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1. Introduction

Magnons, or spin waves, are low-energy quasiparticle excita-
tions in spin-ordered systems. In contrast to conventional elec-
tronics, magnons may be used to create pure spin currents,
i.e., able to transport spin without an underlying charge current.
This makes them highly advantageous for future application in
spintronic technology, e.g., ultrafast information processing
and transmission.[1,2]

To reach this goal, we must first develop
methods by which we can statically and
dynamically manipulate magnons. Hence,
various manipulation channels are being
explored, e.g., 1) electric fields or magnetic
fields,[3,4] 2) cavity photons,[5] 3) femtosec-
ond laser pulses,[6] 4) altering the exchange
coupling between atoms,[7] and many
more. To understand and study such
approaches and discover new processes,
it is essential to accurately calculate mag-
non properties and in particular magnon
dynamics.

Typically magnons are studied using
semiclassical methods, such as the
Landau–Lifshitz–Gilbert (LLG) equation,
or the Heisenberg model. However, these
methods require various parameters to be
determined before they can be applied to
realistic systems. These are usually found

empirically or via, so-called, second-principles methods. In this
case, the parameters, e.g., the exchange couplings between
atomic sites, are deduced from ab-initio calculations and then
used in model Hamiltonians, e.g., the Heisenberg Ham-
iltonian solved via mean field methods[8,9] or combined with
the lattice LLG equations.[10] While such approaches often yield
good results and are relatively inexpensive computationally, it
would be preferable to use ab-initio methods to directly simulate
the magnons, in particular, in situations where the quantum
mechanical nature of the electrons is important.

So far, the ab-initio approach in this area is to calculate
the spin–spin linear-response function, either using many-body
perturbation theory[11–13] or, more commonly, linear-response
time-dependent density functional theory (LR-TDDFT).[14–18]

Extracting the excitation peaks from this response function along
a wavevector, q, path in the Brillouin zone (BZ) yields the mag-
non dispersion spectrum. This includes both the magnon fre-
quency and lifetime.

In this work, we go beyond LR-TDDFT to real-time time-
dependent density functional theory (RT-TDDFT) and calculate
the dynamics of several magnon modes in real time and in real
space. This allows us to easily visualize the precession of spin
moments localized on the individual atoms and their phases
relative to each other. In multisublattice magnetic materials,
it also allows us to determine which modes are coupled and
which are specific to each element. Furthermore, a real-time
approach is the only practical ab-initiomethod that can simulate
dynamical processes, such as spin-wave excitation via spin-
transfer torque (STT),[19,20] Terahertz magnetic fields,[21] the
inverse Faraday effect (IFE),[22,23] or magnon manipulation
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Magnonics—an emerging field of physics—is based on the collective excitations
of ordered spins called spin waves. These low-energy excitations carry pure spin
currents, paving the way for future technological devices working at low energies
and on ultrafast timescales. The traditional ab-initio approach to predict these
spin-wave energies is based on linear-response time-dependent density func-
tional theory (LR-TDDFT) in the momentum and frequency regime. Herein, the
simulation of magnon dynamics using real-time time-dependent density func-
tional theory is demonstrated, thus extending the domain of ab-initio magnonic
studies. Unlike LR-TDDFT, this enables us to observe atom-resolved dynamics of
individual magnon modes and, using a supercell approach, the dynamics of
several magnon modes can be observed simultaneously. The energies of these
magnon modes are concurrent with those found using LR-TDDFT. Next, the
complex dynamics of the superposition of magnon modes is studied, before
finally studying the element-resolved modes in multisublattice magnetic systems.
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via ultrafast laser pulses.[24–26] Thus, we extend RT-TDDFT to
calculate magnon dynamics in real time, resulting in a method
that is both predictive and that captures linear as well as non-
linear dynamics.

