributions to σi j that tend to zero as r → 0 . The

values of (λ1 , λ2 ) depend upon the material mismatch parameters (α, β) as plotted in Fig. 3 of Khaderi et al. (2015) . These

two eigenvalues are sufficiently close in magnitude that both terms in (1.3) and (1.4) need to be included in the present

study. Both eigenvalues are real for the full range of α when β = 0 . When β = α/ 4 , the eigenvalues (λ1 , λ2 ) are real for

α ≤ 0 . 86 and are complex conjugates of each other for α > 0 . 86 , see Fig. 3(b) of Khaderi et al. (2015) . For benchmarking

purposes, when λ1 equals 0.5, the level of singularity is identical to that of a crack in a homogeneous solid. Analytical ex-

pressions exist for the functions f i j and g j by asymptotic analysis, see for example Knésl and Náhlík (2007) , Klusák and

Náhlík (2007) , Khaderi et al. (2015) and Akisanya and Fleck (1997) . The singular zone extends from the corner by approxi-

mately 10% of the pillar diameter. 

Dimensional arguments dictate that the corner stress intensities (H 1 , H 2 ) are related to the remote stress and geometry

according to 

H n = σ∞ D 

1 −λn a n ( α, β) , n = 1 , 2 (1.5) 

where the calibration factors a n have been reported already by Khaderi et al. (2015) using finite element analysis and a

domain integral approach. Note that the values of a n differ for the plane strain (2D) and axisymmetric (3D) pillars. Assume

that the pillar detaches from the substrate by the nucleation of a crack at the pillar-substrate interface. Then, following the

argument of Akisanya and Fleck (1997) , detachment occurs when the value of the corner stress intensity H 1 attains the

critical value H c , upon neglecting the role of H 2 . The material property H c can be measured by performing experiments for

any combination of elastic mismatch. Assume that failure initiates at H 1 = H c . Then, (1.5) gives the sensitivity of pull-off

stress σ∞ to pillar dimension D . 

1.2. Micromechanical origins of critical stress intensity H c 

Consider the general problem of a pre-existing corner crack of length c with a cohesive zone of length � at its tip,

embedded within an outer singularity in the form of the H 1 field, such that c + � << D , as sketched in Fig. 2 . Detachment of

the pillar by crack advance is deemed to be either energy-controlled or strength-controlled depending upon the crack length

c in relation to the process zone size at failure � , as follows. Idealise the process zone by a cohesive zone with normal

traction of constant strength σc up to a critical opening δc , and zero strength at greater openings than δc . The interfacial

toughness, as defined by the area under the traction versus separation curve, follows immediately as G c = σc δc . Recall that

the length of the process zone is only mildly dependent upon the shape of the normal traction versus separation curve,

and is given by � = �E ∗G c / σc 
2 , see Wang and Suo (1990) . Here, � is a dimensionless parameter that depends on mode mix

ψ , elastic mismatch and shape of traction versus separation curve; it is typically in the range 0.1–0.6. Now assume typical

values of adhesion energy, G c = 50 mJ/m 

2 , and of cohesive strength, σc = 0.1 MPa, for a PDMS pillar and substrate ( Tang et al.,

2005 ). Then, � is in the range 1–5 μm. Two detachment mechanisms can now be envisaged, depending upon the ratio �/c,

as follows. 

(i) Adhesion-energy-controlled detachment for � << c. Khaderi et al. (2015) confined their attention to this limit, and

obtained an expression for H c in terms of the interfacial toughness G c and flaw length c , such that 



N.A. Fleck et al. / Journal of the Mechanics and Physics of Solids 101 (2017) 30–43 33 

Fig. 2. An interfacial crack of length c with a crack tip process zone of uniform cohesive strength σc and length � due to a corner singularity as stipulated 

by (1.4) for the displacement field u j on the outer boundary. 
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H c = 

1 

| d 1 | 

( 

E ∗G c (
1 − β2 

)
c 2 λ1 −1 

) 1 / 2 

(1.6)

by making use of (10)–(13) in Khaderi et al. (2015) . The dependence of λ1 and of the complex coefficient d 1 upon (α, β)

is plotted in Fig. 3 and 9, respectively, of Khaderi et al. (2015) . Note that λ1 is in the range 0.5–0.7, and so there is only

a mild dependence of H c upon defect length c . 

ii) Adhesion-strength-controlled detachment for � >> c. Detachment occurs from the interface of strength σc and tough-

ness G c . We shall explore strength-controlled detachment in the present study for an axisymmetric cylindrical pillar and limit

our attention to the case of a vanishing initial defect, c/� → 0 . We shall show below that H c is given by 

H c = kσc 

(
E ∗G c 

σc 
2 

)1 −λ1 

(1.7)

where the parameter k depends upon (α, β) and is expressed in terms of various coefficients to be introduced throughout

our study, with the form 

k = 

[ 

N 1 

(
d R 1 

f R 

) λ1 
1 −λ1 

− N f 

(
d R 1 

f R 

) 1 
1 −λ1 

] λ1 −1 

(1.8)

The derivations of (1.7) and (1.8) are detailed later in the paper, and all parameters including k , as given in (1.8) , are

listed in Table 1 for selected values of (α, β) . The dependence of k upon (α, β) is also plotted in Fig. 3 , and we note

that it takes values in the range 0.4–0.8, depending upon (α, β) . We emphasise that the present study considers both the

limits of a small cohesive zone relative to the pillar diameter (such that the cohesive zone is embedded within the corner

singularity), and the more general case of a large cohesive zone that extends over a large fraction of the pillar diameter

(beyond the corner singularity). 

