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A B S T R A C T   

A feasible method to analyse fruit at the tree is requested in precise production management. The employment of 
light detection and ranging (LiDAR) was approached aimed at measuring the number of fruit, quality-related 
size, and ripeness-related chlorophyll of fruit skin. 

During fruit development (65 – 130 day after full bloom, DAFB), apples were harvested and analysed in the 
laboratory (n = 225) with two LiDAR laser scanners measuring at 660 and 905 nm. From these two 3D point 
clouds, the normalized difference vegetation index (NDVILiDAR) was calculated. The correlation analysis of 
NDVILiDAR and chemically analysed fruit chlorophyll content showed R2 = 0.81 and RMSE = 3.63 % on the last 
measuring date, when fruit size reached 76 mm. 

The method was tested on 3D point clouds of 12 fruit trees measured directly in the orchard, during fruit 
growth on five measuring dates, and validated with manual fruit analysis in the orchard (n = 4632). Point clouds 
of individual apples were segmented from 3D point clouds of trees and fruit NDVILiDAR were calculated. The non- 
invasively obtained field data showed good calibration performance capturing number of fruit, fruit size, fruit 
NDVILiDAR, and chemically analysed chlorophyll content of R2 = 0.99, R2 = 0.98 with RMSE = 3.02 %, R2 = 0.65 
with RMSE = 0.65 %, R2 = 0.78 with RMSE = 1.31 %, respectively, considering the related reference data at last 
measuring date 130 DAFB. 

The new approach of non-invasive laser scanning provided physiologically and agronomically valuable time 
series data on differences in fruit chlorophyll affected by the leaf area to number of fruit and leaf area to fruit 
fresh mass ratios. Concluding, the method provides a tool for gaining production-relevant plant data for, e.g., 
crop load management and selective harvesting by harvest robots.   

1. Introduction 

Consumption of fresh fruit is recommended and worldwide an esti
mate of 883 million t, with a share of 10 % for apple, were produced in 
2020 (FAO, 2022). Consumption of apples (Malus × domestica Borkh.) is 
globally high regardless of local production capability resulting in apple 
being one of the most traded fruit in the world. During ontogenesis of 
apple, the harvest maturity is determined by the complex ripening 
process of fruit, which affects fruit storability and market quality (Jones 
et al., 1965; Cusmano et al., 2018). Apple is a climacteric fruit, showing 
enhanced ethylene production and respiration rate at commercial har
vest (Nelson, 1940; Biale, 1964; Hewitt and Dhingra, 2020). Apples 
harvested too early may cause reduced blush colour, lack of cultivar- 
specific aroma, and harsh cortex tissue, whereas too late harvest re
duces storability resulting in postharvest loss and food waste along the 

supply chain. Visual monitoring of apple peel colour is widely performed 
subjectively to identify the harvest-ripe fruit during manual harvest. 
During climacteric, chlorophyll content decreases and, therefore, 
change of chlorophyll during fruit development can be employed as an 
indicator for the ripening progress (Knee, 1980; Zude-Sasse et al., 2002; 
Han et al., 2018). To gain resilient fruit production, instrumental 
monitoring of fruit size and ripeness information is requested in pro
duction measures such as crop load management, yield estimation, and 
determining the harvest date (Solovchenko et al., 2005; Zude-Sasse 
et al., 2016; Delong et al., 2020). Furthermore, the development of 
harvest robots is needed to enable cost effective harvesting. For guiding 
the robot to the ripe fruit, fruit size and chlorophyll information are 
important variables. 

At the present state of knowledge, instrumental non-destructive 
analysis of fruit chlorophyll is established based on color analysis such 
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as employed for analysis of fruit in production and postharvest in sorting 
lines (Walsh et al., 2020). Here, the chlorophyll content is represented in 
the red channel of red, green, blue (RGB) cameras or, e.g., along the a* 
axis of L*a*b* color space. Spectrophotometry has been employed for 
more specific fruit pigment analysis (Knee, 1980; Merzlyak et al., 1999; 
Zude-Sasse et al., 2002) and became commercially available as handheld 
systems (Walsh et al., 2020) and for inline grading to obtain information 
on the fruit ripeness stage. Furthermore, spectral-optical analysis with 
enhanced wavelength resolution enabled the measurement of individual 
chlorophylls at Q band of absorption of chlorophyll pool, such as 
chlorophyll_A, _B, and pheophytin_A (Seifert and Zude-Sasse, 2016). 
Such non-destructive methods can be applied in laboratory or packhouse 
conditions, however, results are affected by varying lighting conditions 
appearing in field applications. 

