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Abstract. Since its invention, the calculus of variations has been a central
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problems in geometry, physics and partial differential equations. On the
one hand, steady progress is made on long-standing questions concerning
minimal surfaces, curvature flows and related objects. On the other hand, new
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witnessed the solutions of famous conjectures and the emerging of exciting
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Introduction by the Organisers

The workshop has been attended by 50 participants, 14 of which have completed
their PhD studies recently or were still completing them at the time of the work-
shop. The Calculus of Variations is at the same time a classical subject, with
long-standing open questions which have generated exciting discoveries in recent
decades, and a modern subject in which new types of questions arise, driven by
mathematical developments and by emergent applications. This edition of the
conference saw the recent solution of important famous conjectures and recorded
big progresses in areas which have been stuck for a long time.

The main themes of the workshop can be roughly divided into five groups:

• The theory of area-minimizing and minimal surfaces;
• Optimal transportation and applications;
• Geometric variational problems;
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• Variational problems from mathematical physics;
• Geometric flows.

The first group contains one highlight of the workshop: Simon Brendle’s talk on
his recent proof of the Lawson Conjecture, which characterizes the Clifford torus
as the unique minimal embedded torus in the standard S3. The proof hinges on
a virtuoso application of a technique, combining variable-doubling and a maxi-
mum principle argument, introduced by G. Huisken in the quite different setting
of distance-comparison theorems for the curve-shortening flow, and further devel-
oped by B. Andrews in recent work on non-collapsing in mean curvature flow.
The theory of minimal surfaces in Riemannian 3-manifolds was also the topic of
Theodora Bourni’s joint work with Baris Coskunuzer, where the authors study
the genus of area-minimizing surfaces in compact orientable 3-manifolds M with
a mean-convex smooth boundary ∂M . The main tool of this work is a suitable
bridge principle for absolutely minimizing surfaces.

As is well known, minimal surfaces are in general not regular, not even if they are
absolute minimizer. Geometric measure theory provides several objects to study
minimizers and critical points even in the presence of singularities. In his talk Bob
Hardt described a general theory of flat chains in metric spaces with coefficients
in general groups. The theory developed by Hardt in collaboration with DePauw
and Pfeffer unifies previous approaches by Brian White, Ambrosio and Kirchheim,
which extended the classical theory of Federer and Fleming. A fundamental re-
sult in the regularity for area minimizing currents is Almgren’s estimate of the
size of the singular set, originally a preprint of 1728 pages. The understanding
of Almgren’s theory is a long standing issue and Emanuele Spadaro reported on
the successful conclusion (jointly with Camillo De Lellis) of a program to reduce
and simplify Almgren’s proof, combining new methods in geometric measure the-
ory with some new insightful ideas. Two other talks were strongly linked to the
regularity theory of measure theoretic generalizations of minimal surfaces. The
one of Nicola Fusco described a sharp quantitative version of Almgren’s general
isoperimetric inequality. Any closed m-dimensional surface Σ in RN bounds a
generalized surface (more precisely an integer rectifiable current) with volume at

most C(n) [Volm(Σ)]
m+1

m . The optimal constant is achieved only by boundaries of
flat m + 1-dimensional disks. In a recent work with Verena Bögelein and Frank
Duzaar, Fusco has studied, in a quantitative form, how a small deviation from the
optimal constant forces the surface to be close to the boundary of a flat m + 1-
dimensional disk. A major tool in the regularity of minimal surfaces are excess
decay estimates and corresponding regularity results for n-dimensional integral
varifolds with generalized mean curvature in Lp. Ulrich Menne described in his
talk a series of results where this question is investigated for the critical power
p = n and the subcritical powers 1 ≤ p < n, generalizing previous fundamental
works by Allard and Brakke.

The Allen-Cahn equation has long been known to be strongly tied to the theory
of minimal surfaces. Manuel Del Pino described in his talk the existence of entire
solutions to the Allen-Cahn equation which are not one-dimensional and related
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results (joint work M. Kowalczyk, M. Musso, F. Pacard and J. Wei). The theorem
of Del Pino and collaborators gives a counterexample, in high dimension, to a
famous conjecture of De Giorgi.

Optimal transport is a rapidly-developing subfield of the calculus of variations
that touches on a huge number of other areas, including geometry, physics, func-
tional inequalities, applications in other areas such as economics, to name only
some. The workshop featured three talks on these topics. A recent breakthrough
in the regularity theory of the Monge-Ampère equation has been obtained by
Guido De Philippis and Alessio Figalli. In his talk Figalli reported on their recent
papers where they succeeded in proving Caffarelli’s classical W 2,p estimates with-
out any smallness assumption on the L∞ norm of the density, answering therefore
a long-standing question in the field. In a first paper De Philippis and Figalli
estimate the L logL norm of D2u. The tools of the paper were then used in one
joint work with Ovidiu Savin to achieve Lp estimates: the same result has been
proved independently by Thomas Schmidt, still relying on the first work by De
Philippis and Figalli.

Other work on the Monge-Ampere equation included new regularity results for
a class of optimal transportation problems arising in economics (by Young-Heon
Kim, reporting on a joint work with Alessio Figalli and Robert McCann), as well
as very recent work by Neil Trudinger in collaboration with Wei Zhang on Hessian
measures in Heisenberg groups. The work of Trudinger and Zhang also resolves
an outstanding problem for Heisenberg groups of dimension larger than two.

Geometric variational problems have provided the impetus for the development
of much of the deepest theory in the calculus of variations, and this theory is
continually being expanded, refined, clarified, while also finding new applications.
Two talks focused on recent developments in the theory of Willmore surfaces,
i.e. immersed surfaces Σ in Riemannian manifolds which are critical points of the
Willmore functional

∫

Σ |A|2 dvol. Mondino surveyed several results obtained in
collaboration with Kuwert, Rivière and Schygulla about the existence of Willmore
surfaces in Riemannian 3-manifolds and of surfaces minimizing more general cur-
vature functionals. The work of Kuwert, Mondino and Schygulla was described
more in detail in the conference of Kuwert. Kuwert also reported on a theorem of
Schygulla about the existence of minimizers of the Willmore energy in the class of
2-dimensional embedded surfaces in R3 having a fixed isoperimetric ratio.

A classical question in differential geometry concerns which smooth functions f
can arise as Gauss curvature of a conformal metric on a 2-dimensional Riemannian
manifold M . This amounts to solve a partial differential equation which is the
Euler-Lagrange equation of an energy functional. Michael Struwe described a
theorem with Franziska Borer and Luca Galimberti about the existence of a second
critical point when the functional admits a strong minimizer. In their work the
authors face the important difficulty that a Palais-Smale condition does not seem
to hold for the relevant energy functional.

Guido De Philippis and Aldo Pratelli reported on recent progress in the study
of variational problems involving eigenvalues of the Laplacian. In his talk Pratelli
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described the last available results and the most important open problems concern-
ing shape minimizers of spectral problems, i.e. about domains Ω which minimize
functionals of the eigenvalues of the Laplacian relative to suitable boundary con-
ditions. Most of the talk focused on regularity properties of the minimizers, which
were proved proved to exist by Buttazzo and Dal Maso in a suitable weak sense. In
particular two theorems by Bucur and by Pratelli and Mazzoleni show the bound-
edness of the minimizers under very general assumptions. De Philippis reported
on a joint work with Lorenzo Brasco and Bernardo Ruffini about the second eigen-
value of the Stekloff Laplacian. It is well known that the second eigenvalue of the
Stekloff Laplacian achieves its maximum when the domain is a ball and the au-
thors describe with a suitable inequality how much the domain is far from a ball
if the second eigenvalue is close to such maximum.

Physics is a perennial source of problems in the calculus of variations. Talks
this year on problem of physical origin were notably diverse, in terms of both the
mathematical content and the physical models considered.

Deep new existence results for variational problems coming from gauge theory
and high-energy physics have been proved recently using arguments developed over
the past 10-12 years in foundational work on geometric measure theory in general
metric spaces (see the talk of Tristan Rivière, joint work with Micea Petrache).
Recent progress has been made on micromagnetics and related issues such as the
Aviles-Giga functional through very thorough exploitation of entropy methods, as
described in the talk by Ignat Radu.

Filip Rindler described new lower semicontinuity results for integral function-
als connected to nonlinear elasticity which rely on new refinements, combining
rigidity arguments with iterated blow-up constructions, of classical Young mea-
sure arguments. Stefan Müller reported on a rigorous proof of conjectural scaling
laws for thin elastic films developing conical singularities (joint work with Heiner
Olbermann).

Curvature-driven flows were addressed in the talks of Jörg Enders, Robert Hasl-
hofer and Didier Smets. Enders described a joint work with Reto Müller and Peter
Topping about blow-up points of type I for the Ricci flow, i.e. points p where the
curvature tensor blows up at a rate C(T − t)−1. Using the curvature control stem-
ming from Perelman’s pseudolocality theorem they show that the rescaled Ricci
flow converges to a nontrivial soliton, thus answering positively a conjecture of
Hamilton. The novelty is that in the rescaling of Enders, Müller and Topping the
focal point is p itself and not some carefully chosen nearby point, as was custom-
ary in the previous literature. Haslhofer reported on a theorem obtained with Jeff
Cheeger and Aaron Naber about the stratification of the singular set in Brakke’s
mean curvature flow. Cheeger, Haslhofer and Naber recover previous results by
White and obtain new curvature estimates near the singular set exploiting a quan-
titative version of the usual strata subdivison in geometric measure theory.

Didier Smets described a new measure-theoretic approach to curves flowing by
binormal curvature. In a joint work with Robert Jerrard the authors prove a global
existence result, weak-strong uniqueness and some stability theorems for their
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generalized flow. Unlike the standard parametrized approach, which always yields
smooth solutions, the flow defined by Jerrard and Smets captures the singularities
which are motivated by the underlying physical models.
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Abstracts

The Lawson Conjecture

Simon Brendle

In 1966, Almgren [1] showed that any immersed minimal surface in S3 of genus 0
is totally geodesic, hence congruent to the equator. In 1970, Lawson [3] constructed
many examples of minimal surfaces in S3 of higher genus; he also constructed
numerous examples of immersed minimal tori. Motivated by these results, Lawson
[4] conjectured that any embedded minimal surface in S3 of genus 1 is congruent
to the Clifford torus.

In this talk, we describe our recent proof of Lawson’s conjecture (cf. [2]). The
key idea is to consider the quantity

κ = sup
x,y∈Σ

√
2

|〈ν(x), F (y)〉|
|A(x)| (1 − 〈F (x), F (y)〉) .

Here, F : T 2 → S3 is a minimal embedding of a two-dimensional torus into S3;
ν : T 2 → S3 denotes its Gauss map; and |A| denotes the norm of the second
fundamental form. Using the maximum principle and the Simons identity [5], we
show that κ ≤ 1. This is an intricate calculation which uses special identities and
inequalities which hold at the maximum point. On the other hand, we can perform
an asymptotic expansion of the expression

√
2

|〈ν(x), F (y)〉|
|A(x)| (1 − 〈F (x), F (y)〉)

for y → x. This shows that κ > 1 whenever the gradient of the function |A| is non-
zero somewhere. Since κ ≤ 1, it follows that |A| is constant and F is congruent to
the Clifford torus.
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A sharp quantitative isoperimetric inequality in higher codimension

Nicola Fusco

(joint work with Verena Bögelein, Frank Duzaar)

In a beautiful paper [1] published in 1986 Almgren proved in the context of cur-
rents the higher codimension counterpart of the classical isoperimetric inequality
established by De Giorgi in [6]. In the particular case of smooth (n−1)-dimensional
manifolds Γ ⊂ Rn+k without boundary, spanning an area minimizing smooth sur-
face M , his inequality states that

(1) Hn−1(Γ) ≥ Hn−1(∂D),

where D is an n-dimensional flat disk with the same area as M and Hn−1 denotes
the (n − 1)-dimensional surface measure. Moreover equality occurs if and only if
Γ is the boundary of a flat disk.

A natural question is the stability of inequality (1). For the classical isoperi-
metric inequality, this stability issue was raised by Bernstein and Bonnesen in
the particular case of planar convex sets [2, 4]. Later on the first results in higher
dimensions were established in [8] by Fuglede in the case of convex or nearly spher-
ical sets. His main result states that if E ⊂ Rn is a nearly spherical set in the
sense that

∂E =
{

(1 + u(x))x : x ∈ Sn−1
}

for some u : Sn−1 → R with small C1-norm, whose volume is equal to the volume
of the unit ball B ⊂ Rn and whose barycenter is at the origin, then

Hn−1(∂E)−Hn−1(∂B) ≥ c(n)‖u‖2W 1,2(Sn−1).

In particular, this inequality implies that the isoperimetric gap on the left-hand
side controls the square of the measure of the symmetric difference E∆B. The
extension of Fuglede’s result to general sets of finite perimeter was first obtained in
[9] (see also [10, 11] for a similar, but non optimal inequality). The result proved
in [9] states that there exists a constant C depending only on the dimension n
such that if E is a set of finite perimeter with |E| = |Br|, then
(2) D(E) ≥ C(n)α2(E).

Here, D(E) stands for the (normalized) isoperimetric gap

D(E) :=
Hn−1(∂E)− nωnr

n−1

rn−1
,

α(E) is the so-called Fraenkel asymmetry

α(E) := min
x

{ |E∆Br(x)|
rn

}

and ωn denotes the volume of the n-dimensional unit ball.
While the proof in [9] used mainly symmetrization arguments, in [7] a new

proof based on arguments from the theory of optimal mass transport appeared.
These arguments allowed an extension of (2) also to anisotropic perimeter func-
tionals. Moreover, recently Cicalese and Leonardi [5] gave a shorter proof of the
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quantitative isoperimetric inequality via a selection principle based on a suitable

penalization of the functional E 7→ D(E)
α2(E) and the use of the regularity theory for

minimal surfaces. Their approach has also inspired the proof of our main result,
stated below.

Some basic notation are needed in order to state Almgren’s inequality in the
proper current setting. Fix two integers n ≥ 2, k ≥ 0. We denote by Rn−1(R

n+k)
the space of locally rectifiable integer multiplicity (n − 1)-currents in Rn+k. As
usual, given a current T , its mass is denoted by M(T ) and ∂T stands for the
boundary current. Note that if T ∈ Rn−1(R

n+k) is a current with no boundary,
i.e. ∂T = 0, there exists a mass minimizing current Q(T ) ∈ Rn(R

n+k) with
boundary ∂Q(T ) = T . The mass of Q(T ) is denoted by m(T ), i.e

m(T ) := M(Q(T )) ≡ inf
P∈Rn(Rn+k),

∂P=T

M(P ).

In general mass minimizers are not unique.
Let us now denote by [[Dr]] the n-dimensional current associated to an n-

dimensional flat disk of radius r. Almgren’s isoperimetric inequality states that
given any current T ∈ Rn−1(R

n+k), if the disk Dr has the same mass of Q(T ),
that is ωnr

n = m(T ) = M(Q(T )), then

(3) M(T ) ≥ nωnr
n−1,

with equality holding if and only if T is the boundary of a flat disk.
In order to state the quantitative counterpart of the inequality (3), proved in

[3], we introduce the isoperimetric gap of a current T ∈ Rn−1(R
n+k) without

boundary, which is defined as

D(T ) :=
M(T )− nωnr

n−1

rn−1
,

where r is the radius of an n-dimensional flat disk Dr such that Hn(Dr) = m(T ),
the minimal area spanned by T . Thus, the isoperimetric gap of T is just the
difference between the two sides of inequality (3), normalized in such a way that the
resulting quantity is invariant with respect to translations, rotations and dilations.