2. Problem statement 

Within the assumptions of linear elasticity theory, and in the absence of a cohesive zone between pillar and half-space,

the application of an axial stress to the remote end of the pillar leads to a singularity in stress at the interface corner.

Consequently, detachment of the pillar begins at the interface corner; this is commonly observed, see for example Greiner

et al. (2007) and Del Campo et al. (2007) . 

In the present treatment we shall model adhesion-strength-controlled detachment by assuming that a starter defect is

absent ( c = 0 in Fig. 2 ) but the normal traction on the interface between a pillar and half-space is moderated by the presence

of a cohesive zone of constant tensile strength σc on the interface. We endow the cohesive zone with zero shear traction,

such that slip can freely occur between the faces of the cohesive zone, and a normal tensile traction T versus opening δ
response, such that T = σc for 0 < δ < δc , and T = 0 for δ > δc . The toughness of the interface is G c = σc δc . When a remote

tensile stress is applied to the pillar, the interfacial tensile stress at the interface corner is limited to σc , see Fig. 1 b. The

length � of the cohesive zone depends upon the magnitude of the remotely applied stress σ∞ , and is influenced by the

degree of elastic mismatch between pillar and half-space. The maximum normal and tangential separations of the cohesive
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Table 1 

Values of various parameters used for evaluating Eq. (1.8) for selected values of α. 

(a) β = 0 

α a 1 λ1 d R 1 d I 1 N 1 S 1 f R ( 
� 
D 

→ 0) f I ( 
� 
D 

→ 0) N f S f k 

−0.99 0.278 0.594 2.608 0.789 9.217 1.652 1.882 −0.328 5.255 1.874 0.630 

−0.80 0.254 0.584 2.617 0.835 9.194 1.877 1.867 −0.308 5.051 1.728 0.601 

−0.60 0.231 0.574 2.623 0.888 9.152 2.125 1.848 −0.283 4.824 1.567 0.573 

−0.40 0.208 0.564 2.626 0.943 9.093 2.381 1.829 −0.257 4.591 1.401 0.547 

−0.20 0.186 0.554 2.908 0.938 9.016 2.646 1.987 −0.364 4.349 1.228 0.524 

0.00 0.157 0.545 2.621 1.060 8.920 2.922 1.784 −0.199 4.097 1.048 0.499 

0.20 0.153 0.535 2.327 1.174 8.800 3.211 1.581 −0.040 3.834 0.864 0.477 

0.40 0.148 0.526 2.596 1.191 8.652 3.516 1.729 −0.132 3.556 0.668 0.458 

0.60 0.142 0.517 2.573 1.264 8.468 3.842 1.696 −0.093 3.257 0.457 0.439 

0.80 0.134 0.509 2.538 1.346 8.235 4.199 1.657 −0.049 2.932 0.226 0.421 

0.99 0.125 0.500 2.487 1.437 7.932 4.580 1.611 −0.003 2.572 0.033 0.405 

(b) β = α/ 4 

α a 1 λ1 d R 1 d I 1 N 1 S 1 f R ( 
� 
D 

→ 0) f I ( 
� 
D 

→ 0) N f S f k 

−0.99 0.380 0.688 2.303 0.687 7.419 0.332 1.902 −0.006 4.894 1.380 0.774 

−0.80 0.305 0.652 2.369 0.736 7.833 0.708 1.878 −0.051 4.780 1.338 0.700 

−0.60 0.251 0.619 2.435 0.793 8.208 1.151 1.854 −0.094 4.642 1.285 0.635 

−0.40 0.212 0.591 2.499 0.861 8.518 1.655 1.831 −0.133 4.484 1.221 0.582 

−0.20 0.182 0.566 2.561 0.947 8.759 2.236 1.808 −0.168 4.305 1.146 0.537 

0.00 0.157 0.545 2.621 1.060 8.920 2.922 1.784 −0.199 4.101 1.059 0.500 

0.20 0.150 0.526 2.677 1.221 8.985 3.767 1.759 −0.226 3.869 0.959 0.469 

0.40 0.143 0.511 2.730 1.474 8.922 4.904 1.733 −0.247 3.604 0.845 0.446 

0.60 0.139 0.501 2.780 1.972 8.667 6.784 1.702 −0.261 3.299 0.714 0.432 

0.80 0.138 0.508 2.902 4.126 7.934 13.72 1.666 −0.266 2.943 0.562 0.454 

 

 

 

 

 

zone exist at the interface corner, and are denoted by δN and δS , respectively. We shall assume that detachment of the pillar

from the half-space initiates when the maximum normal displacement δN attains the critical value δc . 

The pull-off stress required for detachment is calculated by superposition of two Problems A and B, following the ap-

proach of Dugdale (1960) . The cohesive zone is treated as an interfacial crack of length � , with crack face loading and remote

loading as follows: 

Problem A : a remote tensile stress σ∞ is applied to the top of the pillar, as shown in Fig. 1 c; and 

Problem B : A normal traction of magnitude T is applied to the faces of the interfacial crack, see Fig. 1 d, such that T = σc 

for 0 < δ < δc , and T = 0 for δ > δc . 