In outdoor measurements, the normalized difference vegetation 
index (NDVI) was introduced using the sun as light source and 
measuring the reflectance (Rouse et al., 1973). The NDVI examines the 
difference/sum ratio of reflectance at a shortwave near infrared 
(SWNIR) radiation band in the range between 700 nm and 1100 nm and 
at a red wavelength range, frequently measured at 660 nm (SWNIR- 
RED)/(SWNIR + RED). The index was initially used to assess the pres
ence of vegetation and its application was confirmed in many studies 
(Zhou et al., 2001; Anyamba and Tucker, 2005; Tucker et al., 2005). 
Meanwhile, the NDVI and other vegetation indices were applied in 
remote sensing approaches of agricultural production for estimating, e. 
g., vegetation cover, leaf area index (Bannari et al., 2009), and chloro
phyll content of tree canopy (Li et al., 2018). Alternatively, multispectral 
cameras were mounted on unmanned aerial platforms to relate the 
canopy NDVI with vigor of fruit trees (Ballester et al., 2018; Ampatzidis 
et al., 2019), yield and fruit quality prediction (Kasimati et al., 2022). 

Considering NDVI in fruit analysis, measurements were performed in 
close contact of fruit and sensor, capturing a light source and receiver. 
The fruit NDVI was introduced and compared to other data processing 
methods for predicting the fruit chlorophyll content (Zude, 2003). 
Again, various indices were tested (Zude-Sasse et al., 2002; Ziosi et al., 
2008), and NDVI was confirmed to be sensitive in the relevant range of 
fruit chlorophyll content. In apple, the NDVI measured in remittance 
geometry was reported as robust for predicting the fruit chlorophyll in 
comparison to fluorescence readings (Kuckenberg et al., 2008). In stone 
fruit, the use of time-resolved spectral-optical analysis enabled to 
separate the absorption and scattering effects of the fruit tissue, 
enhancing the accuracy of NDVI analysis (Seifert et al., 2015). However, 
all methods are requested to be carried out in close proximity to the fruit 
and varying light conditions alter the signal (Dassot et al., 2011). The 
feasible usage of the chlorophyll data on a robot requires the classifi
cation of various chlorophyll classes on the tree capturing the distance 
between the robot and the fruit in the canopy, which may be assumed as 
0.3 – 1.6 m. 

Three-dimensional (3D) vision systems, such as light detection and 
ranging (LiDAR) laser scanning may overcome the limitations of 
established spectral-optical point or 2D imaging methods (Gongal et al., 
2018; Walsh et al., 2020; Keller et al., 2022). LiDAR has been used in 
remote sensing application in arable farming and forestry due to its 
capability to provide 3D geometric information of vegetation in field 
conditions (Peña et al., 2017; Deery et al., 2021). Furthermore, esti
mation methods for structural parameters and chlorophyll content in 
broadleaf plants were developed employing terrestrial LiDAR sensor 
(Eitel et al., 2010). In almond orchard, the mapping of flowers and fruit 
was achieved (Underwood et al., 2016). Advancement of terrestrial 
LiDAR sensors facilitates to acquire also the intensity of backscattered 
reflection at each point measured. Thus, besides geometric information, 
intensity of reflected signal becomes available as shown earlier for the 
segmentation of apple fruit (Gené-Mola et al., 2019; Tsoulias et al., 
2020). Subsequently, simulation studies were published to quantify 
chlorophyll content of broadleaf forest trees, using terrestrial LiDAR to 
estimate the leaf area and hyperspectral satellite images to extract the 

chlorophyll content (Cifuentes et al., 2018). Showing that variability in 
both chlorophyll content and leaf area can be deducted from the vari
ation in the NIR part of the spectrum. Several studies proved the 
application of LiDAR 3D point cloud with intensity or full waveform 
information for detecting the overall chlorophyll status of vegetation 
(Watt and Donoghue, 2005; Clawges et al., 2007). Wei et al., (2012), 
developed a multy wavelength LiDAR to relate the foliage nitrogen 
uptake with seven vegetation indices, including NDVI and presenting an 
R2 = 0.82. Despite the agronomical importance of fruit chlorophyll and 
the known relationship of fruit chlorophyll content with the NDVI, the 
fruit NDVI and its development during the growth season were not re
ported based on LiDAR data so far. 

Therefore, objectives of the present study were to (i) develop a 
method for estimating the segmented NDVI of fruit obtained with LiDAR 
at 660 and 905 nm (NDVILiDAR), (ii) verify the relationship of temporally 
measured NDVILiDAR with the fruit chlorophyll content (iii) character
izing the change of fruit NDVILiDAR with leaf area to fruit ratio and leaf 
area to fresh mass ratio. 