Next, we observe that, given a flat disk Dr with r as before, the mass of the
minimal current spanned by T − ∂[[Dr]], i.e. m(T − ∂[[Dr]]), may be regarded as
a ‘natural’ measures of how close T and ∂[[Dr]] are. Of course, when taking an
arbitrary disk of radius r this distance can be very large. Therefore, in order to
measure the deviation of the surface from round spheres of radius r we shall take
the infimum over all such spheres. This quantity we call the asymmetry index of
T , and it is a measure for the deviation of T from being a round sphere. Hence,
for T ∈ Rn−1(R

n+k) with ∂T = 0 we define

d(T ) := inf
[[Dr]]

m(T − ∂[[Dr]])

rn
,

where now the infimum is taken over all flat n-dimensional disks [[Dr]] of radius r,
i.e. about those disks with mass equal to the minimal mass m(T ) spanned by T .
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Note that also d(T ) is invariant under translations, rotations and dilations. Now
we are in the position to state our result.

Theorem. Let n ≥ 2 and k ≥ 0. Then, there exists a constant C > 0 depending
only on n and k such that for any T ∈ Rn−1(R

n+k) with ∂T = 0 the sharp
quantitative isoperimetric inequality holds

D(T ) ≥ C d2(T ).
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[6] E. De Giorgi, Sulla proprietà isoperimetrica dell’ipersfera, nella classe degli insiemi aventi
frontiera orientata di misura finita. Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat.
Sez. I, 8:33–44, 1958.

[7] A. Figalli, F. Maggi and A. Pratelli, A mass transportation approach to quantitative isoperi-
metric inequalities. Invent. Math. 182(1):167–211, 2010.

[8] B. Fuglede, Stability in the isoperimetric problem for convex of nearly spherical domains in
Rn. Trans. Amer. Math. Soc., 314(2):619–638, 1989.

[9] N. Fusco, F. Maggi and A. Pratelli, The sharp quantitative isoperimetric inequality. Ann.
of Math. (2), 168(3):941–980, 2008.

[10] R. R. Hall, A quantitative isoperimetric inequality in n-dimensional space. J. Reine Angew.
Math., 428:161–176, 1992.

[11] R. R. Hall, W. K. Hayman and A. W. Weitsman, On asymmetry and capacity. J. d’Analyse
Math., 56:87–123, 1991.

Hölder continuity of optimal transport maps

Young-Heon Kim

(joint work with Alessio Figalli and Robert J. McCann)

Let Ω, Ω̄ be two open and bounded domains in an n-dimensional Riemannian
manifold M , equipped with the transportation cost c(x, x̄) = dist2(x, x̄)/2. This
choice of cost function is for simplicity of presentation and in fact, the following
discussion applies to a more general class of cost functions. We assume the distance
function dist is smooth on Ω× Ω̄, i.e. exp is invertible on Ω, Ω̄, or in other words,
Ω × Ω̄ is outside the cut locus. Consider two L∞ density functions ρ, ρ̄ that are
supported on Ω and Ω̄, respectively. We assume

∫

Ω
ρdx =

∫

Ω̄
ρ̄dx̄ = 1 as well as

λ0 ≤ ρ, ρ̄ ≤ 1
λ0

, for a fixed constant λ0 > 0, on Ω, Ω̄, respectively. A basic question
of optimal transportation is to understand the minimizer T , called optimal map,
of the functional F 7→ intMc(x, F (x))ρ(x)dx, among all maps F : Ω → Ω̄ with the
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condition that F pushes forward ρ to ρ̄, i.e. F#ρ = ρ̄ for the measures ρ = ρ(x)dx,
ρ̄ = ρ̄(x̄)dx̄. By the result of Brenier and McCann, we have the existence and
uniqueness of such optimal map T and this measurable map is given as

T (x) = expx∇φ(x) for a.e. x

where φ is a c-convex function given by

φ(·) = sup
x̄∈Ω̄

−c(·, x̄)− φ̄(x̄).

where, φ̄(·) = supx∈Ω−c(x, ·)−φ(x). The condition T#ρ = ρ̄ implies that φ solves
the following Monge-Ampère type equation a.e.,

| detDxDx̄c(x, T (x))|−1 det(D2
xxφ(x) +D2

xxc(x, T (x))) =
ρ(x)

ρ̄(T (x))
.

Define the c-subdifferetial

∂cφ(x) = {x̄ ∈ Ω̄ | φ(x) + φ̄(x̄) = −c(x, x̄)}
Then, the function φ solves a weak form of the aboveMonge-Ampère type equation,
namely, for a constant λ > 0,

λ|A| ≤ |∂cφ(A)| ≤ 1

λ
|A| for each Borel subset A ⊂ Ω,(1)

where |A| denotes the Lebesgue volume.
We address regularity of φ. First, it is crucial to modify c and φ in an ap-

propriate coordinate system. Namely, fix x̄0 ∈ Ω̄. Use expx̄0
: Tx̄0

→ M to give
parametrization x = x(q) = expx̄0

q, q ∈ Tx0
M . Now, let

c̃(q, x̄) = c(x(q), x̄)− c(x(x), x̄0),

φ̃(q) = φ(x(q)) + c(x(q), x̄0)

Note that φ̃ still satisfies (1), where c is replaced with c̃ and λ is replaced with
a different constant depending on λ and c. The usefulness of this modification
can be seen easily for c = |x − x̄|2/2 on Rn. Even though a c-convex function
φ(x) = supx̄ −|x− x̄|2 − φ̄(x̄) may not be convex, but its modification

φ̃(x) = supx̄ x · x̄ − φ̄(x̄) + c(x, x̄0) is convex. Such convexity of φ̃ will be very
useful, but unfortunately, it does not hold for a general Riemannian manifold.
This leads to the following crucial assumption, which is a geometric manifestation
of the so-called Ma, Trudinger and Wang’s curvature condition:

∀x̄0 ∈ Ω̄, ∀a ∈ R, the sub-level set {φ̃ ≤ a} ⊂ Tx̄0
M is convex.(2)

The Ma, Trudiner and Wang’s condition (MTW condition) is known to hold on
various spaces such as the round sphere and its products, quotients, and perturba-
tion, but it does not hold whenever there is a negative curvature point. Moreover,
there are positively curved domains that do not satisfy MTW conditon. (See ref-
erences in [1].) This condition is necessary for regularity of optimal maps, since
Loeper verified that if MTW condition is violated then there are smooth ρ and ρ̄
on nice domains Ω, Ω̄, but, with discontinuous optimal maps.
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Under MTW condition, we may exploit the sub-level set convexity of φ̃, to use
some tools from the classical Monge-Ampère equation in the Euclidean case. Still,
we have to overcome serious difficulties, caused by the nonlinearity of c̃ in the
general case.

By developing some technical tools, handling the nonlinearity, we could prove
the following result, which extends Caffarelli’s result in the Euclidean case to
domains with MTW condition (2):
Theorem 1 [Continuity and injectivity of T ] (see [1]). Assume (1) and
(2), moreover, that there exists open set Ω′ with Ω ⊂ Ω′ such that exp−1

x (Ω̄),
exp−1

x̄ (Ω′) are strongly convex for each x ∈ Ω′, x̄ ∈ Ω̄, respectively. (Here, note
that there is no geometric restriction of Ω inside Ω′.) Assume that φ satisfies
(1). Then, φ ∈ C1

loc(Ω) and is strictly c-convex, i.e. for each x̄ ∈ Ω̄, the set
{x ∈ Ω | φ(x) + φ̄(x̄) = −c(x, x̄)} is singleton. Thus, T ∈ C1

loc(Ω) and T is
injective on Ω.

Such continuity result of T was obtained by Figalli and Loeper in the two di-
mensional case (in fact using a result in [1]). In general dimensions, the continuity
and injectivity of T was obtained in a previous version of [1] (see [3]) under a

stronger condition, called nonnegative cross curvature condition, where φ̃ is con-
vex in q, not only sub-level-set convex. We remark that after posting our revision
[1], Jerome Vétois [4] communicated us his preprint showing the same result in
Theorem 1, based on our method in [3].

On the round sphere, or more generally on positively curved domains with a
strengthened MTW condition (called A3 in the original Ma, Trudinger and Wang’s
paper), Loeper obtained Hölder regularity of φ, and Liu showed that the sharp
Hölder exponent is 1

2n−1 . However, for more general case, especially allowing
zero sectional curvature, such Hölder regularity result was not known beyond Caf-
farelli’s result on the Euclidean domain. In the following theorem we extend his
result to general case, under the MTW condition.

Theorem 2 [Hölder continuity of T ](see [1]) Assume (1) and (2). Further

assume that φ is strictly c-convex. Then, φ ∈ C1,α
loc (Ω), i.e. T ∈ Cα

loc(Ω), for
0 < α = α(λ, n) < 1.

In fact, in [1], the Hölder continuity of T is stated under the same assumptions
on Ω, Ω̄, as in Theorem 1, but, one can check that the result can be stated
separately from such assumptions, once one has the strict c-convexity of φ as
assumed here (and proved in Theorem 1).

Let us describe the method of the proof of Theorem 2, along the way, describing
our key estimate. In the following we make the same assumptions as in Theorem 2.
Consider x ∈M where we want to show φ ∈ C1,α. Pick x̄0 ∈ ∂cφ(x). Perform the

modification to c̃ and φ̃ using Tx̄0
M . By strict c-convexity of φ, one sees that φ̃ has

a unique minimum at q0 = exp−1
x̄0
x0. Define the sections Sh = {q | φ̃(q)− φ̃(q0) ≤

h}. By the MTW condition (2), each Sh is convex. The geometry of Sh as h→ 0,
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controls the regularity of φ̃. Namely, the following statements are equivalent:

A. φ̃ ∈ C1,α at q0

B. ∃ 1/2 < k1 < k2 < 1, independent of h, with k1Sh ⊂ Sh/2 ⊂ k2Sh for h≪ 1.

Here, kSh is the dilation with respect to the center of maximal ellipsoid contained
in Sh. This useful equivalence was observed by Caffarelli, and later was used by
Guiterrez, Huang, Forzani and Maldonado among others, for regularity theory of
the (classical) Monge-Ampère equation.

A key tool for Theorem 2 can now be phrased as the following Alexandrov
type estimate, which we showed in [1] for c̃-convex functions, with nonaffine c̃,
extending the classical estimate in the affine case c̃ = −x · x̄:

Lemma 3 (see [1]) Assume Sh is sufficiently small (which can be achieved for
small h due to strict c-convexity of φ). For qt ∈ t∂Sh, if 0 < 1− t≪ 1, then

|φ̃(qt)− h| ≤ C(c, n, λ)(1 − t)2
1−n/nh.

For example, one can easily see using this estimate that for q ∈ Sh/2 ∩ t∂Sh,
it holds t < k2 < 1 for some constant k2, thus, Sh/2 ⊂ k2Sh, showing one of the
inclusions in the statement B. The other inclusion can also be obtained from a
more involved argument.

The above lemma can be used to show so-called the engulfing property of the
sections of φ (see [1]). Lemma 3 presented here is a combination of two Alexandrov
type estimates proved in [1], one of which uses a geometric result about supporting
hyperplanes to convex bodies proved in [2].
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Stability of optimal shapes for the Stekloff Laplacian

Guido De Philippis

(joint work with Lorenzo Brasco and Berardo Ruffini)

We are concerned with the following spectral optimization problem with volume
constraint

(1) max
{

σ2(Ω) : Ω ⊂ R
n |Ω| = |B1|

}

.

Here σ2(Ω) denotes the first non trivial Stekloff eigenvalue of the Laplacian, i.e.
{

−∆u = 0 in Ω

∂νu = σ2(Ω)u on ∂Ω,
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with u not identically constant. Notice that through the Rayleigh quotient, σ2 is
naturally associated with the best constant of a Poincaré type trace inequality:

σ2(Ω) = inf

{

∫

Ω |∇u|2
∫

∂Ω
u2

: u ∈W 1,2(Ω)

∫

∂Ω

u = 0

}

.

For more reference on the Stekloff Laplacian and on spectral optimization problems
we refer to [2, Section 4] and [5, 6].

Solution to (1) are provided by balls as it has been showed by Weinstock for
n = 2 ([7]) and by Brock in every dimension ([4]). The proof of this fact is based
on the following isoperimetric property of the ball:

(2) P2(Ω) ≥ P2(B1) ∀Ω : |Ω| = |B1|,
where

P2(Ω) :=

∫

∂Ω

|x|2.

The above isoperimetric type inequality has been proved by Betta, Brock, Mer-
caldo, Posteraro in [1] through a symmetrization technique.

We enforce (1) in a quantitative way, namely we prove that there exists a
positive (and computable) constant cn such that

(3) σ2(Ω) ≤ σ2
(

B)(1 − cnA2(Ω)
)

∀Ω : |Ω| = |B1|
where we have introduced the asymmetry of Ω

A(Ω) := min

{ |B∆Ω|
|B| B ball, |B| = |Ω|

}

.

To prove (3) we had to show a quantitative version of (2), that reads as

(4) P2(B1)
(

1 + c̃n|Ω∆B1|2
)

≤ P2(Ω) ∀Ω : |Ω| = |B1|.
In order to do this we give a simpler proof of (2) through calibrations which allows
to take care of all the reminders in order to obtain (4).

Showing that (3) is optimal, i.e. that there exists a sequence of sets Ωε con-
verging to B1 such that

σ2(Ωε)− σ2(B1) ≈ A2(Ωε),

requires some fine construction due to the fact the σ2(B1) is a multiple eigenvalue.
This kind of phenomenon has been first observed by Brasco and Pratelli for the
case of the Neumann Laplacian in [3].

References

[1] M. F. Betta, F. Brock, A. Mercaldo, M. R. Posteraro, A weighted isoperimetric inequality
and applications to symmetrization, J. of Inequal. & Appl., 4 (1999), 215–240.

[2] L. Brasco, G. De Philippis, B. Ruffini Spectral optimization for the Stekloff Lapla-
cian: the stability issue, accepted for publication on J. Funct. Anal. (2012), available at
http://cvgmt.sns.it/paper/1694/

[3] L. Brasco, A. Pratelli, Sharp stability of some spectral inequalities, accepted for publication
on Geom. Funct. Anal. (2011), available at http://cvgmt.sns.it/paper/1034/



Calculus of Variations 2221

[4] F. Brock, An isoperimetric inequality for eigenvalues of the Stekloff problem, ZAMM Z.
Angew. Math. Mech., 81 (2001), 69-71.

[5] G. Buttazzo, Spectral optimization problems, Rev. Mat. Complut., 24 (2011), 277–322.
[6] A. Henrot, Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathemat-
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Regularity of area-minimizing integer rectifiable currents in higher
codimension

Emanuele Spadaro

(joint work with Camillo De Lellis)

In this talk I discuss the main steps of a new proof of the partial regularity of
area-minimizing integer rectifiable currents in the Euclidean space as proven in
Almgren’s big regularity paper [1].

Theorem 1. Let T be an integer rectifiable area-minimizing m-dimensional cur-
rent in Rm+n. Then, there exists a (possibly empty) closed set Sing(T ) with Haus-
dorff dimension at most m − 2 such that supp(T ) \ (Sing(T ) ∪ supp(∂T )) is an
analytical m-dimensional submanifold of Rm+n.