Consider the case where the applied remote tensile stress σ∞ is much less than the cohesive strength σc . Then, the

length � of the cohesive zone is much less than the pillar diameter D , and the zone is fully embedded within the H -field
Fig. 3. Dependence of k upon (α, β) . 
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corner singularity for a fully bonded punch on a half-space (with the cohesive zone absent); the corresponding analysis is

referred to as the ‘short crack’ solution. Alternatively, when σ∞ is comparable in magnitude to σc , the cohesive zone extends

beyond the domain of the corner singularity, and the corresponding analysis is referred to as the ‘long crack’ solution. The

pull-off stress σ∞ = σF for the initiation of pillar detachment (at δN = δc ) is calculated in each regime as a function of the

Dundurs’ parameters (α, β) . We proceed by considering Problems A and B in turn. 

2.1. Problem A, corner crack under remote tension 

An interfacial crack of length � is present at the corner between pillar and half-space, and a remote tensile stress of

magnitude σ∞ is applied to the pillar. In the following we summarize the results relevant to short and long crack solutions,

as taken from Khaderi et al. (2015) . 

Short crack solution: The asymptotic stress field (1.3) and displacement field (1.4) exist at the interface corner in the

absence of a crack. The values of the calibration factor a n in (1.5) , as a function of the (α, β) , have been given by Khaderi et

al. (2015) , and values for a 1 are repeated in Table 1 of the present study. Now embed an interfacial crack of length � within

the H -dominated zone (see Fig. 1 (e)). The interfacial stress intensity factor is represented by the complex quantity K 

∞ , (see

for example Hutchinson and Suo (1991) ), and the value of K 

∞ is dictated by the magnitude of the H -field according to 

K 

∞ � iε = 

∑ 

n =1 , 2 

H n � 
λn − 1 

2 

(
d R n + id I n 

)
, (2.1)

where ε is the usual oscillatory index that depends on β according to 

ε = 

1 

2 π
log 

1 − β

1 + β
(2.2)

and the non-dimensional calibration factors (d R n , d 
I 
n ) depend on (α, β) . These factors have been tabulated by Khaderi et al.

(2015) , and selected values for (d R 1 , d 
I 
1 ) are repeated in Table 1 for subsequent use. The normal crack mouth displacement

δ∞ 

N 
and tangential displacement δ∞ 

S 
can be written in the form 

δ∞ 

N = 

∑ 

n =1 , 2 

H n 

E ∗
� λn N n ( α, β) , δ∞ 

S = 

∑ 

n =1 , 2 

H n 

E ∗
� λn S n ( α, β) , (2.3)

where E ∗ has already been defined in Eq. (1.2) . 

The calibration factors ( N n , S n ) are calculated in the present study by finite element simulations using ABAQUS commer-

cial software, 1 by following the method of Khaderi et al. (2015) , and we list selected values of (d R 
1 
, d I 

1 
) in Table 1 . The

substrate is represented by a circular cylinder of radius and thickness both equal to 40 D . Numerical experimentation con-

firmed that these substrate dimensions are sufficiently large to mimic a half-space. The displacement vanishes at the bottom

of the substrate and a normal surface traction, of magnitude σ∞ , is applied to the top of the pillar. The pillar and substrate

are discretised using elements of type CAX8. 

Long crack solution: Now consider an interfacial crack of length � that extends beyond the H-dominated region. The stress

intensity factor and crack opening are calculated by performing finite element simulations of the entire geometry, see Fig.

1 (c). The complex stress intensity factor is represented by K 

∞ and is related to the remote stress σ∞ according to 

K 

∞ � iε = σ∞ � 1 / 2 
[ 

b R 

(
α, β, 

� 

D 

)
+ ib I 

(
α, β, 

� 

D 

)] 
, (2.4)

where (b R , b I ) are calibration factors. The crack mouth displacement can be written as 

δ∞ 

N = 

σ∞ 

E ∗
�N ∞ 

(
α, β, 

� 

D 

)
, δ∞ 

S = 

σ∞ 

E ∗
�S ∞ 

(
α, β, 

� 

D 

)
(2.5)

where the calibration factors (N ∞ 

, S ∞ 

) are also functions of ( α, β, �/D ). The calibration factors are calculated by following

the computational procedure of Khaderi et al. (2015) , with the same finite element details as those described above for the

short crack case. 

2.2. Problem B, corner crack under crack face loading 

Now consider the second problem of crack-face loading. A crack of length � emanates from the interface corner and a

normal traction of magnitude σc acts on the crack faces as shown in Fig. 1 (d). Again, a short crack regime can be identified,

such that �/D << 1 , with geometry as specified in Fig. 1 (f). The full geometry, as shown in Fig. 1 (d), is needed to analyse

the long crack case, for which the crack length � is comparable to the pillar diameter D . The complex stress intensity factor
1 Dassault Systems, Simulia Corporation, Providence, Rhode Island, USA. Version 6.11-1 is used to perform the simulations. 
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is written as 

K f � 
iε = σc � 

1 / 2 
[ 

f R 

(
α, β, 

� 

D 

)
+ i f I 

(
α, β, 

� 

D 

)] 
, (2.6) 

in terms of the calibration factors ( f R , f I ) , and the crack mouth displacement reads 

δ f 
N 

= 

σc 

E ∗
�N f 

(
α, β, 

� 

D 

)
, δ f 

S 
= 

σc 

E ∗
�S f 

(
α, β, 

� 

D 

)
(2.7) 

in terms of the calibration factors (N f , S f ) . The calibration factors for long cracks are also evaluated by the procedure of

Khaderi et al. (2015) . We list the short-crack limits f R ( 
� 
D → 0) , f I ( 

� 
D → 0) and N f ( 

� 
D → 0) in Table 1 for selected values of

(α, β) . 