This article is arranged as follows: we begin by studying a
simple ferromagnet [face centered cubic (FCC) Fe] and discuss
the individual modes that may be excited in a 4-atom supercell.
This demonstrates the insight into magnon modes that can
be gained from their real-space real-time visualizations. With
this tool in hand, we then study the atom-resolved dynamics
in a multisublattice magnetic material (Co50Ni50) and explore
the coupled and decoupled modes. Finally, we go beyond ferro-
magnetic coupling and explore the magnon modes of a ferri-
magnetic system (Mn3Ga), where the magnetic moment on
one Mn atom is antiparallel to the other two Mn atoms in each
unit cell.

2. Methods

2.1. Magnons in RT-TDDFT

Time-dependent density functional theory (TDDFT)[27–30] is
an ab initio method for solving the dynamics of many-electron
systems. It does so via an exact mapping from the interacting
system to a noninteracting system, known as the Kohn–Sham
(KS) system, defined such that it yields the same density dynam-
ics. For noncollinear spin systems, TDDFT may be extended
such that both the exact charge density and magnetization den-
sity vector field dynamics are reproduced by the KS system. In
this case, the TDKS equation reads

i
∂ϕjðr, tÞ

∂t
¼

�
1
2

�
�i∇þ 1

c
AextðtÞ

�
2

þ vSðr, tÞ þ
1
2c

σ ⋅ BSðr, tÞ

þ 1
4c2

σ � ð∇vSðr, tÞ � �i∇Þ
�
ϕjðr, tÞ

(1)

where ϕjðr, tÞ are two-component Pauli spinor TDKS orbitals,
AextðtÞ is the external laser field, written as a purely time-
dependent vector potential, σ are Pauli matrices, vSðr, tÞ ¼
vextðrÞ þ vHðr, tÞ þ vXCðr, tÞ is the KS effective scalar potential,
and BSðr, tÞ ¼ Bextðr, tÞ þ BXCðr, tÞ is the KS effective magnetic
field. The external scalar potential, vextðrÞ, includes the electron–
nuclei interaction, whereas Bextðr, tÞ is an external magnetic
field which interacts with the electronic spins via the Zeeman
interaction. The Hartree potential, vHðr, tÞ is the classical electro-
static interaction. Finally, we have the XC potentials, the scalar
vXCðr, tÞ, and the XC magnetic field, BXCðr, tÞ, which require
approximation. In the adiabatic approximation, these may be cal-
culated using a DFT XC energy functional.

In LR-TDDFT, perturbation theory is used to derive the ana-
lytic response functions of the densities to small perturbations
of the external potentials. A Dyson-like equation relates the
response of the KS system to that of the interacting system.
Information regarding the frequency and lifetimes of excita-
tions can be extracted from these response functions.[9,11,15,31]

In particular, the magnon quasiparticle excitations can be found

from the interacting spin–spin response function, which relates
the change in transverse magnetization to applied magnetic
fields.

To simulate magnon modes using RT-TDDFT simulations, a
two-step procedure is followed. First, a supercell is constructed
such that it contains the magnon modes we wish to study.
This can be understood from the behavior of the transverse mag-
netic moments of a simplified magnon mode

mx,yðRα, tÞ � eiðq⋅Rα�ωtÞ (2)

where q is the wavevector of the magnon mode, Rα are atomic
positions, and ω is the magnon frequency. In a supercell, only
those modes where q is commensurate with the lattice vectors
Ri are included, i.e., only when q ⋅ Ri ¼ 2πn. For example, to
study the magnon mode with q ¼ X where X ¼ ð0, π=a, 0Þ is
the X point of the BZ of a cubic lattice, we construct a supercell
with lattice vectors R1 ¼ að1, 0, 0Þ, R2 ¼ að0, 2, 0Þ, and
R3 ¼ að0, 0, 1Þ. This can then be generalized for arbitrary unit
cells. In this article, we will work with FCC or similar lattices,
where X ¼ ð0, 0, 2π=aÞ. As we will see, one advantage the super-
cell approach has over other possible methods, such as utilizing
the time-dependent generalized Bloch theorem, is that several
modes can be studied together. When using the generalized
Bloch theorem, a q vector must be specified as input to the cal-
culation which constrains the magnetization density to spatially
oscillate with phase ϕp ¼ q ⋅ r, thus preventing other magnon
modes to exist. The supercell approach removes this restriction
on the spatial behavior of the magnon modes. However, the dis-
advantage is that low q modes require large supercells which
make them computationally demanding.