The estimate on the singular set is optimal. Indeed, by a classical result due
to Wirtinger and Federer, every complex variety induces by integration an area-
minimizing integer rectifiable current, which can have a singular set of branch
points of dimension m − 2: for example, the origin in the complex curve V =
{(z, w) ∈ C2 : z2 = w3}.

The understanding of possible branch points is the main novelty with respect
to the regularity of minimizing hypersurfaces. Due to the problem of varying mul-
tiplicities, Allard’s regularity result does not apply and no decay of the excess
holds true. Nevertheless, a direct blow-up analysis is possible, reducing the prob-
lem to the regularity of multiple valued (unavoidable because of branch points!)
“harmonic” functions, in this context called Dirichlet minimizing.

Several problems of geometric and analytical nature need to be faced in this
blow-up analysis. In our works we give new solutions for most of them, consider-
ably simplifying the original arguments by Almgren. The following are the main
steps.

1. Center manifold. Differently from the case of hypersurfaces, in higher codi-
mension the singularities can appear as “higher order perturbations” of a smooth
surface. For example, for the complex curve W = {(z, w) ∈ C2 : (z − w2)2 = w5}
any reasonable blow-up would converge to a smooth surface, e.g. the smooth com-
plex curve W∞ = {z = w2} counted with multiplicity 2, and the singularity at the

origin is due to the higher order branching ±w 5
2 . For this reason a fundamental

step in the proof is the construction of an averaging manifold (in this case W∞

itself) which is sufficiently regular (in general only C3,α) and represents the regular
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part on which the minimizing current branchs (in the case above, the branching

is given by w 7→ ±w 5
2 ). This submanifold M is called center manifold and is con-

structed by a suitable approximation of the minimizing current on scales which
are prescribed by a Whitney-type decomposition.

2. Normal approximation. The current T can be approximated by the graph
of a multiple valued function defined on the center manifold and taking values in
the normal bundle:

N : M → AQ(NM).

A fundamental feature of the approximation N is that all the errors made with
respect to the original current (in particular the estimates on the average of the Q
values of N) are superlinear in the excess. This result, as well as the construction
of the center manifold, is possible thanks to a Lp-gradient estimate on the excess
density of a minimizing current which is proven in [3].

3. Flat tangent cones. In the blow-up analysis around singular points, it
is necessary to ensure the convergence to a multiple valued function defined on
a flat space. Using Almgren’s stratification theorem together with an induction
argument on the dimension m of the current and the number Q of the covering, it
is possible to guarantee the existence of a common subsequence of radii for which
there exists convergence to a flat tangent cone and the measure of the singular set
is preserved positive.

4. Tilting of tangent cones. In general, it is not possible to construct a
unique center manifold approximating the average of the current’s sheets up to
the singular point. This is due to the Whitney-type decomposition at the base
of the construction and is connected to the lack of knowledge on the uniqueness
of tangent cones (one of the major problems in the field), which can in principle
tilt on different scales. For this reason, we introduce a stopping condition for
the center manifold to be a good approximation and construct a family of center
manifolds {Ml}l∈N and normal approximation {Nl}l∈N defined on annulii, {(θ, r) :
sl ≤ r ≤ tl} in polar coordinates.

5. Finite order of contact. The blow-up analysis in now performed on rescaling
of the normal approximations Nl. From the analytical point of view, it is essential
to exclude that Nl has an infinite order of contact with Ml, because this would
imply the converge to 0 and the loss of the singular set. To this aim, for what
concerns the single approximationNl, we show a frequency function-type estimate.
Setting,

INl
(r) :=

∫

Ml
φ
(

d(p,q)
r

)

|∇Nl|2(p) dHm(p)

−
∫

Ml
φ′

(

d(p,q)
r

)

|Nl|2(p)
d(p,q) dHm(p)

we indeed prove that

(1) INl
(r) ≤ C(1 + INl

(tl)) ∀ sl ≤ r ≤ tl,

where φ is a suitable Lipschitz cut-off function and C > 0 a constant. It is simple
to see that (1) implies a bound on the order of contact of Nl with Ml.
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6. Splitting before tilting. On the other hand, it is necessary to bound the
frequency INl

(tl) on the different approximations Nl. To this regard, we show

(2) lim sup
l→+∞

INl
(tl) < +∞,

thus concluding the analysis on the order of contact of the normal approximations.
The proof of (2) is done showing a property of “splitting before tilting” first proved
by Rivière [6] for 2-dimensional pseudeholomorphic cycles: before the tangent
plane can tilt (thus inducing a change of center manifold in our context), the
current has to splitt, controlling the L2-norm of the approximation from below by
the energy, i.e. (2).

7. Persistence of singularities. Thanks to the previous steps, suitable rescal-
ings of the normal approximations converge to a nontrivial Dir-minimizing multiple
valued functions. In principle, there is no reason to argue that the normal approx-
imations Nl retain the singularities of the minimizing current. Nevertheless, a
capacitary argument is used to prove that, under the hypothesis that the singular
set has positiveHm−2+α measure, a subset of positive measure of singular points is
preserved in the limit function, thus contradiction the regularity of Dir-minimizing
Q-valued functions (see our previous paper [2] for a proof).

Detailed statements and proofs of the above results will be presented in [3, 4, 5].
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Families of Chains and Cochains on a Metric Space

Robert Hardt

(joint work with Thierry De Pauw and Washek Pfeffer)

To handle a higher dimensional least mass Plateau problem, H. Federer and W.
Fleming in 1960 [4] introduced integer-multiplicity rectifiable currents and proved
important closure and compactness properties. Flat chains having coefficients in
a finite group G were also studied by W. Fleming in [5]. This allowed for the
modeling of nonorientable least-area surfaces including a minimal Mobius band
in 3-space. These properties were optimally extended by Brian White [7] to any
complete normed abelian group which contains no nonconstant Lipschitz curves.
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The new proofs of basic theorems from Geometric Measure Theory involved slicing
to reduce to questions about 0 dimensional chains (which are finite or countable
sums of weighted point masses). Independently L. Ambrosio and B. Kirchheim [1]
also generalized some basic rectifiability theorems of Federer and Fleming to cur-
rents in a general metric space. The work [2] with T. De Pauw shares features and
results with all these works, includes new definitions of a flat G chains in a metric
space, and a proof that such a chain is determined by its 0 dimensional slices. An
m dimensional rectifiable chain is the Lipschitz push-forward of a region in Rm

equipped with a measurable G-valued density. Flat chains are then obtained by
completion using a certain Whitney flat norm [6] on polyhedral or Lipschitz chain
approximations. Numerous basic results of geometric measure theory for these
chains are derived including the rectifiability of finite mass flat chains provided
that G contains no nonconstant Lipschitz curves. We also discuss another current
work [3] with De Pauw and Pfeffer. Here we first establish a “normal chains” com-
pactness theorem for flat G chains in a compact metric space that have bounded
masses and bounded boundary masses. One readily obtains solutions to a fixed
boundary Plateau problem. One may also minimize mass in a fixed homology
class provided the space enjoys some fixed growth estimate on an isoperimetric
ratio. For the case G = R, we also study dual cochains, called “charges”, that are
topologized variationally and that give a geometric cohomology. In case of com-
pact spaces satisfy a linear isoperimetric inequality, we obtain a continuous duality
between the (possibly infinite dimensional) homology of normal chains and coho-
mology of charges. There are potentially interesting applications with the ambient
metric space being a singular variety or a fractal or a metric limit of Riemannian
manifolds.
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Static and dynamic issues for the Allen Cahn equation

Manuel del Pino

(joint work with M. Kowalczyk, M. Musso, F. Pacard and J. Wei)

We consider the problem of finding entire solutions to the Allen-Cahn equation

(1) ∆u+ (1 − u2)u = 0 in R
N .

E. De Giorgi [3] formulated in 1978 the following celebrated conjecture:

Let u be a bounded solution of equation (1) such that ∂xNu > 0. Then the level
sets [u = λ] are hyperplanes, at least for dimension N ≤ 8.

Equivalently, there exist p ∈ RN , ν ∈ RN , |ν| = 1 such that u has the form

u(x) = w(ν · (x− p))

where w(t) is the unique solution of

w′′ + (1− w2)w = 0, w(0) = 0, w(±∞) = ±1,

namely w(t) = tanh(t/
√
2). De Giorgi’s conjecture was proven in dimensions

N = 2 by Ghoussoub and Gui [8] and for N = 3 by Ambrosio and Cabré [1].
Savin [9] proved its validity for 4 ≤ N ≤ 8 under the additional assumption
limxN→±∞ u(x′, xN ) = ±1.

We discuss and infinite dimensional Lyapunov-Schmidt reduction method such
that for a given minimal surface Γ, embedded that separates the space into two
components, a solution whose zero level set is close to ε−1Γ exists. More precisely
we want uε(x) = w(z)+o(1) for x = y+zν(εy), y ∈ ε−1Γ where ν is a normal vec-
tor field on Γ. We discuss the result in [4] that such a solution exists if Γ is chosen
to be a non-flat minimal entire graph in dimension N = 9, as found by Bombieri,
de Giorgi and Giusti [2]. This solution turns out to be a ”counterexample” to De
Giorgi’s statement for dimensions 9 and higher. We discuss extensions of this con-
struction to general embedded, curvature finite total curvature minimal surfaces in
R3, finding similar results under nondegeneracy, in particular an axially symmetric
solution associated to a large dilation of the catenoid, and a solution whose zero
level set is close to a large dilation of the Costa-Hoffmann-Meeks minimal surface
[5]. We can also deal with the case of a zero set being exactly a helicoid when one
looks for solutions invariant under screw-motion [7]. These ideas also apply to dis-
prove a known conjecture on semilinear overdetermined problems, and to finding
small-speed travelling front solutions to the parabolic Allen Cahn equation,

(2) ut = ∆u+ (1 − u2)u in (−∞,∞)× R
N .

whose zero set lies close to a self-translating, largely dilated axially symmetric
graphical solution of the mean curvature flow [6].
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Sobolev regularity for the Monge-Ampère equation with applications

Alessio Figalli

The Monge-Ampr̀e equation arises in connections with several problems from
geometry and analysis (regularity for optimal transport maps, the Minkowski prob-
lem, the affine sphere problem, etc.) The regularity theory for this equation has
been widely studied. In particular, Caffarelli developed in [3, 5, 4] a regularity
theory for Alexandrov/viscosity solutions, showing that convex solutions of

(1)

{

det(D2u) = f in Ω,
u = 0 on ∂Ω

are locally C1,α provided 0 < λ ≤ f ≤ Λ for some λ,Λ ∈ R. Moreover, for any
p > 1 there exists δ > 0 such that u ∈W 2,p

loc (Ω) provided |f − 1| ≤ δ.
Then, few years later, Wang [9] showed that for any p > 1 there exists a function

f satisfying 0 < λ ≤ f ≤ Λ such that u 6∈ W 2,p
loc (Ω). This counterexample shows

that the results of Caffarelli were more or less optimal. However, an important
question which remained open was whether solutions of (1) with 0 < λ ≤ f ≤ Λ

could be at least W 2,1
loc , or even W

2,1+ǫ
loc for some ǫ = ǫ(n, λ,Λ) > 0.

The reason for being interested in this W 2,1 regularity comes from the semi-
geostrophic equations: The semigeostrophic equations are a simple model used in
meteorology to describe large scale atmospheric flows, and they can be derived
from the 3-d incompressible Euler equations, with Boussinesq and hydrostatic ap-
proximations, subject to a strong Coriolis force. It has been clear for several years
that W 2,1 estimates for the Monge-Ampère would have been a key tool to obtain
global existence of distributional solutions to these equations.
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Recently, we proved in [6] that this Sobolev regularity holds: indeed, not only

solutions are W 2,1
loc , but actually for any k > 0
∫

Ω′

|D2u| logk(2 + |D2u|) <∞ ∀Ω′ ⊂⊂ Ω.

The proof of this result strongly exploits the affine invariance of Monge-Ampère,

and can actually be pushed forward to show that solutions are W 2,1+δ
loc for some

δ > 0 [7, 8].
As an application of this result, in [1] and [2] we prove existence of distributional

solutions to the semigeostrophic equations on the 2-dimensional torus and on R
3,

respectively, under some suitable assumptions on the initial data.
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The Willmore and other Lp-curvature functionals in Riemannian
manifolds

Andrea Mondino

An important problem in Geometric Analysis concerning the intrinsic geometry of
manifolds sounds roughly as follows: given an n-dimensional smooth manifold find
the “best metrics” on it, where with “best metric” we mean a metric whose cur-
vature tensors satisfy special conditions (for example some traces of the Riemann
curvature tensor are null or constant or prescribed, or minimize some functional;
think of the Yamabe Problem, the Uniformization Theorem, etc. ).

The analogous problem concerning the extrinsic geometry of surfaces sounds
roughly as follows: given an abstract 2-dimensional surface Σ (we will always con-
sider Σ closed: compact and without boundary) and a Riemannian n-dimensional
manifold (Mn, h), find the “best immersions” f : Σ →֒ Mn of Σ into Mn.
Here with “best immersion” we mean an immersion whose curvature, i.e. second
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fundamental form, satisfies special conditions: for example if the second funda-
mental form is null the immersion is totally geodesic, if the mean curvature is null
the immersion is minimal, if the trace-free second fundamental form is null the
immersion is totally umbilical, etc.

Before proceeding let us introduce some notation. Given an immersion f : Σ →֒
(Mn, h) let us denote by g = f∗h the pull back metric on Σ (i.e. the metric on
Σ induced by the immersion f); the area form

√
det g is denoted with dµg; the

second fundamental form is denoted with A and half of its trace H := 1
2g

ijAij is
called mean curvature (notice that we use the convention that, in the codimension
one case, the mean curvature is the arithmetic mean of the principal curvatures),
finally A◦ := A−Hg is called trace-free second fundamental form.

As explained above, classically the “best immersions” are the ones for which the
quantities A,H,A◦ are null or constant (i.e. parallel) but in many cases such im-
mersions do not exist: for example if Σ is a closed surface and (M,h) = (R3, eucl)
is the Euclidean three dimensional space, by maximum principle there exist no
minimal, and in particular totally geodesic, immersion of Σ into (R3, eucl); more-
over if the ambient manifold is the Heisenberg group or a non constant curvature
Berger sphere then there exists no totally umbilic-and a fortiori totally geodesic-
immersion.

If such classical special submanifolds do not exist it is interesting to study the
minimization of natural integral functionals associated to A,H,A◦ of the type

∫

Σ

|A|pdµg,

∫

Σ

|H |pdµg,

∫

Σ

|A◦|pdµg, for some p ≥ 1.

A global minimizer, if it exists, can be seen respectively as a generalized totally
geodesic, minimal, or totally umbilic immersion in a natural integral sense. For
some recent results regarding the existence of minimizers of such functionals in
Riemannian manifolds (in the class of integral m-varifolds and in case p > m) see
[4] and the references therein.

An important particular case of such functionals is given by the Willmore func-
tional

W (f) :=

∫

Σ

H2dµg.