3. Results 

We return to the problem of cohesive detachment of the cylindrical pillar. We first obtain the relation between the

cohesive zone length � and remote stress. We then calculate the pull-off stress as a function of the cohesive strength σ c and

critical opening displacement δc . 

3.1. Cohesive zone length � 

The stress intensity factor for the corner crack, due to a remote stress σ∞ and to crack face loading of magnitude σc ,

is given by the net value K 

NET � iε = K 

∞ � iε − K f � 
iε . Following the usual Dugdale (1960) argument, the length of the cohesive

zone is such that the crack tip tensile stress is bounded and Re [ K 

NET � iε ] = 0 . 

First, focus on the short crack limit. Upon equating the real part of K 

∞ � iε to the real part of K f � 
iε (as expressed by (2.1)

and (2.6) , respectively) and by using the relation (1.5) for H n we obtain 

σ∞ 

σc 
= 

[ ∑ 

n =1 , 2 

(
� 

D 

)λn −1 

a n d 
R 
n 

] −1 

f R (3.1) 

thereby providing the relation between cohesive zone length � and the remote stress σ∞ . 

Second, consider the case of a long crack. Upon equating the real part of K 

∞ � iε to K f � 
iε (from (2.4) and (2.6) , respectively)

the relation between applied stress and cohesive length reads 

σ∞ 

σc 
= 

f R (�/D ) 

b R (�/D ) 
. (3.2) 

The dependence of cohesive zone length upon remote stress is plotted in Fig. 4 for selected values of α, with β = 0 and

β = α/ 4 . The short crack solution is in agreement with the long crack solution for small values of �/D . For a given remote

stress σ∞ , the cohesive zone size � increases with increasing α and is relatively insensitive to the magnitude of β . In the

short crack limit the cohesive zone size � is almost independent of α for −0 . 99 < α < 0 when β = 0 . 

3.2. Critical stress intensity H c for a short cohesive zone 

The critical value (1.7) for the stress intensity H c for a short cohesive zone can now be established. We consider the

case where the cohesive zone is fully embedded within the corner singularity as defined by the H 1 - field, and neglect the
Fig. 4. Cohesive zone length as a function of the remote stress for selected values of α, with (a) β = 0 and (b) β = α/ 4 . Free sliding is allowed in the 

cohesive zone. The dotted line in part (a) refers to the analytic model as given by Eq. (4.4) , upon taking b = R . 
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contribution from the less singular H 2 - field. Then, (3.1) simplifies to 

� = 

[
d R 1 

f R 

H 1 

σc 

] 1 
1 −λ1 

(3.3)

and the net crack mouth opening displacement δ = δ∞ 

N 
− δ f 

N 
follows from (2.3a) and (2.7a) as 

δ = 

σc 

E ∗

(
H 1 

σc 

) 1 
1 −λ1 

[ 

N 1 

(
d R 1 

f R 

) λ1 
1 −λ1 

− N f 

(
d R 1 

f R 

) 1 
1 −λ1 

] 

(3.4)

Debonding initiates at H 1 = H c such that δ = δc , and (3.4) can then be re-expressed as (1.7) where k is defined by

(1.8) and we have made use of the identity G c = σc δc . 

3.3. Pull-off stress σF 

We proceed to calculate the remote pull-off stress σF as a function of the pillar diameter and the Dundurs’ parameters

(α, β) . The net crack mouth opening displacement is δ = δ∞ 

N 
− δ f 

N 
. For the case of a short cohesive zone, the expressions

(2.3a) and (2.6a) give 

δ = 

∑ 

n =1 , 2 

H n 

E ∗
� λn N n − σc 

E ∗
�N f . (3.5)

and further reduction via (1.5) provides 

δ

D c 
= 

σ∞ 

σc 

[ ∑ 

n =1 , 2 

(
� 

D 

)λn 

a n N n 

] 

− � 

D 

N f , (3.6)

where the characteristic diameter D c is defined as D c ≡ σc D/E ∗. Now use the relation (3.1) between σ∞ /σc and �/D to

obtain 

δ

D c 
= f R 

[ ∑ 

n =1 , 2 

(
� 

D 

)λn −1 

a n d 
R 
n 

] −1 [ ∑ 

n =1 , 2 

(
� 

D 

)λn 

a n N n 

] 

− � 

D 

N f . (3.7)

The expressions (3.1) and (3.7) provide the relation between δ/D c and σ∞ /σc as parameterized by �/D . 

For long cracks, the crack mouth opening displacement δ = δ∞ 

N 
− δ f 

N 
is 

δ

D c 
= 

� 

D 

[ 
σ∞ 

σc 
N ∞ 

− N f 

] 
= 

� 

D 

[
f R 
b R 

N ∞ 

− N f 

]
. (3.8)

via (2.5a), (2.7a) and (3.2) . The expressions (3.2) and (3.8) provide the relation between δ/D c and σ∞ /σc in terms of the

intrinsic variable �/D . 