Once a suitable supercell is chosen, a ground-state DFT
calculation is first converged, with the spin oriented along the
z-axis, for example. We then add small perturbative transverse
(x and y) magnetic fields on each atom and perform a single
additional ground-state iteration. Alternatively, a ground-state
calculation with fixed transverse moments via constraining
magnetic fields could be used or more correctly a spatially vary-
ing magnetic field could be applied for a short time period.
These approaches would allow the z-component of the spin
to decrease, allowing nonlinear magnon affects to be studied.
The purpose of these applied magnetic fields is to mimic the
effect of an external perturbation that excites the magnon
modes and thus prepares the system in a state that includes
magnon excitations. By carefully choosing the amplitude and
direction of these applied fields, we can excite individual mag-
non modes exclusively.

This initial state is then propagated in time using Equation (1).
Nonlinear effects due to applied external fields, such as laser
pulses, can be included during these propagations. In this work,
we focus on the field-free magnon dynamics; however, interac-
tion with an applied pulse was studied by Singh et al.[26] From the
TDKS orbitals, we can calculate the time-varying magnetization
density and visualize the magnon in real space and real time. For
simplicity, the magnetization density is integrated in a sphere
centered on each atom to obtain time-varying atomic moments.
If we Fourier transform mxðtÞ and myðtÞ to find the power spec-
trum, we can recover the magnon frequency.
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2.2. Computational Details

The KS orbitals are time propagated[32] with a time step of 1.209
attoseconds using the ELK electronic structure code.[33] An
8� 8� 8 k-point grid is used, and the adiabatic local density app-
roximation (ALDA) functional is used to approximate the XC
potential. As in the study by Singh et al.,[34] among others,[11,14,15]

ALDA can overestimate magnon frequencies, especially in the
case of Ni. This is due to the overestimation of the exchange split-
ting in the ground state. The lattice constants used for construct-
ing the supercell for a) iron and Co50Ni50 are a¼ 7.2902 a.u.
(3.85Å) and c¼ 14.57 a.u. (7.71Å) and b) Mn3Ga are a¼ 7.13
a.u. (3.77Å) and c¼ 13.53 a.u. (7.16Å).[35] The length of Gþ k
vectors is set to 2.917 a.u., and the length of G vectors used for
expanding the interstitial density and potentials is 12 a.u. To reduce
computational costs, the typical propagation time is 50� 100 fs;
however, for low-energy modes this can be increased if required.
To easily visualize interatomicmagnonmodes, the time-dependent
magnetization density may be integrated within the muffin-tin
sphere centered on each atom to define an atomic moment.
The Fourier transform power spectrum of these time-dependent
atomic moments is then used to identify the magnon frequencies

jm�ðωÞj ¼
����
Z

e�iωtmðtÞf ðtÞdt
���� (3)

where f ðtÞ is a third-order polynomial damping function[36]

included to reduce high-frequency noise introduced by the finite
period of simulation. However, this function will also artificially
increase the width of any peaks if the simulation time is not suf-
ficiently long. The width of these peaks is related to the magnon
lifetime; thus, longer times are needed to accurately extract these
features. For more complex magnon modes, the Fourier trans-
form of magnetization density may be performed, and the spatial
form as a function of frequency may be examined. At higher
energies, the transverse oscillations of the Stoner excitations will
also be seen.