The topic is classical and goes back to the 1920-’30 when Blaschke and Thomsen,
looking for a conformally invariant theory which included the minimal surfaces,
discovered the functional and proved its invariance under Moebius transformations
of Rn. The functional relative to immersions in Rn, Sn and more generally in space
forms has been deeply studied with remarkable results (for a matter of space we
avoid the long citation of articles, let us just quote some authors: Bauer, Bérnard,
Chen, Kuwert, Y. Li, P. Li, Marques, Montiel, Neves, Rivière, Ros, Schätzle,
Schygulla, Simon, Weiner, Yau).

Let us recall that the Willmore functional has lots of applications: biology (Hell-
frich energy), general relativity (Hawking mass), string theory (Polyakov extrinsic
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action), elasticity theory and optics.

While, as we remarked, there is an extensive literature for immersions into Rn

or Sn, up to five years ago very little was known for general ambient manifolds
(apart from the case of minimal surfaces).
The first result regarding the existence of Willmore surfaces in non constantly
curved spaces is in [2] where we studied the Willmore functional in a perturbative
setting: endowed R3 with the perturbed metric δµν + ǫhµν (where δµν is the Eu-
clidean metric), under generic conditions on the scalar curvature of (R3, δµν+ǫhµν)
and a fast decreasing assumption at infinity on the perturbation hµν we proved
existence and multiplicity of embeddings of S2 which are critical points for the
functional

∫

H2dµg. The method was perturbative and the proof relied on a
Lyapunov-Schmidt reduction. Using a similar technique, in [3] we studied the
conformal Willmore functional 1

2

∫

|A◦|2dµg, which is conformally invariant in Rie-

mannian manifolds, in the same perturbative setting (R3, δµν+ǫhµν) under generic
conditions on the trace-free Ricci tensor Sµν := Ricµν − 1

3Rgµν .
The case of Willmore spheres under area constraint in a perturbative setting has
been analyzed by Lamm-Metzger and Schulze.

Then using more global techniques coming on one hand from geometric measure
theory (the so called “ambient approach” of Simon, involving mainly varifolds as
weak objects), and functional analysis on the other hand (the so called “parametric
approach” of Rivière involving Sobolev immersions) we investigated the existence
of Willmore spheres in Riemannian manifolds.

Adopting the first point of view, together with E. Kuwert and J. Schygulla
(see [1]) we proved the existence of a smooth immersion of S2 into a compact
Riemannian 3-manifold, with positive sectional curvature, minimizing the L2 norm
of the second fundamental form.

Using the same approach, in [7] together with Schygulla we extended the above
existence theorem to similar L2 curvature functionals (as

∫

|H |2+1 and
∫

|A|2+1)
on immersions of S2 in non compact Riemannian 3-manifolds satisfying asymptotic
conditions which are natural in general relativity (as asymptotically Euclidean or
Hyperbolic).

Since in higher codimension it is natural to expect existence of branched immer-
sions minimizing the Willmore functional (this follows a fortiori from the existence
of branched area minimizing surfaces ), together with Rivière in [5] we introduced
the notion of weak, possibly branched, immersion: a Lipschitz quasi-conformal
map having at most finitely many branched points and finite total curvature. In
the same paper we proved compactness results in this framework: in order to have
W 2,2-weak compactness away the branched points it is enough to have uniform
bounds on the areas and on the total curvatures and a uniform positive lower
bound on the diameter of the images (related compactness results have been ob-
tained independently by Chen-Li).
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In the second paper [6] in collaboration with Rivière, we proved the differentia-
bility of the Willmore functional on this space of weak immersions and we showed
the regularity of the critical points. We then applied the theory to get existence
of Willmore surfaces in homotopy groups (this result in particular shows how the
Willmore functional can be useful to complete the theory of minimal surfaces, in-
deed our result complete the classical result of Sacks-Uhlembeck regarding area
minimizing spheres in homotopy groups) and under other various conditions and
constraints.

Let us stress that the ambient approach of Simon uses in a crucial way that we
are dealing with a minimization problem; on the contrary, the regularity theory
developed by Rivière for immersions in Euclidean space, and in [5]-[6] for immer-
sions in manifolds uses just that the Willmore PDE is satisfied. It is therefore
more appropriate for attacking min-max problems in the future.
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On the flow of a curve by its binormal curvature

Didier Smets

(joint work with Robert L. Jerrard)

The binormal curvature flow equation for a smooth family (γt)t∈I of curves in R3

is traditionally written in terms of an arc-length parametrization γ : I ×R → R3

by

(1) ∂tγ = ∂sγ × ∂ssγ

where t ∈ I is the time variable, s ∈ R is the arc-length parameter, and × denotes
the vector product in R3. The arc-length parametrization condition

(2) |∂sγ(t, s)|2 = 1

is indeed compatible with equation (1), since

∂t
(

|∂sγ|2
)

= 2∂sγ · ∂stγ = 2∂sγ ·
(

∂sγ × ∂sssγ
)

= 0
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whenever (1) is satisfied, at least for sufficiently smooth solutions. In particular,
closed curves evolved by the binormal curvature flow equation (1) all have the same
length. In more geometric terms, equation (1) takes its name from its equivalent
form

∂tγ = κb

where κ and b are the curvature function and the binormal vector field along γt
respectively.

It seems that equation (1) first appeared in the 1906 Ph.D. thesis of L.S. Da
Rios [1], whose work was promoted in a series of lectures in 1931 in Paris by its
advisor T. Levi-Civita [6]. The problem considered by Da Rios and Levi-Civita
goes back to the celebrated 1858 paper of H. Helmholtz [2] on the motion of a
three dimensional incompressible fluid in rotation.

Formulation (1) for binormal curvature flows has at least two limitations which
we wish to address. First, by essence this formulation is tailored for parametrized
curves. In particular, and since it involves derivatives with respect to the param-
eters only, it is necessarily insensitive to self-intersections in the curves γt. This
property is surely unsatisfactory if one believes that such flows arise as limits from
three dimensional fluid dynamics. Instead, it would be desirable for a formulation
to be able to detect such self-intersections, as well as possible collisions between
elements of disconnected vortex filaments and changes of topology. Second, there
are presumably important configurations of curves which are too singular to be
considered under formulation (1). Indeed, invoking distributional derivatives on
can give a meaning to equation (1) in a variety of spaces, but those spaces just
fail to include the case of curves which are barely Lipschitz. On the other hand,
in numerical simulations of the Euler equation or the Gross-Pitaevskii equation
for quantum fluids, it is observed (see e.g. [4] and [5]) that vortex-filaments often
tend to recombine by exchanging strands in cases of collisions or self-intersections.
Those recombinations, when the intersections are transverse, inevitably create dis-
continuities of the tangent vector.

Our starting point in trying to address these two important limitations is the
following identity for smooth solutions of (1), which was remarked R. L. Jerrard
in [3] in a more general context.

Lemma 1 ([3]). If γ is a smooth solution of (1) on I × T 1, where I ⊂ R is
some open interval and T 1 = R/ℓZ for some ℓ > 0, then for every vector field
X ∈ D(R3,R3) and every t ∈ I

(3)
d

dt

∫

γt

X · τt dH1 = −
∫

γt

D (curlX) : (τt ⊗ τt) dH1,

where γt ≡ γ(t, ·) and τt is the oriented tangent vector along γt.

We next propose definitions for generalized and weak binormal curvature flows.
Generalized flows have common features with measured-valued solutions of Euler
equations. Weak binormal curvature flows are a restricted class of generalized flows
which will satisfy both the existence and the weak-strong uniqueness properties.
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Definition 1. A measurable family (Vt)t∈I of Radon measures on R
3×S2 is called

a generalized binormal curvature flow on I if for any X ∈ D(R3,R3) the function
t 7→ Vt(X · ξ) is Lipschitz on I and satisfies

(4)
d

dt

∫

X · ξ dVt = −
∫

D(curl(X)) : ξ ⊗ ξ dVt

for almost every t ∈ I.

The first moment of a Radon measure V on R
3 × S2 is the 1-current TV on R

3

defined by

TV : D(R3,R3) → R, X 7→
∫

X(x) · ξdV (x, ξ).

Definition 2. A continuous family (Tt)t∈I of integral 1-currents in R3 without
boundary is called a weak binormal curvature flow on I with initial datum T0 if
there exists a generalized binormal curvature flow (Vt)t∈I on I such that

(1) The first moment TVt of Vt coincides with Tt for every t ∈ I.
(2) The mass ‖Vt‖ satisfies ‖Vt‖ ≤ ‖T0‖ for every t ∈ I.

Our two main results are :

Theorem 1 (Global existence). For any integral 1-current in R3 without boundary
T0, there exist a weak binormal curvature flow (Tt)t∈R on R with initial datum T0.

and

Theorem 2 (Weak-strong uniqueness). Let ℓ > 0 and γ : I × (R/ℓZ) → R3

denote a smooth classical solution of the binormal curvature flow equation (1),
and assume that for any t ∈ I, the curve γt := γ(t, ·) is without self-intersection.
Then the weak binormal curvature flow (Tγ,t)t∈I induced by γ is the unique weak
binormal curvature flow on I with initial datum Tγ,0.

As a matter of fact, we deduce Theorem 2 from a stronger quantitative estimate.
To that purpose, consider a compact subset J ⊂ I containing 0 and set

r ≡ r(γ, J) :=
1

2
min
t∈J

min
(

‖∂ssγ(t, ·)‖−1
∞ , rs(t)

)

> 0,

where the security radius rs(t) is defined as the largest positive real number with
the property that every point x satisfying d(x, γt) < rs(t) has a unique closest
point Pt(x) on γt. Define then the vector field Xγ,r on R3 × J by

(5) Xγ,r(x, t) = f(d2(x, γt))τt(Pt(x))

where τt is the oriented unit tangent vector along γt and

f(d2) =

{
(

1−
(

d
r

)2)3
, for 0 ≤ d2 ≤ r2,

0, for d2 ≥ r2.
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Theorem 3 (Control of instability). Let T0 ∈ T and let (Tt)t∈J be a weak binormal
curvature flow on J with initial datum T0. Define the non-negative functions F an
G on J by

G(t) := ‖T0‖−
∫

Xγ,r(x, t)·ξdVt(x, ξ) ≥ F (t) :=

∫

(

1−Xγ,r(x, t)·ξ
)

dVt(x, ξ) ≥ 0.

Then G is Lipschitzian on J and
∣

∣

∣

∣

d

dt
G(t)

∣

∣

∣

∣

≤ KF (t) ≤ KG(t)

almost everywhere on J , where K ≡ K
(

r(γ, J), ‖∂sssγ‖L∞(J×T 1)

)

.
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Energy scaling for conical singularities in thin elastic sheets

Stefan Müller

(joint work with Heiner Olbermann)

1. Main result

Let B1 ⊂ R
2 denote the open unit disc and let γ : ∂B1 → R

3 be a C3 curve
with

(1) |γ| = |γ′| = 1 on ∂B1 ,

let

Vγ =
{

y ∈W 2,2(B1,R
3) : y|∂B1

= γ, y(0) = 0
}

and consider the functional

Eh(y) =

∫

B1

(

|∇yT∇y − Id|2 + h2|∇2y|2
)

dx .
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Theorem 1. Suppose that the curve γ does not lie in a plane. Then there exists
constants C2 and C3 which only depend on γ such that for sufficiently small h > 0

C1 ln
1

h
− 4C1 ln

(

ln
1

h

)

− C2 ≤ 1

h2
min
y∈Vγ

Eh(y) ≤ C1 ln
1

h
+ C3,

where

C1 = C1(γ) =
1

ln 2

∫

B1\B1/2

|∇2ỹ|2dx .

This improves work of Brandman, Kohn and Nguyen [1] who showed that
lim infh→0

1
h2 ln(1/h) minEh ≥ C1/2 and lim suph→0

1
h2 ln(1/h) minEh ≤ C1 and

very recently in parallel to our work that limh→0
1

h2 ln(1/h) minEh = C1.

2. Motivation

The functional Eh is a prototypical energy for the deformation of a thin elastic
sheet of thickness h. The map y is the deformation of the midplane of the sheet and
the first term reflects the stretching energy (per unit height) while the second term
reflects the bending energy. Condition (1) implies that the cone over γ defined by
the one-homogeneous extension

ỹ(x) := |x|γ( x|x| )

for x ∈ B1\{0} and y(0) = 0 is an isometric immersion of B1\{0}, i.e. (∇ỹ)T∇ỹ =
Id. Indeed, (1) is also necessary for ỹ to be an isometric immersion. In the physics
literature ỹ is referred to as a developable cone, or d-cone for short.

For small h we expect a minimizer y of Eh to be close to ỹ (except on scale h)
which leads to logarithmic divergence of Eh. Theorem 1 makes this precise on the
level of the energy. There are also estimates for y − ỹ, see Lemma 2 below.

Conical singularities and more generally energy concentration in elastic sheets
have recently been extensively discussed in the physics literature. Conical sin-
gularities arise e.g. in the following experiment. Put an elastic sheet of radius 1
concentrically on top of a hollow cylinder of radius R < 1 and push the sheet down
at its centre. It has been observed that the sheet assumes (to a high degree of
approximation) the shape of a developable cone and detaches from the boundary
of the cylinder on a segment with a well defined angle (of approximately 140 de-
grees). There are convincing explanations of these effects in the physics literature
[2, 3] but there is also some discussion about finer details, see e.g. the survey [5].

To make progress on rigorous mathematical results on the effect of the singular
perturbation by the bending energy Brandman, Kohn and Nguyen [1] suggested to
replace the specific problem with the special obstacle boundary condition by the
general Dirichlet boundary condition y|∂B1

= γ. They also introduced condition
(1) on the boundary curve. This condition is natural (since it is necessary and
sufficient for ỹ to be an isometric immersion), but it also plays a crucial role in the
proof of the lower bound, both in their and in our argument (see (4)). Indeed one
would expect that the minimal energy is even large if |γ| ≤ 1− δ, with δ > 0 but
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this is not known rigorously. See [4] for results and conjectures about compressed
elastic sheets.

3. Sketch of proof

For the upper bound it suffices to consider yh(x) = hφ( |x|h )γ( x
|x|) where φ ∈

C2(R) and φ(t) = t for t > 1 and φ(t) = 0 for t ≤ 1/2.
The proof of the lower bound is based on the following three lemmata. We fix

γ and may and will assume that

(2) Eh(y) ≤ C1
1

h2
ln

1

h
.

Lemma 1. supBh
|y| ≤ Ch ln 1

h .

Lemma 2. Assume that h ln 1
h ≤ r0 ≤ 1 and set Ar0 = Br0 \Br0/2. Then

∫

Ar0

|y − ỹ|2 dx ≤ Cr30h ln
1

h
.

Lemma 3. Assume that h ln 1
h ≤ r0 ≤ 1. Then

∣

∣

∣

∣

∣

∫

Ar0

∇2(y − ỹ) : ∇2ỹ dx

∣

∣

∣

∣

∣

≤ C
(r0
h

)1/8
(

ln
1

h

)1/2

.

Lemma 1 follows from the scale invariant estimate

sup
x∈Bh

∣

∣

∣

∣

y(x)− y(0)− x · 1

|Bh|

∫

Bh

∇y
∣

∣

∣

∣

≤ C‖∇2y‖L2(Bh) ,

the estimate
∣

∣

∣

∫

B1
∇y

∣

∣

∣
=

∣

∣

∣

∫

∂B1
y ⊗ ν

∣

∣

∣
≤ 2π and the BMO-type estimate

∣

∣

∣

∣

1

|Bh|

∫

Bh

∇y − 1

|B1|

∫

B1

∇y
∣

∣

∣

∣

≤ C

(

ln
1

h

)1/2

‖∇2y‖L2(B)

(to get the optimal exponent 1/2 in the logarithm one can use e.g. the Trudinger-
Moser inequality).