Now assume that adhesion-strength-controlled detachment takes place when the crack mouth opening displacement δ
attains a critical value δc . Write the remote pull-off stress σ∞ as σF . We proceed to plot in Fig. 5 the remote pull-off stress

σF /σc as a function of D c /δc for both short and long cracks by making use of (3.7) and (3.1) for short cohesive zones, and

(3.8) and (3.2) for long cohesive zones. Results are shown for selected values of α, with β = 0 and β = α/ 4 . In general, the

pull-off stress increases with decreasing D c /δc . For small values of D c /δc , that is for D c /δc < 10 , the pull-off stress attains the
Fig. 5. Debond strength σF /σc as a function of pillar diameter D c /δc for selected values of α, with (a) β = 0 and (b) β = α/ 4 . Free sliding is allowed in the 

cohesive zone. The dotted line in part (a) refers to the analytic model as given by Eq. (4.4) and Eq. (4.23) , upon taking δ(R ) = δc . 
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Fig. 6. Debond strength σF /σc as a function of the pillar diameter D c /δc for selected values of α, with (a) β = 0 and (b) β = α/ 4 . No sliding is allowed in 

the cohesive zone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

limiting value σF → σc . In contrast, for larger values of D c /δc , the pull-off stress decreases with an increase in the normalized

diameter. For a given value of D c /δc , the pull-off stress decreases with increasing α. 

The case α = −0 . 99 : Let us focus on the case α = −0 . 99 (i.e. the substrate material 2 is much stiffer than the pillar

material 1). Consider the regime where the remote axial failure stress attains the limiting value σF → σc and the cohesive

zone length � approaches D/ 2 in Fig. 4 . We can gain some insight into this limiting case as follows. Note that the stress

state within an elastic, frictionless pillar on a rigid substrate with � = D/ 2 is identical to that in a pillar under uniform

uniaxial tension. In fact, this same solution exists for all values of crack mouth displacement δ provided the crack opening

displacement is uniform over the crack face for a crack of length � = D/ 2 . 

The detachment of an elastic pillar from a rigid substrate ( α = −1 ) has been analysed previously by Tang et al. (2005) us-

ing a cohesive zone analysis, with sliding prevented within the cohesive zone. Contrary to our results of Fig. 5 , they find that

D c /δc vanishes as σF → σc . In order to confirm that the difference in responses is a consequence of the different boundary

conditions, we have performed additional simulations for Problems A and B, but now assuming no sliding of the crack faces.

The predictions are included in Fig. 6 : for α = −0 . 99 , we find that D c /δc vanishes for σF /σc → 1 , in agreement with the

findings of Tang et al. (2005) . It is clear that the pull-off stress is somewhat sensitive to the choice of stick/slip boundary

condition at small D c /δc . 

The case α = 1 and � << D : An analytical solution relating the interfacial adhesion energy to the pull-off stress has been

given by Kendall (1971) , when the pillar is rigid and frictionless , and the substrate is compliant ( α = 1 ). He noted that the

corner singularity in the substrate, adjacent to the edge of the punch, is the same as that for a mode I crack, regardless of

the presence or absence of a small corner defect ( � << D ), and the energy release rate reads 

G = 

π

16 

1 − ν2 
2 

E 2 
Dσ∞ 2 (3.9) 

Upon equating the energy release rate to the interfacial toughness G = G c = σc δc , (3.9) can be rearranged to the form 

δc E 
∗

σc D 

= 

π

8 

(
σ∞ 

σc 

)2 

. (3.10) 

Our results in Fig. 5 for the short crack limit of the frictionless pillar at α = 0 . 99 are in very close agreement with this

analytic solution for α = 1 : the curves coincide to within the thickness of the line, and consequently the comparison is not

given in Fig. 5 . 

4. Analytic solution for a rigid, frictionless axisymmetric pillar adhering to an elastic half space with Dugdale zone 

( α = 1 and finite �/D ) 

We proceed to extend the Kendall (1971) solution for the the detachment of a rigid , frictionless cylindrical flat-bottomed

pillar of radius R = D /2 adhered to an isotropic linear elastic half-space with Young’s modulus E and Poisson’s ratio ν . And,

we remove the restriction that � << D . Assume that a Dugdale cohesive zone, of strength σc and normal separation (i.e.

interaction distance) δ exists at the corner edge of the pillar. At low values of tensile load P applied to the pillar, a Dugdale

cohesive zone (of strength σc ) exists over the annulus a ≤ r ≤ R , all measured from the axis of the pillar, see Fig. 7 a. The

length of Dugdale zone is � = R − a and the opening profile of the cohesive zone increases from δ = 0 at r = a to δ(R ) ≤ δc .

With increasing load P , the Dugdale zone spreads as its inner radius a diminishes; and its separation increases until the

pull-off force P c is attained at δ(R ) = δc . We shall show below that detachment ensues under decreasing applied force P <

P c , such that the cohesive zone migrates over the annulus a ≤ r ≤ b where b < R , see Fig. 7 b. The annulus shrinks inwards

such that both a and b decrease in value (along with P ) as detachment proceeds. An analytical treatment is now developed

to quantify this behaviour. Detachment occurs in two phases as follows. 

Phase (i): initial stable detachment under increasing load such that the cohesive zone extends from r = a to r = b = R , with

δ(a ) = 0 and δ(R ) < δc , followed by 
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Fig. 7. (a) Phase (i) of detachment, and (b) phase (ii) of detachment, for a rigid, frictionless pillar. 

 

 

 

 

 

 

 

 

 

 

 

Phase (ii): unstable detachment under decreasing load, such that the cohesive zone extends from r = a to r = b < R , with

δ(a ) = 0 and δ(b) = δc . 