3. Results

3.1. Iron

We begin with the study of FCC Fe, where the unit cell is
extended along the c-axis to obtain a supercell consisting of four
atoms. We expect to see four independent modes as there are
4 q-vectors commensurate with this supercell. Below we excite
each mode individually by tailoring the initial perturbation.
The modes found in our simulations are shown in the cartoon
in Figure 1.

The arrangement of spin for all the four atoms after the initial
perturbation can be represented in the xy-plane using ", ! for
þy, þx and #, ← for �y, �x directions, respectively. As time
evolves, these spins will precess in the counterclockwise direc-
tion (note that in these simulations, the moment points in the
negative z-direction). We will now discuss each mode in more
detail.

3.1.1. Goldstone mode: " " " "

The initial state required to excite the Goldstone mode is all spins
pointing in the same direction; this corresponds to a wavevector
q ¼ Γ ¼ 0. This is created by perturbing each atom with the
same magnetic field. Propagating in time, we do not see any pre-
cession of the spins (Figure 2a) as these are excitations of zero
energy/frequency. This can also be seen from the Fourier trans-
form of y-moments in Figure 2b. The my of all the atoms stays
fixed to its initial value (0.044 μB) which is the moment induced
by the applied magnetic field. The Goldstone mode is simply a
tilting of the ground-state magnetization along a new direction,
this therefore costs no energy when the system has magnetic
isotropy. This mode can also be understood as a consequence
of Goldstone’s theorem which states that a zero-energy mode
must exist when a continuous symmetry is broken. For systems
with magnetic anisotropy, where the spins align in a preferential

Figure 1. The four modes (along with their projections in xy plane) which exist in a 4-atom supercell of FCC-iron. a) Goldstone mode, b) optical mode,
c) þQ ¼ ΓX=2, and d) �Q ¼ �ΓX=2.
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direction, this mode will no longer be a zero-energy mode, as
tilting of spins off the easy axis will cost a small amount of
energy. This may also be understood as a consequence of the
violation of Larmor’s theorem due to the combination of
spin–orbit coupling and the crystal field.[37,38]

3.1.2. Optical mode: " # " #

Next an initial state for studying the optical mode is prepared
by applying magnetic fields in alternating y and �y directions
on the neighboring atoms. The time propagation of orbitals is
performed and transverse moments as a function of time are
obtained, as shown in Figure 3a. Here the neighboring atoms
oscillate 180� out of phase with each other, but the first and third
atoms, and second and fourth atoms behave identically. The
wavevector for this excitation is q ¼ X, where X corresponds
to the zone boundary of the reciprocal cell of the FCC lattice.
As shown in Figure 3a, at each instant in time, mx and my of
each atom are 90� out of phase with each other, and they precess
counterclockwise in agreement with the simple picture of mag-
non oscillation of Equation (2). The frequency of this mode is
110meV, as can be obtained by performing a Fourier transform
of x or y moments, see Figure 3b. Also in Figure 3a, we can also
see modulation of the amplitude and frequency of the mode, this
is due to interaction with the Stoner continuum of spin-flip
excitations.

3.1.3. þQ ¼ ΓX/2 mode: " ! # ←

We label the wavevector of this mode þQ, which is equal to
half the vector connecting the Γ and X points of the BZ. In this
case, the neighboring atoms have a 90� phase with each other.
This implies that the y moment of the first atom and x moment
of the second atom will be in phase with each other during time
propagation, as shown in Figure 4a. These oscillations corre-
spond to a frequency of 76meV, as shown in Figure 4b. As
expected, this mode has a lower frequency compared with the
optical mode and less interaction with the Stoner continuum.

3.1.4. �Q ¼ �ΓX/2 mode: " ← # !

Finally, for FCC Fe, the dynamics of the �Q mode is shown in
Figure 5a. Similar to þQ mode, the neighboring atoms are now
�90� (or 270�) out of phase with each other. The þQ and �Q
modes are degenerate modes and oscillate with the same fre-
quency of 76meV (see Figure 5b). For systems with a strong
Dzyaloshinskii–Moriya interaction, the degeneracy of these two
modes would be lifted.