To prove Lemma 2 set e = y − ỹ and denote by e′ = ∂re the derivative in the
radial direction. On a.e. segment r 7→ (r cos θ, r sin θ) we have

(3) |e(r, θ)− e(h, θ)|2 ≤ r

∫ r

h

|e′|2(ρ, θ) dρ

and using that y(1, θ) · γ(θ) = |γ(θ)|2 = 1 we get

(4)

∫ 1

h

|e′(ρ, θ)|2 dρ =

∫ 1

h

(

|∂ry|2 − 1
)

dρ− 2h+ 2y(h, θ) · γ(θ) .

To finish the proof we integrate (3) with respect to r dr dθ, use the pointwise
estimate |(∇y)T∇y − Id|2 ≥ (|∂ry|2 − 1)2, the Cauchy-Schwarz inequality with
respect to dρ dθ and Lemma 1.
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To prove Lemma 3 we use integration by parts, Lemma 2, the simple esti-
mate ‖∇2e‖2L2(Ar)

≤ ln 1
h and standard interpolation estimates for ‖∇e‖L2(Ar)

and ‖∇e‖L2(∂Ar) as well as the homogeneity properties of ∇2ỹ and ∇3ỹ.

Proof of Theorem 1. LetM ∈ N withM ≈ log2
1
h −4 log2 ln

1
h . Then by Lemma

3
∫

B1\B2−M

|∇y|2 dx ≥
∫

B1\B2−M

|∇ỹ|2 dx− 2

∫

B1\B2−M

∇2(y − ỹ) : ∇2ỹ dx

≥ C1M ln 2− 2C
M−1
∑

k=0

(2kh)1/8
(

ln
1

h

)1/2

≥ C1M ln 2− 2C(2Mh)1/8
(

ln
1

h

)1/2

and the assertion follows from the choice of M .

Remark 1. A modification of the final argument which uses Young’s inequality
shows that the prefactor 4 in front of the ln ln term can be reduced to 1.
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Area minimizing surfaces in mean convex 3-manifolds

Theodora Bourni

(joint work with Baris Coskunuzer)

In this talk I present work from a recent paper, which is joint with Baris Coskunuzer.
We give several results on area minimizing surfaces in strictly mean convex 3-
manifolds. More precisely, we study the genus of absolutely area minimizing sur-
faces in a compact, orientable, strictly mean convex 3-manifold M bounded by
a simple closed curve that lies in ∂M . Our main result is that for any g ≥ 0,
the space of simple closed curves in ∂M where all the absolutely area minimizing
surfaces they bound in M has genus ≥ g is open and dense in the space A of
nullhomologous simple closed curves in ∂M . For showing this we prove a bridge
principle for absolutely area minimizing surfaces. As an application of these re-
sults, we further prove some important properties about minimal surfaces bounded
by such curves, with the most important being that the simple closed curves in
∂M bounding more than one minimal surface in M is an open and dense subset
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of A. This allows us to show that for any strictly mean convex 3-manifold M ,
there exists a simple closed curve Γ in ∂M which bounds a stable minimal surface
which is not embedded and this answers a question of Meeks. In what follows we
give a more precise description of the presented results.

The Plateau problem concerns the existence of an area minimizing disk with
boundary a given curve in an ambient manifold M . This problem was solved in
the case when the ambient manifold is R3 by Douglas [Do], and Rado [Ra] and
was later generalized by Morrey [Mo] for Riemannian manifolds. In the 1980s,
Meeks and Yau showed that if M is a mean convex 3-manifold, and Γ is a simple
closed curve in ∂M , then any area minimizing disk with boundary Γ is embedded
[MY1]. Later, White gave a generalization of this result to any genus [Wh2].

In the early 1960s, the same question was studied for absolutely area minimizing
surfaces, i.e. for surfaces that minimize area among all orientable surfaces with a
given boundary (without restriction on the genus). Using techniques from geomet-
ric measure theory, Federer and Fleming [FeF] were able to solve this problem by
proving the existence of an absolutely area minimizing integral current (see also
[DG, Giu] for the existence of a minimizing Caccioppoli set). In [ASSi] Almgren,
Schoen and Simon showed that this current is a smooth embedded surface away
from its boundary. Boundary regularity, when the boundary is sufficiently smooth,
was proven later by Hardt [H] and Hardt and Simon [HSi].

In the presented paper, we study the genus of absolutely area minimizing sur-
faces in a strictly mean convex 3-manifold, with boundary a simple closed curve
lying in the boundary of the ambient manifold. From now on we let M be the
ambient manifold, which is always assumed to be a compact, orientable, strictly
mean convex 3-manifold. We let A be the space of all nullhomologous simple
closed curves in ∂M equipped with the C0-topology. By the results mentioned in
the previous paragraph, any Γ ∈ A bounds an embedded absolutely area minimiz-
ing surface Σ in M with ∂Σ = Γ. We define Ag to be the set of all the curves
in A such that any embedded absolutely area minimizing surface in M that they
bound has genus ≥ g. The main theorem of the paper states that for any g ≥ 0,
Ag is an open and dense subset of A.

The proof of the openness is an application of a compactness theorem of White
[Wh2]. The hard part of the main theorem is to show density. The idea of the
proof is as follows. We construct an operation on a given simple closed curve
Γ in ∂M , which we call horn surgery, that adds a thin handle to an absolutely
area minimizing surface Σ in M , which is bounded by Γ. In other words, by
modifying the boundary curve, this operation increases the genus of an absolutely
area minimizing surface. Moreover, the construction is such that this new curve
can be made as close as we want to the original curve. Hence by using the horn
surgery operation, we show that Ag is dense in A. We point out that in doing
this, we prove a bridge principle for absolutely area minimizing surfaces.

The previously mentioned bridge principle and the horn surgery is also used
to derive some interesting results on the space Bg = Ag \ Ag+1; the space of all
the curves in A, such that the minimum genus of the embedded absolutely area
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minimizing surfaces in M that they bound is exactly g. In particular we prove
that for any g ≥ 0, Bg is not empty and is nowhere dense in A. Furthermore we
show that there exist simple closed curves in ∂M which bound two absolutely area
minimizing surfaces of different genus.

Finally and as an application of our results, we further derive several interesting
theorems about minimal surfaces in strictly mean convex 3-manifolds. We show
that curves that bound more that one minimal surface are generic for a strictly
mean convex 3-manifold M . We remark that in [Co1], and [CE], it is proven
that a generic nullhomotopic simple closed curve in ∂M bounds a unique area
minimizing disk, and similarly, a generic nullhomologous simple closed curve in
∂M bounds a unique absolutely area minimizing surface in M . However, here we
show that when we relax the condition of being area minimizing to just minimal,
the situation is completely opposite.

Furthermore, we generalize Peter Hall’s results [Ha], which answers Meeks’
questions, to any strictly mean convex 3-manifold M . As previously mentioned,
in [MY1], Meeks and Yau proved that any area minimizing disk in a mean convex
3-manifold bounded by a simple closed curve in ∂M must be embedded. After
establishing this result, Meeks posed the question of whether or not the same holds
for stable minimal surfaces. Then, Hall constructed an example of a simple closed
curve Γ in S2 = ∂B3, whereB3 is the unit 3-ball inR3, such that Γ bounds a stable
minimal disk M in B3 which is not embedded. This shows that if we relax the
area minimizing condition to just being minimal again, the embeddedness result
of Meeks and Yau is no longer valid. We generalize Hall’s example by showing
that for any strictly mean convex 3-manifold, there exist simple closed curves in
the boundary that bound non embedded stable minimal surfaces.
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On the existence and regularity of minimizers for spectral problems

Aldo Pratelli

(joint work with Dario Mazzoleni)

This talk is devoted to describe the last available results and the most important
open problems concerning shape minimizers of spectral problems.
We are concerned in the following question: given natural numbers k and N , and
given a function F : Rk → R, lower semi-continuous and non-decreasing in each
variable, we aim to minimize the functional

F(Ω) := F
(

λ1(Ω), λ2(Ω), . . . , λk(Ω)
)

among open sets Ω ⊆ RN of fixed (say, unite) volume, being {λi(Ω)}i∈N the
spectrum of the Dirichlet eigenvalues of the standard Laplacian.
The main difficulties of the problem are two: first of all, as for all the shape
optimization problems, one has to face the lack of a good topology for sets; second,
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having the whole R
N as ambient space gives as usual concentration-compactness

problems.
The first difficulty has been settled by Buttazzo and Dal Maso in 1993, using the
γ−convergence for sets. Their result, which is very well-known, can be written as
follows.

Theorem 1 (Buttazzo–Dal Maso, [4]). Let D ⊆ RN be a bounded open set. Then,
there exists a quasi-open minimizer for the functional F among all the sets of unit
volume contained in D.

Of course, one would like also to consider the problem in the whole RN . For this
general case, only few results were available up to one year ago. Namely, the
existence is classically known for a minimizer of λ1 and λ2, and in particular the
first one is any unit ball, while the second one is any disjoint union of two balls of
volume 1/2. More recently, it has been shown the existence for a minimizer of λ3,
even if it is not known which set is it, see [2]. Finally, the question of the existence
has been completely solved last year, thanks to two contemporary papers.

Theorem 2 (Mazzoleni–Pratelli, [6]). There exists a bounded minimizer for the
functional F among all the quasi-open subsets of RN of unit volume.

Theorem 3 (Bucur, [1]). There exists a minimizer for λk among all the quasi-
open subsets of RN of unit volume. Moreover, any minimizer is bounded and has
finite perimeter.

Notice that the two results give different informations: indeed, the second one
is only concerned with the particular case of the k-th eigenvalue, instead of the
general functional F , but on the other hand it gives the important additional
information of the finiteness of the perimeter, which is particularly interesting
since one is working within the very general setting of the quasi-open sets. A last
comment has to be done concerning the boundedness of the minimizers: the first
result only stated the boundedness for some minimizer, but in fact it can be proved
that any minimizer has to be bounded, see [5].

We conclude by briefly commenting the question of the regularity of the minimiz-
ers. In fact, all the above existence results are valid in the very general framework
of the quasi-open sets, and this is needed in order to use the γ-convergence for
sets. But on the other hand, this setting appears quite unnatural and it is not
very satisfactory, and actually one would imagine that the minimizers have to be
smooth. It would be extremely important to show that the minimizers are at least
open: indeed, this would be a first huge step towards the regularity (just keep in
mind that the eigenfunctions for open sets are analytic, while eigenfunctions for
quasi-open sets need not to be continuous). Up to now, it is known that minimizers
of the first eigenvalue in a non-necessarily bounded domain D ⊆ RN are open (of
course, if the domain contains a unit ball, then the ball is the minimizer!), and this
is a simple result; moreover, also minimizers of Lipschitz functionals involving the
first two eigenvalues, corresponding to our general case for k = 2 and F Lipschitz,
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are open, as it is shown in [3]. The general case seems much more demanding,
and it is presently studied by Bucur, Mazzoleni, Pratelli and Velichkov, up to now
only with some partial results.
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Hessian Measures on the Heisenberg group

Neil S. Trudinger

(joint work with Wei Zhang)

We report on a recent discovery [6] with my colleague Wei Zhang of new mea-
sures in the Heisenberg groups Hm, m > 1, which extend the Monge-Ampère
measure of Aleksandrov and the Hessian measures of Trudinger and Wang [4] in
Euclidean space Rn.

We begin with a general system of smooth vector fields {X1, ....Xm} in Rn,
m ≤ n, that is first order differential operators of the form, Xi = bijDj , with
smooth coefficients, bij , i = 1, ...m, j = 1, ...n defined on a domain Ω in Rn. The
Hessian and symmetrised Hessian of a function u ∈ C2(Ω) are defined respectively
by X2u = [XiXju] and X

2
su = [ 12 (XiXju+XjXiu)] and the function u is called

k-convex, k = 1, ....m, in Ω with respect to {X1, ....Xm} if

Fl[u] = Sl(X
2
su) ≥ 0, l = 1, ....k,

where Sl(r) denotes the sum of the l × l principal minors of the matrix r = [rij ].
The fully nonlinear operator Fk will be degenerate elliptic with respect to a k-
convex function u, that is the matrix

[F ij ] = [
∂Sk

∂rij
(X2

su)] ≥ 0,

but the converse is only true when k = m, in which case we also call u convex
with respect to {X1, ....Xm}. For our purposes here, a function u ∈ C(Ω) is called
k-convex, if there exists a sequence {um} ⊂ C2(Ω) such that in any subdomain
Ω′

⋐ Ω, um is k-convex for sufficiently largem and converges uniformly to u. In the
Euclidean case Xi = Di, i = 1, ...n, these notions coincide with those introduced
in [4], with n-convexity equivalent to local convexity in the classical sense. We
denote by Φk(Ω) the class of k-convex functions in C(Ω).

The Heisenberg group Hn is generated by the system of 2n vector fields in
R2n+1(x, y, t) given by
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Xi = Dxi −
yi
2
Dt, Xi+n = Dyi +

xi
2
Dt, i = 1, ....n.

Note that the only nonvanishing commutators are [Xi, Xi+n] = T = Dt, for i =
1, ....n and their negatives. For k ≤ n, we now introduce the augmented even
Hessian operators:

F2k[u] =

k
∑

l=0

a2lS2k,2l(X
2
su)(Tu)

2l

where S2k,2l is the sum of minors given by

S2k,2l =

n
∑

i1i2···il=1

n
∑

j1j2···jl=1

∂2lS2k

∂ri1j1∂rn+i1,n+j1 · · ·∂riljl∂rn+il,n+jl

and the sequence {a2l} is defined by

a2l =
(2l + 1)

[(2l)!!]2
, l = 0, 1, · · · , k.

When u is 2k-convex , it follows that the minor sums S2k,2l(X
2
s ) ≥ 0 so that

F2k[u] becomes an even polynomial in the commutator Tu with non-negative co-
efficients. Our main result concerns the extension of F2k[u] to Φ2k(Ω),Ω ⊂ R2n+1,
as a weakly continuous Borel measure.

Theorem 1. For any u ∈ Φ2k(Ω), there exists a Borel measure µ2k[u] such that
when u ∈ C2(Ω),

µ2k[u](e) =

∫

e

F2k[u]dg,

for any Borel set e ⊂ Ω. Moreover, if {um} ⊂ Φ2k(Ω) and um → u locally
uniformly in Ω, then the corresponding measures µ2k[um] → µ2k[u] weakly, that is

∫

Ω

fdµ2k[um] →
∫

Ω

fdµ2k[u],

for any f ∈ C(Ω) with compact support in Ω.

In the special case k=n=1, F2[u] = F2[u] +
3
4 (Tu)

2, and Theorem 1 was found
by Gutierrez and Montanari [2], by combining the approach of [4] with an appro-
priate variational identity for F2[u]. Using the approach from [5], the result was
extended in [3] to n > 1 and almost everywhere convergence as well as to more
general systems of vector fields. Note that for k > (2n+ 1)/4 almost everywhere
convergence coincides with local uniform convergence [3].