4.1. Fundamental solution 

In order to analyse each phase, we need the fundamental solution for a rigid, frictionless pillar subjected to an axial

tensile force P , adhered to a half-space over 0 ≤ r ≤ a , with a Dugdale cohesive zone of strength σc over the outer annulus

a ≤ r ≤ b. This solution is now given, and then applied to each phase of detachment. 

The stress intensity factor at radius a due to an applied load P (see Tada et al. (20 0 0) ) is 

K 

P 
I = 

P 
√ 

πa 

2 πa 2 
(4.1)

while the crack opening displacement caused by it ( Johnson (1985) ) is 

δP ( r ) = 

P 

πaE ′ arccos ( a/r ) (4.2)

where E ′ = E/ (1 − ν2 ) . The stress intensity factor at radius a due to the traction σc over the cohesive zone (see Tada et al.

(20 0 0) ) is 

K 

C 
I = − πσc 

( πa ) 
3 / 2 

(
b 2 arccos ( a/b ) + a 

√ 

b 2 − a 2 
)

(4.3)

Since the total stress intensity factor at radius a must be zero, we add Eqs. (4.1) and (4.3) and set the result to zero, to

give 

P 

2 b 2 σc 
= arccos ( a/b ) + ( a/b ) 

√ 

1 − ( a/b ) 
2 

(4.4)

The crack opening at r = b due to the applied load P as specified in (4.4) is 

πE ′ δP ( b ) 

2 bσc 
= ( b/a ) arccos 2 ( a/b ) + arccos ( a/b ) 

√ 

1 − ( a/b ) 
2 

(4.5)

It remains to determine the crack opening displacement at r = b due to the traction σc over the cohesive zone. We follow

the Bueckner/Rice weight function approach and first note that the potential energy for a system with two applied loads, F 
1 
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and F 2 , is given by 

� = −1 

2 

C 11 F 
2 

1 − C 12 F 1 F 2 − 1 

2 

C 22 F 
2 

2 (4.6) 

where C i j is the compliance matrix, such that 

u 1 = −∂�

∂F 1 
= C 11 F 1 + C 12 F 2 (4.7) 

is the coaxial displacement where F 1 is applied and 

u 2 = −∂�

∂F 2 
= C 12 F 1 + C 22 F 2 (4.8) 

is the coaxial displacement where F 2 is applied, where we bear in mind the fact that the pillar is rigid. (We shall later

assume that the forces F 1 and F 2 are point forces applied to the surface of the half-space at 2 locations within the cohesive

zone). 

For an axisymmetric ligament of radius a , the energy release rate is given by 

G = 

1 

2 πa 

∂�

∂a 
= − 1 

4 πa 

dC 11 

da 
F 2 

1 − 1 

2 πa 

dC 12 

da 
F 1 F 2 − 1 

4 πa 

dC 22 

da 
F 2 

2 (4.9) 

Due the Irwin relationship we find that 

G = 

1 

2 E ′ ( k 1 F 1 + k 2 F 2 ) 
2 

(4.10) 

where the factor of 2 in the denominator arises from the fact that the pillar is rigid, k 1 is the stress intensity factor due to

unit load applied at location 1, and k 2 is the stress intensity factor due to unit load applied at location 2. Upon matching

terms with common factors we find that 

dC 12 

da 
= −2 πak 1 k 2 

E ′ (4.11) 

where C 12 is the displacement at location 1 due to a unit load applied at location 2 and vice versa . From Tada et al. (20 0 0) we

find that 

k 1 = 

1 

( πa ) 
3 / 2 

(
arccos 

a 

r 
+ 

a √ 

r 2 − a 2 

)
(4.12) 

for a unit load applied at r on the crack surface and 

k 2 = 

1 

( πa ) 
3 / 2 

( 

arccos 
a 

r′ + 

a √ 

r′ 2 − a 2 

) 

(4.13) 

for a unit load applied on the crack surface at r′ . Thus 

dC 12 

da 
= − 2 

E ′ ( πa ) 
2 

(
arccos 

a 

r 
+ 

a √ 

r 2 − a 2 

)( 

arccos 
a 

r′ + 

a √ 

r′ 2 − a 2 

) 

(4.14) 

where C 12 is now the crack opening at r due to a unit load on the crack surface applied at r′ and vice versa . Now integrate

(4.14) , subject to C 12 being zero at the smaller of a = r and a = r′ since the crack opening at the crack tip is zero and a unit

load on the crack surface applied at the crack tip causes zero crack opening. Thus, 

C 12 = − 2 

π2 E ′ 
∫ a 

min ( r, r′ ) 
1 

a ′ 2 
( 

arccos 
a ′ 
r 

+ 

a ′ √ 

r 2 − a ′ 2 

) ( 

arccos 
a ′ 
r′ + 

a ′ √ 

r′ 2 − a ′ 2 

) 

da ′ (4.15) 

Consider cohesive tractions applied in the range a ≤ r′ ≤ b. It follows that the crack opening at r is 

δC ( r ) = − 4 σc 

πE ′ 
∫ b 

a 

r ′ 
∫ min ( r, r′ ) 

a 

1 

a ′ 2 
( 

arccos 
a ′ 
r 

+ 

a ′ √ 

r 2 − a ′ 2 

) ( 

arccos 
a ′ 
r ′ + 

a ′ √ 

r ′ 2 − a ′ 2 

) 

d a ′ d r′ (4.16) 