To summarize this first section, we have demonstrated for a
simple elemental ferromagnet that RT-TDDFT may be used to
calculate magnon dynamics. The four modes seen in our simu-
lations, and shown in Figure 1, behave as expected according to
Equation (2). Before moving to more sophisticated materials, we

Figure 2. a) Oscillations of the transverse moments for iron, in a 4-atom supercell, in the Goldstone mode. b) The Fourier transform of y moments.

Figure 3. a) Oscillations of the transverse moments for 4-atom iron in the optical mode and b) its Fourier transform.
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cross-check the frequencies found in our RT-TDDFT calculations
against those calculated using LR-TDDFT. By definition, RT-
TDDFT in the linear regime should agree with LR-TDDFT. In
Figure 6, we plot the magnon dispersion obtained with LR-
TDDFT along the ΓX direction along with those obtained using
RT-TDDFT, shown as the two black dots in Figure 6. As shown,
there is good agreement between the twomethods, validating our
real-time calculations. We often find that LR-TDDFT calculations
of magnon frequencies are difficult to converge due to the
numerical difficulty in capturing the pole structure of the
response function and the sum-over-states nature of the LR equa-
tions, hence the numerical noise shown in Figure 6.

Now with the machinery built to interpret the time-varying
moments in RT-TDDFT calculations, we can observe the
element-specific behavior in multimagnetic atomic systems.

3.2. CoNi

Amore complex magnetic material is Co50Ni50, which is a multi-
sublattice ferromagnet. In the ground state, the Co atom has a
magnetic moment of 1.87 μB, whereas the Ni atom is 0.71 μB. We
again construct a 4-atom supercell that allows the same wavevec-
tors q ¼ Γ, 1=2ΓX,X as previously studied (this is due to the L10
primitive cell simply being an extension of the FCC lattice).

In such a magnetic system, we expect exchange coupling
between the Co atoms, between the Ni atoms, and possibly
between the Co and Ni atoms. Such an interaction would lead

to coupled magnon modes; however, we do not know a priori
whether coupled or uncoupled modes exist in our system.
Therefore, we can perform RT-TDDFT for various initial states
and observe what modes are excited.

Figure 4. a) Oscillations of the transverse moments for a 4-atom iron supercell in the þQ mode and b) its Fourier transform.

Figure 5. a) Oscillations of the transverse moments for a 4-atom iron supercell in the �Q mode and b) its Fourier transform.

Figure 6. The magnon spectra of FCC Fe obtained from linear-response
TDDFT using the ALDA functional with the real-time results shown as
large black dots.
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The four initial states prepared for the spin system of
Co—Ni—Co—Ni (and their decomposition into the observed
modes) are

1) Pure Co mode

" ⋅ # ⋅

2) Pure Ni mode

⋅ ! ⋅ ←

3) All four modes

" ← ⋅ ⋅ ¼ ↖ ↖ ↖ ↖
þ ↗ ↙ ↗ ↙
þ " ⋅ # ⋅
þ ⋅ ← ⋅ !

4) Pure Co and pure Ni modes together

" ! # ←

The atomic moment dynamics for each of these initial states is
shown in Figure 7. The first observation is that we see both cou-
pled and uncoupled modes for the q vectors investigated. In par-
ticular, we found decoupled modes for q ¼ �1=2ΓX, where only

the Co atoms oscillate together, and another where only the Ni
atoms oscillate together. This is most clearly shown in Figure 7d,
which is the same initial configuration as the þQ case in iron. If
coupled modes existed for this wavevector, one would see the
same frequency oscillations in both Ni and Co moments; how-
ever, very different behavior of the two elements is observed. To
understand why we observe decoupled modes, we consider the
Heisenberg Hamiltonian. At wavevectors q ¼ �1=2ΓX, the
effective exchange fields acting on each atom from their nearest
neighbors of the other species cancel. This allows decoupled
element-specific modes to form.