Our proof of Theorem 1 also adapts the approach in [4], the key ingredient being
a monotonicity formula whose proof is equivalent to establishing a null Lagrangian
property for the augmented Hessian F2k[u].
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Theorem 2. Let Ω ⊂ R
2n+1 be a C1 bounded domain. Let u, v ∈ Φk(Ω) ∩C2(Ω̄)

satisfy u ≥ v in Ω and u = v on ∂Ω. Then

∫

Ω

F2k[u] ≤
∫

Ω

F2k[v].

We remark that the case k=n=2 of Theorem 2 was discovered by Garofalo
and Tournier in [1] by an amazing brute force computation of individual terms.
However they did conjecture that the result extended to n > 2 and in particular
that there existed an even polynomial in Tu with coefficients depending on minors
of X2

s satisfying the above monotonicity property.
In our paper [6] we also prove versions of Theorems 1 and 2 for odd Hessians,

that is for corresponding operators F2k−1, k = 1, ...n, given by

F2k−1[u] =

k−1
∑

l=0

a2lS2k−1,2l(X
2
su)(Tu)

2l.

Finally we remark that for the Heisenberg groups, as well as more general
Carnot groups, the continuous k -convex functions coincide with the continuous
subharmonic functions with respect to the operator Fk.
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Blow-ups of Type I Ricci flows

Joerg Enders

(joint work with Reto Müller and Peter M. Topping)

We consider families of complete, not necessarily compact, Riemannian mani-
folds (Mn, g(t)), t ∈ [0, T ), of arbitrary dimension n ≥ 2 solving Hamilton’s Ricci
flow

(1)
∂

∂t
g = −2Ricg(t).
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Due to the diffeomorphism and scaling invariance of this quasilinear weakly par-
abolic partial differential equation, self-similar ancient solution called gradient
shrinking solitons arise. After normalizations, those satisfy the equation

Ricg(t) +∇g(t)∇f(t)− 1

2(T − t)
g(t) = 0,

for potential functions f(·, t) : M → R, and have Gaussian volume

Ṽ (M, g(t), f(t)) =

∫

M

(

4π(T − t)
)−n

2 e−f(q,t)dvolg(t)(q)

which is constant in t and equal to 1 precisely on the trivial solution of flat Eu-

clidean space with potential function f(q, t) = |q|2

4(T−t) , the Gaussian soliton.

R. Hamilton [3] conjectured that singularities of Ricci flow should be modeled
on nontrivial gradient shrinking solitons, at least under the assumption that the
curvature tensor blows up at the Type I rate, i.e. if there exist C ≥ c > 0 such
that for all t ∈ [0, T )

(2)
c

T − t
≤ sup

M
|Rmg(t)|g(t) ≤

C

T − t
.

If a singularity occurs at time T , this assumption is ’natural’ as the left inequality
is automatically satisfied for bounded curvature complete Ricci flows due to the
maximum principle. Otherwise, we call a solution to (1) satisfying only the right
inequality in (2) a Type I Ricci flow. In [2] we prove the conjecture for parabolic
rescalings around points p in the singular set Σ, the set of points in M for which
there exists no neighborhood in which the curvature stays bounded as t approaches
T :

Main Theorem. Let (Mn, g(t), p), t ∈ [0, T ), p ∈ Σ, be a complete Type I
Ricci flow. For any λj ր ∞ the rescaled Ricci flows (M, gj(t), p) defined on
[−λjT, 0) by

gj(t) := λjg(T +
t

λj
)

subconverge to a Cheeger-Gromov-Hamilton ancient limit flow (Mn
∞, g∞(t), p∞)

on (−∞, 0), which is a nontrivial gradient shrinking soliton.

The soliton structure of the limit flow (for arbitrary points p ∈ M) in this setting
has been proved by Naber [5]. We use the curvature control stemming from Perel-
man’s pseudolocality theorem [7] to show the nontriviality of the blow-ups, which
in fact does not require their soliton structure. After our work, this theorem has
also been obtained in [4] for compact M using an extension of Perelman’s entropy
to singular time, similar to the extension to singular time of Perelman’s reduced
volume used here.

It is well known (see e.g. [8]) that a gradient shrinking soliton has strictly
positive scalar curvature unless it is the Gaussian soliton. This rigidity allows us
to show that in the case of a Type I Ricci flow the singular set Σ coincides with
the set of points in M where the scalar curvature Rg(t) blows up at the Type I
rate as t approaches T . We therefore obtain the following
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Corollary.

(1) In the presence of a Type I singularity, all singular points have the same
curvature blow-up behavior: All curvature quantities blow up at the Type
I rate.

(2) If Mn is compact and supM |Rg(t)|g(t) < K for all t ∈ [0, T ), then the
Type I Ricci flow can be extended smoothly past time T.

Moreover, the scalar curvature blow-up rate at the singularity can be used to
prove that the volume of an initially finite volume singular set will vanish as the
singular time is approached.

Based on the main theorem, we now prove an ε-regularity theorem. We first use
the monotonicity of the reduced volume based at singular time Ṽp,T (t) (see [1], [5],
or also [2]) to define the Gaussian density θp,T at a point p ∈ M at the singular
time T in a Type I Ricci flow as

θp,T := lim
tրT

Ṽp,T (t) ∈ (0, 1].

Using the fact that the Gaussian density corresponds to the Gaussian volume
of the limiting gradient shrinking soliton, the gap theorem [10] for the Gaussian
volume of solitons implies the following

Theorem. Let (Mn, g(t)) be a complete Type I Ricci flow on [0, T ) with sin-
gular time T and singular set Σ. Then θp,T = 1 if and only if p ∈ M \ Σ.

In fact, there exists ε = ε(n) > 0 such that if θp,T > 1 − ε for a Ricci flow as
above, then p ∈ M \ Σ.

This is an analogue to B. White’s partial regularity result for mean curvature
flow [9] using Huisken’s monotonicity and L. Ni’s result in Ricci flow [6] using a
localized reduced volume monotonicity.
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Yang-Mills Fields in supercritical dimension, a variational approach

Tristan Rivière

(joint work with Mircea Petrache)

The existence of a W 1,p-controlled gauge to Lp curvatures in critical or sub-
critical [2p]-dimension 1 has been proved by K.Uhlenbeck in the early eightees. It
is the key step for studying the variations of the p-Yang-Mills lagrangian - the Lp

norm of the curvature - over manifolds of dimension less or equal to [2p].
In contrast to the critical and subcritical cases, in dimension larger than 4 for

instance - the supercritical case for the 2-Yang Mills energy - it is easy to construct
L2 curvatures which do not possess, even locally, W 1,2 gauges. This is also related
to the fact that the 2-Yang-Mills energy in dimension larger than 4 does not control
the topology of the bundle anymore. This illustrates the difficulty to proceed to
the calculus of variations of p-Yang-Mills Lagrangians in super-critical dimension.
In particular the approach used in the eightees in [2p]-dimension for producing
p-Yang-Mills minimizers and consisting in minimizing the Yang-Mills energy over
connections of a fixed bundles over W 1,p connections is a-priori not well posed In
dimension larger than [2p].

In order to remedy to this difficulty we introduce the notion of “Lp curvature
over weak bundles”. In the abelian case in 3 dimensions this consists in looking
at Lp 2-forms whose integral over almost every sphere equals an integer. In [1]
we proved that, for p > 1, this class is weakly sequentially closed. We can then
produce abelian curvatures minimizing of the Lp norm, the p-Yang-Mills energy,
for smooth boundary data as long as p > 1.

We then present a recent result of Mircea Petrache ([2]) asserting that p-Yang-
Mills Minimizers in 3 dimension, for p > 1 and smooth boundary data, have at
most isolated singularities.

In the last part of the talk we discuss briefly the possibility to extend these
results to the non-abelian supercritical case.
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Lower semicontinuity and Young measures in the space BD of
functions of bounded deformation

Filip Rindler

Consider the task of finding a minimiser of the integral functional

F (u) :=

∫

Ω

f(x, Eu(x)) dx +

∫

Ω

f∞

(

x,
dEsu

d|Esu| (x)
)

d|Esu|(x),

in the class of all functions u ∈ BD(Ω). It turns out that the above functional is
the “natural” extension of the functional

∫

Ω

f(x, Eu(x)) dx, u ∈ W1,1(Ω;Rd).

Here, Ω ⊂ Rd is a bounded open domain with Lipschitz-continuous boundary,
the integrand f : Ω × Rd×d → R has linear growth at infinity (i.e. |f(x,A)| ≤
C(1 + |A|)), and f∞ is its recession function,

f∞(x,A) := lim
x′→x
t→∞

f(x′, tA)

t
x ∈ Ω, A ∈ R

d×d
sym ,

which describes the behaviour of f “at infinity” and which we assume to exist in
the above sense. Moreover,

Esu = EuLd +
dEsu

d|Esu| |E
su|, Esu singular to Ld,

is the Lebesgue–Radon–Nikodým decomposition of the symmetrised derivativeEu,
which is first defined as a distribution by duality with the symmetrised gradient

Eu :=
1

2

(

∇u+∇uT
)

,

but which for functions in BD(Ω) can be represented as a finite Radon measure
on Ω with values in Rd×d

sym .
The main result of this talk, published in [15], asserts weak* lower semicontinu-

ity of the above integral functional on the whole space BD(Ω) under the natural
assumption that f is symmetric-quasiconvex, i.e.

f(x,A) ≤
∫

ω

f
(

x,A+ Eψ(z)
)

dz

for all A ∈ Rd×d
sym and all ψ ∈ C∞

c (ω;Rd), where ω ⊂ Rd is an arbitrary Lipschitz
domain. This condition is natural since it is also necessary for lower semicon-
tinuity in BD. The result is the precise BD-analogue of the classical BV-lower
semicontinuity theorem by Ambrosio & Dal Maso [2] and Fonseca & Müller [8].
The main novelty in comparison to previously known results in BD (see for exam-
ple [4, 3, 6, 9]) is that it does not need any further assumptions to prohibit any
(fractal) Cantor part in the symmetrized derivative Eu.

The proof combines the well-known “blow-up technique” (see [7]) with rigidity
arguments (see e.g. [13]). The pivotal idea here is to show, by various techniques
(Harmonic Analysis, slicing, . . . ), that we can construct “good” blow-ups at a
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singular point that only take certain “rigid” shapes, for example, in BD they
always are either a sum of one-directional functions, or even affine. As a nice side-
result, this strategy also allows to considerably simplify the proof of the classical
lower semicontinuity theorem in BV, circumventing the use of the difficult Alberti’s
Rank-One Theorem [1], see [16].

To explain one case of this strategy in more detail, consider the differential
inclusion

Eu ∈
{

λ(a⊙ b) : λ ∈ R
}

,

where a⊙ b := (abT + baT )/2 for a, b ∈ Rd. What can be said about u (assuming
enough regularity, which can as usual be achieved by mollification)? It is well-
known that almost all blow-ups satisfy either this differential inclusion or a similar
one, with a⊙ b replaced by a matrix that cannot be written in the form a⊙ b. In
the following we consider the first case; in the second case it can be shown that
there always exists an affine blow-up by a similar strategy.

For the corresponding inclusion ∇u ∈ {λ(a ⊗ b) : λ ∈ R} one can show that u
has the form u(x) = u0 + h(x · b)a for a scalar function h and a fixed vector u0.
However, in the above situation it is not possible to conclude the analogous result
that

u(x) = u0 + h1(x · b)a+ h2(x · a)b+Rx

for scalar functions h1, h2, a fixed vector u0 and a skew-symmetric matrix R. But
this rigid form is needed in order to average the function by a staircase construction
in the proof of lower semicontinuity. However, it turns out to be possible to show
enough structure of a function satisfying the above differential inclusion such that
a second blow-up (of the first blow-up) will indeed have the form we want. Thus,
the combination of rigidity arguments together with an iteration of the blow-up
construction yields one “good” blow-up.

The proof of the lower semicontinuity result is organised using (generalized)
Young measures, introduced in [5], which provides a convenient framework for the
blow-up constructions. Part of these techniques were developed together with Jan
Kristensen in [12], but new localization principles can be found in [15, 16]. It
should be mentioned that while for the BV-lower semicontinuity without Alberti’s
Theorem one can write a proof without Young measures, for the BD-lower semi-
continuity result they are an integral component of the strategy and cannot easily
be removed.

The final result presented in the talk is a characterisation theorem for Young
measures generated by sequences in BD [14], which describes the asymptotic oscil-
lations and concentration effects. This characterisation theorem puts generalised
Young measures in duality with quasiconvex functions with linear growth at in-
finity via Jensen-type inequalities. THis generalises the well-known Kinderlehrer–
Pedregal Theorem for classical Young measures [10, 11]. The proof proceeds via
a Hahn–Banach argument and a localization technique for (generalized) Young
measures. This also provides a second proof for the characterisation of BV-Young
measures, first proved together with Jan Kristensen [12].
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Pattern formation in micromagnetics

Radu Ignat

We present several non-local variational models leading to rich pattern formation.
These models arise mainly in micromagnetics and we are interested in developing
an asymptotic analysis based on an entropy method coming from scalar conserva-
tion laws.

1. The Aviles-Giga model. Let Ω ⊂ R2 be an open domain. For vector fields
u ∈ H1

div(Ω,R
2) of vanishing divergence ∇ · u = 0 in Ω, the following energy

functional is defined:

AGε(u) = ε

∫

Ω

|∇u|2 dx+
1

ε

∫

Ω

(1− |u|2)2 dx,
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for a small parameter ε > 0. The question of Γ−convergence of {AGε}ε↓0 was in-
tensively studied. The compactness of configurations {uε}ε↓0 of uniformly bounded
energy AGε(uε) ≤ C was proved (in strong L2-topology) by Ambrosio, De Lel-
lis and Mantegazza [2] and DeSimone, Kohn, Müller and Otto [7]. The limiting
configurations u0 satisfy

(1) |u0| = 1 and ∇ · u0 = 0 in Ω.

Moreover, De Lellis and Otto [6] proved the H1−rectifiability of the jump set J of
u0, even if u0 is in general not BV (see [2]). It is expected that the limit energy
of {AGε(uε)}ε↓0 concentrates on the jump set J and has the following form (first
stated by Aviles and Giga [3]):

AG0(u0) =
1

3

∫

J

|u+0 (x)− u−0 (x)|3 dH1.

In fact, AG0 is a lower-bound of {AGε}ε↓0 (see Aviles and Giga [4], Jin and
Kohn [11]). The difficulty consists in the upper bound construction for limiting
configurations u0: recovery sequences have been constructed only for BV config-
urations u0 (see Conti and De Lellis [5] and Poliakovsky [12]).

Entropies. One of the main tool of this study consists in the concept of entropies
coming from the scalar conservation law hidden in (1). Indeed, writing u0 =

(v, h(v)) for the flux h(v) = ±
√
1− v2, the divergence-free condition in u0 turns

into the nonlinear transport equation:

(2) ∂tv + ∂s[h(v)] = 0,

where (t, s) := (x1, x2) correspond to (time, space) variables. The notion of en-
tropy solution is introduced via the pair (entropy, entropy-flux), i.e., a couple

of scalar functions (η, q) such that dq
dv = dh

dv
dη
dv which entails that every smooth

solution v of (2) has vanishing entropy production, i.e.,

(3) ∂t[η(v)] + ∂s[q(v)] = 0.