Interchanging the order of integration, we obtain 

δC ( r ) = − 4 σc 

πE ′ 
∫ r 

a 

1 

a ′ 2 
( 

arccos 
a ′ 
r 

+ 

a ′ √ 

r 2 − a ′ 2 

) ∫ b 

a ′ 

( 

r ′ arccos 
a ′ 
r ′ + 

r ′ a ′ √ 

r ′ 2 − a ′ 2 

) 

d r′ d a ′ (4.17) 
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And, upon integration, this becomes 

δC ( r ) = − 2 σc 

πE ′ 
∫ r 

a 

1 

a ′ 2 
( 

arccos 
a ′ 
r 

+ 

a ′ √ 

r 2 − a ′ 2 

) (
b 2 arccos 

a ′ 
b 

+ a ′ 
√ 

b 2 − a ′ 2 
)

da ′ (4.18)

Therefore, at r = b we have 

δC ( b ) = − 2 σc 

πE ′ 
∫ b 

a 

1 

a ′ 2 
( 

arccos 
a ′ 
b 

+ 

a ′ √ 

b 2 − a ′ 2 

) (
b 2 arccos 

a ′ 
b 

+ a ′ 
√ 

b 2 − a ′ 2 
)

da ′ (4.19)

which can be restated as 

πE ′ δC ( b ) 

2 σc b 
= −

∫ 1 

a/b 

1 

x 2 

(
arccos x + 

x √ 

1 − x 2 

)(
arccos x + x 

√ 

1 − x 2 
)

dx 

= 2 

(
a 

b 
− 1 

)
+ 

√ 

1 −
(

a 

b 

)2 

arccos 
a 

b 
− b 

a 
arccos 2 

a 

b 

(4.20)

The latter result is used by Maugis et al. (1976) . We now combine Eqs. (4.5) and (4.20) to obtain the total crack opening

at b as 

πE ′ δ( b ) 

4 bσc 
= 

(
a 

b 
− 1 

)
+ 

√ 

1 −
(

a 

b 

)2 

arccos 
a 

b 
(4.21)

Taken together, Eqs. (4.4) and (4.21) are a parameterized load versus deflection curve where the crack opening displace-

ment at b is the deflection, and the independent parameter is a/b . 

4.2. Application of solution to phase (i) of detachment 

Consider a rigid pillar of radius R = D/2 subjected to a sufficiently small load P that the cohesive zone over the annulus

r = a to r = b = R satisfies δ(R ) < δc . The load and displacement now read 

P 

2 R 

2 σc 
= arccos 

a 

R 

+ 

a 

R 

√ 

1 −
(

a 

R 

)2 

(4.22)

from (4.4) and 

πE ′ δ( R ) 

4 Rσc 
= 

(
a 

R 

− 1 

)
+ 

√ 

1 −
(

a 

R 

)2 

arccos 
a 

R 

(4.23)

from (4.21) . Subject to δ(R ) ≤ δc , these results are valid up to a load as given by Eq. (4.22) such that a/R satisfies (4.23) with

δ(R ) = δc . 

4.3. Application of solution to phase (ii) of detachment 

We proceed to obtain the solution for δ(R ) > δc . The cohesive zone now exists over the domain r = a to r = b < R , with

δ(a ) = 0 and δ(b) = δc . We return to Eq. (4.20) and set δ(b) = δc to obtain 

πE ′ δc 

4 σc 
= a − b + 

√ 

b 2 − a 2 arccos 
a 

b 
(4.24)

This gives a relationship between a and b , so that, implicitly, one can be eliminated in favour of the other and the result

inserted into Eq. (4.4) to determine the load as a function of the remaining variable. 

We now determine whether detachment is unstable under monotonically increasing load, P . To study this, we first ob-

serve that the left hand side of Eq. (4.24) is constant if the fibril is being detached and thus b is diminishing. As a conse-

quence, we deduce that during this process 

da 

db 
= 

b 

a 

[ 

1 − ( 1 − ( a/b ) ) 
√ 

1 − ( a/b ) 
2 

arccos ( a/b ) 

] 

(4.25)

Now evaluate d P/d b from (4.4) 

1 

4 bσc 

dP 

db 
= arccos ( a/b ) + 

a/b √ 

1 − ( a/b ) 
2 

− a 2 /b 2 √ 

1 − ( a/b ) 
2 

da 

db 
(4.26)
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We substitute Eq. (4.25) into this and obtain 

arccos ( a/b ) 

4 bσc 

dP 

db 
= arccos 2 ( a/b ) + ( a/b ) − ( a/b ) 

2 
(4.27) 

The right hand side of (4.27) is always positive, and the coefficient of the derivative on the left hand side is also positive.

Therefore d P/d b > 0 and when b diminishes so must P. Therefore detachment occurs under monotonically decreasing load

with the detachment force given by Eq. (4.4) subject to b = R , δ(R ) = δc and to satisfaction of Eq. (4.24) . 

We can obtain a plot of the pull-off force as a function of δc by cross-plotting Eq. (4.4) and Eq. (4.23) , upon taking

δ(R ) = δc . This plot has been added as a dotted line to Fig. 5 a to compare with the finite element prediction for an almost

rigid pillar ( α = 0 . 99 ); excellent agreement is noted. The length of cohesive zone � = R − a as a function of applied force

up to the point of detachment is likewise obtained by plotting Eq. (4.4) , upon taking b = R . Again, the agreement with

numerical simulations for α = 0 . 99 is excellent, see Fig. 4 a. 