We can excite these element-specific modes individually,
as was done for Co, as shown in Figure 7a, and for Ni, as shown
in Figure 7b. In both cases, the Co/Ni atoms show transverse
oscillations which are 180� out of phase with each other,
whereas the x and y moments on each atom are 90� out of
phase, as would be expected for magnon excitations. The inter-
action with the Stoner continuum is stronger for these than pre-
viously in Fe, as shown in the large deviations from simple
sinusoidal behavior. The frequency of the pure Ni mode
obtained by Fourier transform is 621 meV. This frequency is
�200meV higher in energy when compared with the same
mode in a 4-atom nickel supercell, implying that the presence
of Co has increased the beyond-nearest neighbor exchange
interactions. Similar behavior is observed for the Co atoms
as well.

Figure 7. Oscillation of the transverse (x, y) magnetic moments of the individual nickel and cobalt atoms in a 4-atom supercell of Co50Ni50 for different initial
states. These magnons correspond to momenta q¼ Γ, � 1

2ΓX, and X. Decoupled, element-specific magnon modes can be seen for a) cobalt and b) nickel.
Coupled modes can be seen in c) and d). All four modes are excited in (c). The pure cobalt and pure nickel modes are excited simultaneously in (d).
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All four modes can also be excited at once by choosing a par-
ticular initial state such that it overlaps with all modes. The
dynamics of this complex superposition of magnon modes is
shown in Figure 7c. Here, we may also see the Goldstone and
the optical modes. In multisublattice systems, the Goldstone
mode must preserve the ratio of the ground-state magnetic
moments. For Co50Ni50, it means that the magnitude of the
transverse moments on Co must be a factor of 2.6 greater than
that of Ni. The optical mode is shown in Figure 7c as a higher-
frequency mode on top of pure cobalt mode oscillations. For this
optical mode, the Co and Ni moments oscillate 180� out of phase
with each other at a frequency of 680meV. As this frequency is
close to the pure Ni mode, it is harder to distinguish in the Ni
oscillations in Figure 7c, but it can be resolved clearly if the
moments on both Ni atoms are summed together, i.e., cancelling
the pure Ni mode.

At thermal equilibrium, the occupations of these modes will
be given by the Bose–Einstein occupation weights. In this case,
as the Co modes are lower in energy, they will be more strongly
occupied than the pure Ni modes, leading to different dynamics
in the two magnetic sublattices. A similar situation was found[26]

in Fe50Ni50 which would explain the experimentally observed dif-
ference in demagnetization times between the two sublattices.[39]

3.3. Mn3Ga

Finally, we investigate the case of Mn3Ga, a ferrimagnet. In
the ground state, two Mn atoms, MnII and MnIII, are equivalent
and have a magnetic moment of 2.01 μB, whereas the other Mn

atom, MnI, is antiferromagnetically coupled with others and has
a moment of �2.46 μB.

For this system, we will investigate the magnon branches
at the Γ point; thus, only a single primitive cell is required.
Generally, the number of magnon branches is equal to the num-
ber of magnetic atoms in the primitive unit cell. For example,
this was observed in Co2MnSi by Buczek et al.[31] using the lin-
ear-response TDDFT simulations, where they observed three dif-
ferent modes. Hence, we expect three modes due to the three Mn
atoms, although very small oscillations on the Ga atom were
observed for one mode.