More general, an entropy solution v has the property that for every pair (η, q), the
entropy production is a (signed) measure that concentrates on lines (corresponding
to ”shocks” of v). It suggests the interest of using ”global” quantities Φ(u0) :=
(η(v), q(v)) to detect ”local” line-singularities of u0. Indeed, we will say that
Φ ∈ C∞(R2,R2) is a DKMO−entropy (see [7]) if

Φ(0) = 0, DΦ(0) = 0 and z ·DΦ(z)z⊥ = 0 holds for all z ∈ R2.

In particular, if u0 is a smooth vector field satisfying (1), then ∇ · [Φ(u0)] = 0
(similarly to (3)). More general, the family of entropy productions {∇· [Φ(uε)]}ε↓0
is asymptotically bounded as measure for every family {uε}ε↓0 ⊂ H1

div(Ω,R
2) of

uniformly bounded energy: there exists a constant CΦ > 0 such that

lim sup
ε→0

∣

∣

∣

∣

∫

Ω

∇ · [Φ(uε)]ζ dx
∣

∣

∣

∣

≤ CΦ‖ζ‖∞ lim sup
ε→0

AGε(uε), for every ζ ∈ C∞
c (Ω).

This is the starting point in proving the L2-compactness result and the fine struc-
ture of the limiting configurations u0 (see [7, 6]).
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2. The Bloch wall model. Let us now discuss a rather more “geometric”
and non-convex model coming from micromagnetics: For S2-valued vector fields
m = (u,m3) ∈ H1

div(Ω, S
2) with ∇ · u = 0 in Ω ⊂ R2, we define the functional:

Eε(m) = ε

∫

Ω

|∇m|2 dx+
1

ε

∫

Ω

m2
3 dx,

for a small parameter ε > 0. As before, the aim is to analyze the asymptotic
behavior of Eε as ε → 0. First, note that Eε dominates the Aviles-Giga en-
ergy AGε, i.e., AGε(u) ≤ Eε(m), since |∇u| ≤ |∇m| and (1 − |u|2)2 = m4

3 ≤ m2
3.

Therefore, the L2-strong compactness holds for uniformly bounded energy configu-
rations Eε(mε) ≤ C; the limiting configurations m0 are in-plane, i.e., m0 = (u0, 0)
with (1) and a H1−rectifiable jump set J of u0 can be defined. It is conjectured
that the transition layers (at level ε > 0) corresponding to a jump (u−0 , u

+
0 ) are

one-dimensional and that the Γ-limit of {Eε}ε↓0 is given by

E0(m0) =

∫

J

|u+0 (x) − u−0 (x)|2 dH1.

In a joint work with Merlet (see [9]), we obtained several partial results. In order
to deal with the expected quadratic cost of jumps, we analyze the following class
of Lipschitz entropies: Φ ∈ Lip(S2,R2) such that for ε ↓ 0,

(4) ∇ · [Φ(m)] ≤ ε|∇m|2 + 1

ε
m2

3 + o(1) in Ω, ∀m ∈ C∞
div(Ω, S

2)

with the condition that [Φ(u+0 ) − Φ(u−0 )] · ν = |u+0 − u−0 |2 for jumps (u−0 , u
+
0 ) of

normal direction ν := e1. We find such an entropy for the biggest jump (0,±1, 0)
proving that the one-dimensional layer is optimal in this case. Even if we find
entropies for each jump (u−0 , u

+
0 ) satisfying (4) but in a restricted class of config-

urations m, we prove that the entropy method doesn’t work in general for small
angles. However, we show in a second paper [8] that E0 is lower semicontinuous
(in L2 topology), enforcing the expectation that no microstructure appears for the
Bloch wall model.

3. A zigzag wall model. We study now the following energy functional:

Fǫ(m) =

∫

Ω

(

ε|∇m|2 + 1

ε
m2

2

)

dx+
1

εs
‖∇ ·m‖2

Ḣ−1(Ω)

for m = (m1,m2,m3) ∈ H1(Ω, S2) where the constraint ∇ · (m1,m2) 6= 0 is

penalized in Ḣ−1-seminorm by the energy where s ∈ (1, 2). The penalization of
m2 (instead ofm3 as previously) generates loss of coercivity of Fε: configurations of
uniformly bounded energy are in general no longer compact in strong L2-topology
due to possible oscillations in x2-direction. The main idea of a joint work with
Moser [10] is to study the quantity

ψ = sinϑ− ϑ cosϑ,
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where ϑ := arctan m3

m1
in the hemisphere where |ϑ| ≤ π

2 . We show that as long as
ϑ remains sufficiently small, the functional

F0(ψ) = 2

∫

Ω

∣

∣

∣

∣

∂ψ

∂x1

∣

∣

∣

∣

dx

is the Γ-limit energy of {Fε}ε↓0. In general, the wall energy given by F0 is
not achieved by a one-dimensional transition between two limiting states m± =
(cos θ, 0,± sin θ) of normal direction ν := e1. Instead, in order to obtain the opti-
mal limiting energy given by F0, a transition with an additional zigzag structure
is required. The matching with the upper bound (coming from the zigzag wall
construction) is fulfilled via a lower bound based on generalized entropies. More
precisely, as in (4), we study the entropies Φ ∈ Lip(S2,R2) such that for ε ↓ 0,

∇ · [Φ(m)] ≤ ε|∇m|2 + 1

ε
m2

2 in Ω, ∀m ∈ C∞
div(Ω, S

2)

with the condition that [Φ(m+)−Φ(m−)]·ν = 4ψ(θ) for jumpsm± = (cos θ, 0,± sin θ)
of normal direction ν := e1. In contrast with the Bloch wall model, we succeed
to find such entropies for small angles θ and we prove that no entropy exists for
the biggest jump (0, 0,±1). There is another situation where the Γ-limit is explic-
itly known for a problem involving similar microstructures: the problem leading
to cross-tie walls in thin ferromagnetic films [13, 14, 1]. The cross-tie wall con-
sists in a mixture of vortices and Néel walls (one-dimensional transition layers
similar to Bloch walls, but taking values only in S1). Remarkably, the function
ψ(θ) = sin θ−θ cos θ plays an important role in that context as well, although this
may be a mere coincidence.
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A sharp lower bound on the mean curvature integral with critical
power for integral varifolds

Ulrich Menne

This is an announcement of the principal results of [12] using the notation of
[11, §1, §2] which is based on Federer [5] and Allard [1]. To describe the results,
some additional terminology from [12, 5.1, 5.4, 5.6] is needed.

The space of nonempty closed subsets of a metric space X is topologised by
its injection into RX associating to each set its distance function, cp. [5, 2.10.21].
Convergence in this topology is termed locally in Hausdorff distance.

If a ∈ S ⊂ Rn and S is closed, then S is called differentiable at a if and only if
Tan(S, a) is a linear subspace of Rn and

µ1/r ◦ τ−a[S] → Tan(S, a) locally in Hausdorff distance as r → 0+.

If a ∈ S ⊂ Rn and S is closed, then S is called twice differentiable at a if and
only if S is differentiable at a and, in case 0 < m = dimTan(S, a) < n, there exists
a homogeneous polynomial function Q : Tan(S, a) → Nor(S, a) of degree 2 such
that with τ : Tan(S, a)×Nor(S, a) → Rn,

τ(v, w) = v + w for v ∈ Tan(S, a), w ∈ Nor(S, a),

φr = r−1 Tan(S, a)♮ + r−2 Nor(S, a)♮ for 0 < r <∞
there holds

φr ◦ τ−a[S] → τ [Q] locally in Hausdorff distance as r → 0+.

Note Q is uniquely determined by S and a, hence the second fundamental form
b(S; a) and the mean curvature vector h(S; a) of S at a may be defined by
b(S; a) = D2Q(0) and h(S; a) = traceb(S; a) respectively; here the notion of
trace of [5, 1.7.10] is extended in the obvious way.

Suppose m and n are positive integers, m < n, 1 ≤ p ≤ ∞, V is an m dimen-
sional integral varifold in Rn, ‖δV ‖ is a Radon measure, and, if p > 1,

δV (g) = −
∫

g(z) • h(V ; z) d‖V ‖z for g ∈ D(Rn,Rn),

h(V ; ·) ∈ Lp(‖V ‖ xK,Rn) whenever K is a compact subset of Rn.
(Hp)

Instructive examples are constructed in Allard [1, 8.1 (2)], Brakke [3, 6.1], and
[9, 1.2]. If p = m, then H m

x spt ‖V ‖ ≤ ‖V ‖ by Allard [1, 8.3]. If p > m and
p ≥ 2, then there exists a relatively open and dense subset G of spt ‖V ‖ such that
G is an m dimensional submanifold of class 1 of Rn by Allard [1, 8.1 (1)].
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The condition (H1) is sufficient to establish second order differentiability prop-
erties in an approximate sense:

Theorem 1 (cf. [10, 4.8]). If V satisfies (H1), then there exists a countable col-
lection C of m dimensional submanifolds of class 2 of Rn with

‖V ‖(Rn ∼⋃

C) = 0.

Moreover, for every member of M of C there holds

h(M ; z) = h(V ; z) for ‖V ‖ almost all z ∈M.

Using different methods, this theorem extends previous results of Schätzle in
[13, Theorem 6.1] for the case n = m+ 1, p > m, p ≥ 2.

If p = m, the differentiability properties may be sharpened as follows.

Corollary 2 (cf. [12, 5.11], [10, 4.8]). If V satisfies (Hm) and S = spt ‖V ‖, then:
(1) For H m almost all a ∈ S the closed set S is twice differentiable at a with

dimTan(S, a) = m and h(S; a) = h(V ; a).
(2) For ‖V ‖ almost all a there holds

r−m
∫

B(a,r)(|R(z)−R(a)− (‖V ‖,m) apDR(a)(z − a)|/|z − a|)2 d‖V ‖z → 0

as r → 0+, where R maps w ∈ S such that S is differentiable at w onto
Tan(S,w)♮ ∈ Hom(Rn,Rn).

To prove the corollary, first, the necessary flatness properties are deduced from
the preceding theorem by means of subsolution properties of the distance function
associated to a plane. This step utilises ideas from Ecker [4, 1.6, 1.7], Allard [1,
7.5 (6)], and [10, 5.2 (2)]. Second, the differentiability properties are deduced using
techniques from [9, §3]. Finally, the relation of h(S; ·) and h(V ; ·) is established
similarly as in Schätzle [14, Theorem 4.1].

The next theorem for m = n − 1 generalises the area formula for the Gauss
map from oriented m dimensional submanifolds of class 2 of Rn to supports of m
dimensional integral varifolds satisfying (Hm) with m ≥ 2.

Theorem 3 (cf. [12, 7.34]). If V satisfies (Hm), 2 ≤ m = n− 1, S = spt ‖V ‖,
C = (S × Sm) ∩ {(a, u) :U(a− su, s) ∩ S = ∅ for some 0 < s <∞},

and B is an H m measurable subset of C, then
∫

SmH
0{a :(a, u) ∈ B} dH

mu

=
∫

S

∫

Sm∩{u : (a,u)∈B}| discr(b(S; a) • u)| dH
0u dH

ma,

where b(S; a) • u : Tan(S, a) × Tan(S, a) → R denotes the symmetric bilinear
function mapping (v, w) ∈ Tan(S, a)× Tan(S, a) onto b(S; a)(v, w) • u ∈ R.

Note H m(S∼ dmnC) = 0 by part (1) of Corollary 2.
In view of Theorem 1, the proof of Theorem 3 readily reduces to establishing

the following Lusin property:

H
m(C[E]) = 0 whenever E ⊂ dmnC and H

m(E) = 0.
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If E ⊂ {z :Θm
∗ (‖V ‖, z) < ∞}, then the key is to establish a suitable version of a

weak Harnack estimate for Lipschitzian real valued functions on S. In this respect
inspiration is taken from Bombieri and Giusti [2], Hutchinson [7], and Stampacchia
[16, §4, §5]. To treat the case E ⊂ {z :Θm(‖V ‖, z) = ∞}, consider z ∈ Rn

with Θm(‖V ‖, z) = ∞. Then the modified monotonicity identity of Kuwert and
Schätzle [8, Appendix] (which employs Brakke [3, 5.8]) may be used to estimate
barycentres of ‖V ‖ on balls centred at z with suitable radii. In both cases the
deduction of the Lusin property from the estimates is carried out analogously to
the use of the Rado-Reichelderfer condition of Hencl in [6, Theorems 5.1 and 3.5].

Corollary 4 (cf. [12, 7.35]). If V satisfies (Hm), 2 ≤ m = n−1, and S = spt ‖V ‖
is nonempty and compact, then

∫

Sm |h(Sm; z)|m dH
mz ≤

∫

S |h(S; z)|m dH
mz

The weaker estimate resulting from replacing H m by ‖V ‖ in the last integral
was previously obtained by Kuwert and Schätzle in [8, Appendix] for the case
m = 2 and certain particular varifolds satisfying (Hp) with p > m by Schulze in
[15, Proposition 6.6].

Taking B = (S × Sm) ∩ {(a, u) : (z − a) • u ≤ 0 for z ∈ S}, Corollary 4 may be
deduced from Theorem 3 similarly to Schulze [15, §2].

AEI publication number: AEI-2013-012
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Montréal, Montreal, Que., 1966.

Existence of immersed spheres minimizing curvature functionals

Ernst Kuwert

(joint work with Andrea Mondino and Johannes Schygulla)

We consider variational problems for minimizers of Willmore functionals having
the topological type of the 2-sphere. Let [S2,R3] be the space of immersed 2-
spheres in R3. The Willmore functional is given by

W(f) =
1

4

∫

S2

| ~H|2 dµ,

where ~H is the mean curvature vector and dµ is the area element. Willmore (1965)
proved that W(f) ≥ 4π for any closed surface, with equality only for the round
spheres. In the talk, we discussed an existence and regularity theorem proved by J.
Schygulla in his Ph.D. thesis, see [Schy11]. For embedded surfaces f , one defines
the isoperimetric ratio by

I(f) =
√
36π

V (f)

A(f)3/2
∈ (0, 1],

where A(f) is the area and V (f) is the volume enclosed by f .

Theorem 1 (Schygulla [Schy11]). For any σ ∈ (0, 1], there exists a minimizer
of the Willmore functional in the class of smooth embeddings f : S2 → R3 with
prescribed isoperimetric ratio I(f) = σ. As a function of σ, the corresponding
minimum β(σ) is strictly decreasing with

β(1) = 4π and lim
σց0

β(σ) = 8π.

Moreover, the minimizers converge as σ ց 0 to a round sphere of multiplicity two
in the sense of varifolds.

The theorem is partially motivated by a model for cell membranes due to Hel-
frich (1973). In that model, the energy contains an extra parameter called the
spontaneous curvature, and both the area and the enclosed volume are prescribed.
The theorem corresponds to the special case of spontaneous curvature zero, where
the two conditions reduce to the isoperimetric ratio as single constraint by the
scale invariance of the Willmore functional. We refer to [SeBeLip91] for numerical
experiments. Under the assumption of axial symmetry, existence of minimizers for
any spontaneous curvature have been constructed recently in [ChoVe12].
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As second subject we let M be a 3-dimensional, compact Riemannian manifold,
and consider the problem of minimizing the energy

E(f) =
1

2

∫

S2

|A|2 dµ

in the class [S2,M ] of immersions f : S2 →M .

Theorem 2 ([KuMoSchy11]). For M as above, assume that

(1) There exists an f ∈ [S2,M ] with E(f) < 4π,
(2) There exists a minimizing sequence fk ∈ [S2,M ] with A(fk) ≤ C.