2. Materials and methods 

2.1. Site description 

The experiment was conducted in the experimental apple orchard 
located in Potsdam-Marquardt, Germany (Latitude: 52.466274◦ N, 
Longitude: 12.57291◦ E) of Leibniz Institute for Agricultural Engineer
ing and Bioeconomy (ATB). The field is located on an 8 % slope with 
southeast orientation, planted with trees of Malus × domestica Borkh. 
‘Gala-Brookfield’, ‘JonaPrince’, and pollinator trees ‘Red Idared’ each 
on M9 rootstock with 0.95 m distance between trees, trained as slender 
spindle with an average tree height of 2.8 m. Trees were statically 
supported by horizontally parallel wires. 

All measurements were conducted five times during fruit develop
ment. Trees were scanned 65 days after full bloom (DAFB65) during the 
end of cell division stage of fruit, before the Brookfield-typical red blush 
colour (Sadar et al., 2013) appeared, subsequently during fruit devel
opment 75, 90, 105, and 130 days after full bloom (DAFB75, DAFB90, 
DAFB105, DAFB130, respectively). Twelve trees of Gala-Brookfield were 
analysed by means of the non-invasive sensor system and fruit were 
sampled from these trees for the lab measurements. Further neighboring 
trees were used for destructive measurements such as leaf area analysis 
after defoliation. 

3. LiDAR measurements in field and laboratory conditions 

3.1. Field data acquisition 

A phenotype sensing system was mounted on a circular conveyor 
platform, established in the experimental apple orchard (TechGarden, 
ATB), employing an electrical engine working with 50 Hz (DRN71, SEW 
Eurodrive, Germany) and stainless-steel chain with mechanical sus
pensions for varying plant sensors (Fig. 1). Two mobile 2D LiDAR sen
sors emitting at wavelength 905 nm (LMS-511, Sick AG, Waldkirch, 
Germany) and 660 nm (R2000, Pepperl Fuchs, Mannheim, Germany) 
were mounted horizontally on the metal frame at 0.7 m above the 
ground level (Fig. 1). The LMS-511 and R2000 were configured with 
0.1667◦ and 0.029◦ angular resolution, 25 and 20 Hz scanning fre
quency, scanning angle of 180◦ and 270◦, 1081 and 12,600 points per 
scan, 20 and 232 hits per cm2, 20 and 10 W consumption power, 
respectively. The field scanning was carried out during the day with an 
average global radiation of 220 W m− 2. A real time kinematic global 
navigation satellite system (RTK-GNSS; AgGPS 542, Trimble, Sunnyvale, 
CA, USA) was used to geo-reference the data and an inertial measure
ment unit (IMU; MTi-G-710, XSENS, Enschede, Netherlands) was 
applied to acquire orientation information, with both sensors placed on 
the sensor frame. The IMU was placed 0.3 m aside from the LiDAR 
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sensor, while the receiver antenna of RTK-GNSS was mounted 0.6 m 
above the laser scanner. The platform enables the automated monitoring 
of 109 trees from both sides around one row of 84 m length, of which 12 
trees were analysed in this study considering field and lab data. The 
circular conveyor moved at 10 mm s− 1 (±0.02 mm accuracy) forward 
speed. 

3.2. Laboratory LiDAR data acquisition 

After each measurement with the phenotyping sensor system, apple 
samples (n = 45) were collected for reference analyses. A subsample of 
apples (n = 10), from the 45 apple-batch, was additionally scanned in 
the laboratory on the five measuring dates. The measurement was car
ried out in a dark room, controlled ventilation and temperature. A rigid 
linear toothbelt conveyor system (Module 115/42, IEF Werner, Ger
many) of 2 m length, equipped with servo positioning controller (LV- 
servoTEC S2, IEF Werner, Germany), was mounted on a rigid aluminium 
frame to carry the two LiDAR sensors and scan each apple individually 
(Fig. 1). The linear conveyor moved at 20 mm s− 1 (±0.05 mm accuracy) 
forward speed. 

4. LiDAR data processing 

4.1. Point cloud reconstruction 

The 3D point cloud dataset was generated and processed in the 
Computer Vision Toolbox™ of MATLAB (2018b, Mathworks, Natick, 
MA, USA). Board targets, coated with white barium sulphate (BaSO4, 
CAS Number: 7727–43-7, Merck, Germany) for maximum values and 
blackened urethane (S black, Avian Technologies, New London, NH, 
USA) for minimum values were used to calibrate the apparent reflec
tance intensity (RToF) of the LiDARs, obtaining the RToF [%] at 905 and 
660 nm for each point in the 3D point cloud. 