5. Concluding discussion 

The present study highlights the significance of the corner singularity in promoting detachment at a pillar-substrate

interface. This is confirmed by experiments with artificial patterned surfaces, see for example Del Campo et al. (2007) .

Mushroom-shaped caps reduce the magnitude of the corner stress intensity H 1 and thereby inhibit detachment. This has

recently been analysed in some depth by Balijepalli et al. (2016) . 

The cohesion model of the present study highlights the significance of both detachment strength σc and adhesion energy

G c in the process of detachment. The detachment stress is dictated by either σc or G c as follows. Consider the two limiting

cases: 

Case (i) : For fibrils of sufficiently small diameter, such that σc 
2 D/E ∗G c << 3 , the cohesive zone spans the fibril, and the

axial strength for fibril detachment σF equals σc , recall the curves shown in Figs. 5 and 6 . 

Case (ii) : At σF / σc << 1, the cohesive zone is sufficiently short that it is embedded within the so-called H -field of the

corner singularity. Assume that, at the onset of detachment, a corner flaw of length c , and its cohesive zone of length

� are both embedded within the H -field. Recall that detachment is adhesion-energy-controlled when � << c and is

adhesion-strength-controlled when � << c. Also note that the level of singularity λ1 lies in the range of 0.5–0.6, de-

pending upon the values of (α, β) , see Fig. 3 of Khaderi et al. (2015) . We shall now show that the magnitude of H c 

for energy-controlled detachment almost equals that for strength-controlled detachment when λ1 = 1 / 2 . The crite-

rion (1.6) for energy-controlled detachment implies that H c scales with (E ∗G c ) 
1 / 2 

and is independent of flaw size c

and of cohesive strength σc . Likewise, for λ1 = 1 / 2 , the criterion (1.7) for strength-controlled detachment implies that

H c scales with (E ∗G c ) 
1 / 2 

, where G c = σc δc . Thus, the difference between the criteria for energy-controlled detachment

and for strength-controlled detachment is minor, and is dictated by the magnitude of (E ∗G c ) 
1 / 2 

on the interface, for

the case where the cohesive zone length is small compared to the pillar diameter at the onset of detachment. The

sensitivity of detachment strength to fibril diameter has been explored previously by Gao et al. (2005) in the context

of hierarchical structures in geckos, and the influence of their sizes on adhesion strength. 

The exception, in which the trend of increasing strength with diameter reduction is not followed, is that of a compliant

fibril on a rigid surface, i.e. when α = −0 . 99 , with friction-free cohesion, as can be seen in Fig. 5 . In this case the strength

rises as the fibril diameter reduces when the strength is low, but then the trend reverses and the asymptotic limit of full

cohesive strength is reached only by the diameter increasing again. It is perhaps easier to understand this phenomenon

through the fact that the trend is equally driven by the critical interaction distance δc increasing. The implication is that for

δc ≥ σc D/ (10 E ∗) we did not find a solution that enables the fibril to remain attached to the substrate until the separation at

its perimeter, δ(D/ 2) , reaches the critical interaction distance δc . That is, before δ(D/ 2) increases to the value δc , the whole

bottom surface of the fibril acquires a separation δ > 0 , and thus the traction applied to the fibril everywhere is equal to

σc . We deduce from this that, in a solution we did not find numerically, detachment occurs at σF = σc for the cases where

δc ≥ σc D/ (10 E ∗) . Furthermore, we note that, for σc D/ (E ∗δc ) ≥ 10 , there are 2 solutions for the detachment strength, one of

which is σF = σc and one of which is lower. The solution for which σF = σc is certainly the jump-into-contact condition that

occurs when the fibril is brought towards the rigid surface. Our solutions indicate that when the fibril is compliant and the

substrate is rigid, the lack of friction in the cohesive zone enables the jump-on behaviour also to be a detachment condition.

As noted above, sticking conditions in the cohesive zone precludes this behaviour, as is illustrated in Fig. 6 . 

It is also clear from the present study that the detachment strength for both energy-controlled and strength-controlled

detachment is increased by making the pillar from a more compliant material than that of substrate. This points to the use

of a compliant layer on the end of the pillar, but the significance of this modification to the pillar awaits a full analysis. Some

work on this has been carried out recently by Balijepalli et al. (2017) and Fischer et al. (2016) , but there the enhancement

of adhesion associated with a soft tip layer is attributed to the stress distribution induced by the constraint of the stiff stalk

on the compliant material. Our results in the present paper suggest that the high compliance of the tip material can have a

beneficial effect on adhesion in addition to any stress redistribution achieved. 

An interesting feature of our results is that when we consider a rigid fibril adhered to a compliant half-space (i.e α =
0 . 99 ) with friction-free conditions everywhere at the tip of the fibril, the strength predicted in this case is identical to that

computed for the case where the fully adhered region of the fibril tip is subject to sticking friction. It is known that the

strength in friction-free conditions is not always the same as that achieved when sticking friction prevails. A case in point is
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the compliant fibril on a rigid substrate (i.e. α = −0 . 99 ), where stress in the fibril is uniform in friction-free conditions and

thus detachment occurs always at σF = σc , in contrast to the results in Figs. 4 and 5 . However, the fact that the friction-free

and sticking friction cases have identical detachment strength when α = 0 . 99 suggests that there is a range of situations

in which the friction-free model can be used to gain insights into detachment strength more generally. This is a useful

inference as the friction-free case is often easier to analyse, and many of the standard fracture-mechanics results for cracks

can be utilised immediately to obtain relevant results. 
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