Then there exists an E-minimizer in [S2,M ].

By comparing with shrinking geodesic spheres, one gets inf [S2,M ]E ≤ 4π for

any M . In manifolds with sectional curvature KM < 0 one has in fact always
E(f) > 4π, so that the infimum is not attained. Condition (1) is also important
in ruling out that the minimizing sequence develops branchpoints. Both (1) and
(2) are satisfied if M has strictly positive sectional curvature.

Willmore-type surfaces given as pertubations of round spheres have been con-
structed by Mondino [Mo10] and Lamm, Metzger and Schulze [LaMeSchu09].
Global techniques are used by Chen and Li [CheLi11] and by Mondino and Rivière
[MoRi12].
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Quantitative stratification and the regularity of mean curvature flow

Robert Haslhofer

(joint work with Jeff Cheeger and Aaron Naber)

The aim here is to report on our recent estimates and quantitative regularity
results for the mean curvature flow of n-dimensional surfaces in RN . For full
details please see [2], for related results for the harmonic map flow please see [3].

Recall first that smooth solutions of the mean curvature flow are given by a
smooth family of submanifolds Mn

t ⊂ RN satisfying the evolution equation,

(1) ∂tx = H(x), x ∈Mt .

More generally though, Mt is a family of Radon-measures that is integer n-
rectifiable for almost all times and satisfies (1) in the weak sense of Brakke, i.e.

(2) Dt

∫

ϕdMt ≤
∫

(

−ϕH2 +∇ϕ ·H
)

dMt

for all nonnegative test functions ϕ, where Dt is the limsup of difference quo-
tients. Brakke flows enjoy wonderful existence and compactness properties, see
the fundamental work of Brakke and Ilmanen [1, 8]. The main problem is then to
investigate their regularity.

Our results build upon the deep regularity theory of Brian White [9, 10, 11, 12],
which we briefly recall now: Given a Brakke flow M = {(Mt, t)} he considered
the stratification of the singular set S ⊂ M,

(3) S0 ⊂ S1 ⊂ · · · ⊂ Sn+1 ⊂ S ,
where by definition X = (x, t) ∈ Sj if and only if no tangent flow at X has more
than j symmetries. For general Brakke flows White first proved the (parabolic)
Hausdorff dimension estimate

(4) dimSj ≤ j .

For the flow of mean-convex hypersurfaces, he then proved the deep result

(5) S = Sn−1 ,

and thus that the singular set has (parabolic) Hausdorff dimension at most n− 1.
This is based on many clever arguments, ruling out in particular higher multiplic-
ities. He also gives a precise description of the singularities in this mean-convex
case: all tangent flows are spheres, cylinders or planes of multiplicity one.

Let us now come to the general idea of quantitative stratification: Recall first
that the standard stratification / dimension reduction method, a method to prove
Hausdorff dimension estimates like (4), was introduced first in the context of geo-
metric measure theory and later applied successfully in all kind of situations in geo-
metric analysis. In the quantitative stratification, introduced recently by Cheeger-
Naber in the elliptic setting [4, 5] and developed and applied now in the parabolic
setting by Cheeger-Haslhofer-Naber [2, 3], we replace the singular strata Sj by
quantitative singular strata Sj

η,r (η > 0, 0 < r < 1). We then show that tubular
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neighborhoods of Sj
η,r have small volume, and that away from a bad set of small

volume we get definite estimates on balls of definite size.
Concretely, let MX,s be the flow obtained by shifting X to the origin and

rescaling parabolically by 1/s, and let d be a suitable distance function on the
space of Brakke flows on the unit ball. Then

(6) Sj
η,r := {X ∈ M : d(MX,s,N ) > η for all r ≤ s ≤ 1

and all selfsimilar N with more than j symmetries} .
Theorem 1. For all ε, η > 0, Λ <∞ and N , there exists C = C(ε, η,Λ, N) <∞
such that: If M is a Brakke flow, defined on a space-time ball B2 ⊂ RN,1 and with
mass at most Λ, then its j-th quantitative singular stratum satisfies

(7) Vol
(

Tr(Sj
η,r) ∩B1

)

≤ CrN+2−j−ε (0 < r < 1) .

By virtue of ∪η>0 ∩r>0 Sj
η,r = Sj , we recover the standard Hausdorff dimen-

sion estimate (4), but of course our theorem contains much more quantitative
information about the singular set than just its dimension.

Coming to applications, we focus on Brakke flows starting at hypersurfaces
M0 ⊂ Rn+1 (smooth, compact, embedded) that are k-convex, i.e. λ1 + . . . λk ≥
0 where λ1 ≤ . . . ≤ λn denote the principal curvatures. Special instances are
the convex case (k = 1) with Huisken’s classical result, the 2-convex case where
Huisken-Sinestrari constructed a mean curvature flow with surgery, and the general
mean-convex case (k = n) with White’s regularity theory. Building on the work
of White via elliptic regularization we prove:

Theorem 2. Let M be a Brakke flow starting at a k-convex hypersurface. Then
any selfsimilar limit flow N = limMXα,rα with at least k symmetries is in fact
a static multiplicity one plane. In particular, for every singular point X ∈ S all
tangent flows are shrinking spheres or cylinders

(8) R
j × Sn−j with 0 ≤ j < k .

The idea is now to combine Theorem 1 and Theorem 2, to obtain our main
regularity result for k-convex mean curvature flows. To state it, forX = (x, t) ∈ M
we define the regularity scale rM(X) as the supremum of 0 ≤ r ≤ 1 such that
Mt′ ∩Br(x) is a smooth graph for all t− r2 < t′ < t+ r2 and such that

(9) sup
X′∈M∩Br(X)

r |A|(X ′) ≤ 1 ,

where A is the second fundamental form. For 0 < r < 1 we then define the r-bad
set

(10) Br := {X = (x, t) ∈ M| rM(X) < r} .
Theorem 3. Let M be a Brakke flow starting at a k-convex hypersurface M0 ⊂
Rn+1 and ε > 0. Then there exists a constant C = C(M0, ε) < ∞ such that we
have the volume estimate

(11) Vol(Tr(Br)) ≤ Crn+4−k−ε (0 < r < 1) ,
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for the r-tubular neighborhood of the bad set Br. In particular, the (parabolic)
Minkowski dimension of the singular set is at most k − 1.

As a consequence, we obtain Lp-estimates for the inverse regularity scale, and
thus in particular Lp-estimates for the second fundamental form and its derivatives.

Corollary 4. Let M be a Brakke flow starting at a k-convex hypersurface M0 ⊂
Rn+1. Then for every 0 < p < n+1−k there exists a constant C = C(M0, p) <∞
such that

(12)

∫

r−p
M dMt ≤ C and

∫ ∞

0

∫

r
−(p+2)
M dMt dt ≤ C .

In particular, we have Lp-estimates for the second fundamental form,

(13)

∫

|A|pdMt ≤ C and

∫ ∞

0

∫

|A|p+2dMt dt ≤ C ,

and also Lp-estimates for the derivatives of the second fundamental form,

(14)

∫

|∇ℓA|
p

ℓ+1 dMt ≤ Cℓ and

∫ ∞

0

∫

|∇ℓA|
p+2
ℓ+1 dMt dt ≤ Cℓ ,

for some constants Cℓ = Cℓ(M0, p) <∞ (ℓ = 1, 2, . . .).

Using very different techniques, some special cases of this corollary (k = 2, first
singular time) have been obtained previously by Head [7] and Ecker [6].
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Prescribed Gauss curvature on closed surfaces of higher genus

Michael Struwe

(joint work with Franziska Borer and Luca Galimberti)

1. Main result

Let (M, g0) be a closed Riemann surface endowed with a smooth background
metric g0. By the uniformization theorem we may assume that g0 has constant
Gauss curvatureKg0 ≡ k0. Moreover, we normalize the volume of (M, g0) to unity.

A classical problem in differential geometry is the question which smooth func-
tions f : M → R arise as the Gauss curvature of a conformal metric g = e2ug0 on
M . Even when (M, g0) is closed, this question so far has not been completely set-
tled, aside from the case when the genus g(M) ofM is one [10], or when (M, g0) is
the projective plane [12]. In particular, when g(M) > 1 so far only partial results
are known. Here we focus on this case. Clearly, by passing to the oriented double
cover, if necessary, we may assume throughout that M is orientable.

Recall that the Gauss curvature of a conformal metric g = e2ug0 on M is given
by

Kg = e−2u(−∆g0u+ k0) .

Given a function f ∈ C∞(M), the problem of finding a conformal metric of pre-
scribed Gauss curvature f then amounts to solving the equation

(1) −∆g0 u+ k0 = fe2u on M.

Solutions u of (1) can be characterized as critical points of the functional

Ef (u) =
1

2

∫

M

(

|∇u|2g0 + 2k0u− fe2u
)

dµg0 , u ∈ H1(M, g0) .

Note that Ef is strictly convex and coercive on H1(M, g0) when f ≤ 0 does not
vanish identically. Hence for such f the functional Ef admits a strict absolute
minimizer u ∈ H1(M, g0) which is the unique solution of (1). A stability result of
Aubin [1] then shows that for non-constant functions f with a not too large positive
maximum the corresponding functional Ef still admits critical points which can
be characterized as relative minimizers of Ef ; see [2], [4].

For sign-changing functions f the functional Ef is no longer bounded from
below, as can be seen by choosing a comparison function v ≥ 0 supported in the
set where f > 0 and looking at Ef (sv) for large s > 0. Thus, for such functions the
functional Ef exhibits a mountain-pass geomtery and we may expect the existence
of a second solution of (1) which is not of minimum type. However, standard
existence proofs for saddle points rely on the Palais-Smale condition which does
not seem to hold for Ef . In [5] we overcome this difficulty by means of the “entropy
method” introduced in [15] and [16], allowing us to show the following main result.

Theorem 1.1. Let (M, g0) be closed with g(M) > 1. Assume that for a given
sign-changing function f ∈ C∞(M) the functional Ef admits a relative minimizer
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uf ∈ H1(M, g0). Then Ef also admits a critical point uf 6= uf which is not of
minimum-type.

2. Strategy of the proof

An important ingredient in our proof is to show that relative minimizers of Ef

always are strict in the sense of (2) below.

Proposition 2.1. Suppose that for some f ∈ C∞(M, g0) the functional Ef admits
a relative minimizer uf ∈ H1(M, g0). Then uf is a non-degenerate critical point
of Ef in the sense that

(2) d2Ef (uf)(h, h) =

∫

M

(

|∇h|2g0 − 2fe2ufh2
)

dµg0 ≥ c0||h||2H1

for all h ∈ H1(M, g0).

In order to overcome the apparent lack of compactness we embed equation (1)
into the 1-parameter family of problems

(3) −∆g0 u+ k0 = fλe
2u ,

where for a given f ∈ C∞(M) and any λ ∈ R we let fλ = f + λ. Solutions u of
(3) then can be characterized as critical points of the functional Eλ = Efλ .

Note that Eλ for λ ≤ λ1 := −maxM f is strictly convex and coercive on
H1(M, g0). Hence for such λ there is a strict absolute minimizer uλ ∈ H1(M, g0)
of Eλ, uniquely solving (3) and depending smoothly on λ. By Proposition 2.1,
moreover, this C1-branch of absolute minimizers (uλ)λ≤λ1

extends as a C1-curve
of relative minimizers beyond the threshold λ = λ1; however, since k0 < 0 equation
(1) implies that this branch must end before λ attains the value λ2 := −

∫

M f dµg0 .
On a heuristic level, thus our results indicate that the branch of relative minimiz-
ers will be met at some point λ1 < λ∗ < λ2 by a branch of “large” solutions
uλ of saddle-type, bifurcating from infinity at λ = λ1, a result vaguely reminis-
cent of “Rellich’s conjecture” on the structure of the set of surfaces of prescribed
constant mean curvature spanning a curve, which was proved independently by
Brezis-Coron and Struwe in 1982; see [6],[7], [13], [14].

Now suppose that for some λ ∈]λ1, λ2[ the functional Eλ admits a relative
minimizer uλ ∈ H1(M, g0). By Proposition 2.1 then uλ is strict and there exists
ρ > 0 such that

(4) Eλ(uλ) = inf
||u−uλ||H1<ρ

Eλ(u) < βλ := inf
ρ/2<||u−uλ||H1<ρ

Eλ(u).

Recalling that for λ > λ1 the functional Eλ is unbounded from below, we can also
fix a function vλ ∈ H1(M, g0) such that Eλ(vλ) < Eλ(uλ) and hence are able to
define

cλ = inf
p∈P

max
t∈[0,1]

Eλ(p(t)) ≥ βλ > Eλ(uλ),

where

(5) P = {p ∈ C
(

[0, 1];H1(M, g0)
)

; p(0) = uλ, p(1) = vλ}.
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The value λ will be fixed throughout the following. Again by Proposition 2.1,
we may fix an open neighborhood Λ of λ such that for each µ ∈ Λ there exists a
strict relative minimizer uµ ∈ H1(M, g0) of Eµ, smoothly depending on µ ∈ Λ;
moreover, by continuity we may assume that there holds

(6) Eµ(vλ) < Eµ(uµ) ≤ sup
ν∈Λ

Eµ(uν) < βµ := inf
ρ/2<||u−uλ||H1<ρ

Eµ(u) ≤ cµ

for every µ ∈ Λ, where

(7) cµ := inf
p∈P

max
t∈[0,1]

Eµ(p(t)), µ ∈ Λ .

Note that there holds

(8)
d

dµ
Eµ(u) = −1

2

∫

M

e2u dµg0 < 0

for every u ∈ H1(M, g0) and every µ ∈ R. It follows that the function

Λ ∋ µ 7→ cµ

is non-increasing in µ, and therefore differentiable at almost every µ ∈ Λ. We now
have the following result.

Proposition 2.2. Suppose the map Λ ∋ µ 7→ cµ is differentiable at some µ > λ.
Then there exists a sequence (pn)n∈N in P and a corresponding sequence of points
un = pn(tn) ∈ H1(M, g0), n ∈ N, such that

(9) Eµ(un) → cµ, sup
0≤t≤1

Eµ(pn(t)) → cµ, dEµ(un) → 0 in H−1 as n→ ∞,

and with (un)n∈N satisfying, in addition, the “entropy bound”

(10)

∫

M

e2un dµg0 = 2
∣

∣

d

dµ
Eµ(un)

∣

∣ ≤ C = C(µ), uniformly in n.

The energy bound (9) in Proposition 2.2 together with (10) imply a uniform
bound

(11) ||un||2H1 +

∫

M

e2un dµg0 ≤ C = C(µ),

which is sufficient for proving convergence of a suitable subsequence of (un)n∈N

to a critical point uµ of Eµ. By Proposition 2.1 and (9) the limit uµ cannot be a
relative minimizer of Eµ.

A similar argument gives convergence uµk → uλ for a suitable sequence µk ↓ λ,
where the bound (10) now is replaced by – essentially – the geometric bound

∫

M

fdµg =

∫

M

fe2udµg0 = 2πχ(M)

from the Gauss-Bonnet Theorem. Again by Proposition 2.1 and (9) the limit uλ

cannot be a relative minimizer of Eλ.
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SWITZERLAND

Prof. Dr. Camillo De Lellis

Institut für Mathematik
Universität Zürich
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