The first mode to discuss is again the Goldstone mode. As we
saw for Co50Ni50, for multisublattice systems, the Goldstone
mode must preserve the ratio of the ground-state moments.
For ferrimagnets, this ratio can be negative. In this case, the
transverse MnI moment must point in the opposite direction
to those on the MnII and MnIII atoms, where the summust equal
the net induced moment. To illustrate this point, say all Mn
atoms initially have an induced moment of 0.005 μB. The
Goldstone mode will distribute this moment such that the
MnII and MnIII atoms have 0.0192 μB each, whereas MnI will
have �0.0234 μB. This distribution preserves the ratio and sums
to the correct net moment. Thus, the moment on MnI in fact
reverses. However, this initial configuration must also excite
another mode which oscillates around these Goldstone mode
shifts.

This second mode is shown in Figure 8a,c for the dynamics
of the MnI atomic moments and the MnII and MnIII moments,
respectively. Similar to the previous optical modes, these two

Figure 8. Oscillation of the transverse (x, y) magnetic moments of the a,b) MnI atom and c,d) the MnII and MnIII atoms, for two initial states of Mn3Ga.
Parts (a,c) show the dynamics when all Mn atoms begin with the same magnetic moment in the y-direction, whereas in (b,d), the ferromagnetically
coupled Mn atoms start with opposite transverse moments.
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types of Mn atoms oscillate 180� out of phase with each other,
but significantly the amplitude of this mode is not the same on
all atoms. The amplitude on the MnII and MnIII atoms is half
that of the MnI atom, leading to a zero net moment, as expected.
The frequency of this mode is �70meV. The Goldstone shift
from an initially negative moment to the optical mode oscillat-
ing around a positive value is also shown for the my moment in
Figure 8a.

The final mode is less pronounced. It is shown in Figure 8b,d,
although the MnI dynamics, or lack thereof, is shown to empha-
size that this mode only involves the MnII and MnIII atoms. This
mode is similar to the Fe optical mode studied earlier where the
two ferromagnetically coupled atoms oscillate 180� out of phase
to each other. The striking feature of Figure 8d is how disrupted
this mode is, indicating strong Stoner damping. Despite this, the
signature of magnon oscillation, i.e., the phase differences
between the atomic x and y moments, can still be observed.
From this calculation, it is hard to assign a frequency to this
mode; however, it is in the region of 200meV. This mode likely
lies in the Stoner continuum and hence would be difficult to dis-
tinguish in a LR-TDDFT calculation.

4. Conclusions

We began by studying a simple ferromagnet (FCC Fe) and
observed the precession of the magnon modes that may be
excited in a 4-atom supercell. We also saw that these magnons
have q wavevectors commensurate with the supercell. The fre-
quency of the spin-wave oscillations was compared against LR-
TDDFT to validate the RT-TDDFT supercell approach. We then
studied the more complex magnon modes of a multisublattice
magnetic material (Co50Ni50) where we observed that in certain
cases, the Ni and Co atoms decoupled from each other, leading to
element-specific modes. We also demonstrated the case where a
superposition of several magnon modes can be studied alto-
gether. Finally, we explored the magnon dynamics of a ferrimag-
netic system (Mn3Ga), where the real-time approach revealed
how the amplitude of transverse oscillations varies from atom
to atom for a particular magnon mode. We also observed a
strongly damped ferromagnetic Mn mode, which would be dif-
ficult to resolve in a linear-response calculation. In all cases, visu-
alizing the magnon modes in real-time and real-space gave
important insights into their behavior.

The goal of this work is to lay the foundations of RT-TDDFT as
an ab-initio method for understanding and predicting magnon
dynamics in many-electron systems. Such an approach is
required to capture important quantum mechanical and nonlin-
ear effects. We plan to apply this method to study how magnons
behave in various dynamical situations, such as excitation of
magnons via the inverse Faraday effect (IFE) where the laser fre-
quency could be tuned for element-specific excitations, propaga-
tion of magnon wavepackets in materials, altering fundamental
magnonic properties using ultrafast laser pulses as was done in
the study by Singh et al.,[26] or excitation of spin waves by spin
current flowing across an interface. Furthermore, for finite sys-
tems such as magnetic clusters, the real-time magnon approach
can be used to visualize spin-flip excitations.
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