Rigid translations and rotations were applied on each point of 3D 
cloud, while alignment of pairing tree sides was carried out with itera
tive closest point algorithm (Tsoulias et al., 2019). Trees were 
segmented based on stem position and planting distance to gain points 
per tree (PPT) from each plant (Tsoulias et al., 2019). More specifically, 
the bivariate point density histogram enabled the detection of the peak 
of laser hits for each individual tree based in the assumption that the 
stem points appear in the center of the canopy. According to the tree 
training system as slender spindle, the area closer to the stem position 

can be assumed to appear with enhanced frequency. The coordinates of 
the estimated stem position were utilized as the center for the segmen
tation cylinders in order to obtain the points that belonged to each in
dividual tree. The points within the boundaries of the cylinder were 
segmented and considered as the tree points. In the laboratory, data 
were recorded and all measured distances were filtered to remove sur
rounding points. As the apple samples were scanned from 0.9 m dis
tance, the distance filter was configured between 0.75 and 1.25 m. 
Distant filtering also helped to reduce the raw data file size and resulted 
in less processing time in further steps. Using the corresponding dis
tances in x and y direction of vertical line of scan. The linear movement 
of the LiDAR scanner was in z direction and displacement in this direc
tion was calculated by forward speed and time difference between each 
vertical line of scan. 

For all data sets from field and laboratory, the 3D point clouds at 660 
nm and 905 nm were further processed capturing data sets of position in 
local Cartesian x,y, z coordinate system and reflected intensity of each 
point (RToF). 

4.2. Leaf area estimation 

For each point of 3D tree cloud the geometric feature of linearity (L) 
and curvature (C) were calculated applying the k-nearest neighbours 
(KNN) algorithm in the local neighbourhood of points Pi = [xi; yi; zi] 
(Tsoulias et al., 2022). The total number of Pi within each tree’s cloud 
was used to estimate the mean of all nearest neighbors. The latter was 
used to produce eigenvalues (λ1, λ2, λ3), after decomposition of covari
ance matrix. The probability density function was performed to define 
the thresholds of L, C, LiDAR’s backscattered intensity (RToF) to distin
guish the 3D points of woody parts (W) from leaves. The value with the 
highest likelihood (mode) within LW, CW, RToF,W distribution was used as 
threshold (Rth,W; Cth,W; and Lth,W). Points that fulfilled the criteria of LW 
≤ Lth,W, Cth,W ≤ CW, and Rth,W ≤ RToF,W were segmented and categorized 
as wood. 

Segmented points of wood were subtracted from the total number of 
PPT. A linear regression model was built to express the relationship 
between manually obtained leaf area data and remaining PPT, sepa
rately for each growth stage. The model performance was evaluated 
based on the adjusted coefficient of determination in calibration (R2

adj) 
and and root mean square error (RMSE). The linear calibration was 
applied to convert PPT into LALiDAR of each tree (Tsoulias et al., 2022). 

Fig. 1. Sensors mounted on a. chain conveyor to measure entire trees in the experimental orchard, and b. tooth-belt conveyor to measure individual fruit in dark 
room conditions. 
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4.3. Apple detection, counting, and sizing 

For defining the position and shape of apples, the geometric feature 
of curvature (C) and RToF were used considering each point of the 3D tree 
point cloud (Tsoulias et al., 2020). Following the previous method, the 
local neighbors were decomposed and eigenvalues were produced. The 
values closer to 100, the higher the likelihood for shape of point 
appearance to be curved. Threshold values of apple points in terms of C 
and reflected intensity (CA and RToF,A) were defined according to 
Tsoulias et al., (2020) by performing probability density function. The 
points that fulfilled the criteria of Cth,A ≤ CA, and Rth,A ≤ RToF,A were 
segmented and categorised as apple. Subsequently, a density-based scan 
algorithm (DBSCAN) was applied to find the point sets, using the mean 
manually measured diameter of fruit that was found in the neighbor
hood search radius and the value 10 as a minimum number of neighbors. 
The value of 10 was applied resulting from manually run tests showing 
that less neighboring points result in random appearance of sets. The 
maximum distance in x and y axes of fruit points was considered as 
diameter of each point set recognized as an apple (DLiDAR). Thereafter, k- 
means clustering was applied to find the fruit center(s) in each apple 
cluster and count the number of fruit per tree (FruitLiDAR). 

Subsequently, the ratio of leaf area to number of fruit per tree 
(LALiDAR:FruitLiDAR) was estimated in each growth stage in low and high 
sections of tree canopy determined by the wire structure at 1.8 m stat
ically supporting the tree. 

4.4. NDVI estimation 

The point clouds of segmented apples was obtained from the two 
LiDAR laser scanners, which varied considering the point density due to 
different scanning frequency and angle resolution. The corresponding 
point clouds of the same apple were merged by means of a density 
histogram applied on segmented apple clouds (Fig. 2). 

The x and y values of each point paired in bins of size 3.3 mm2, 
allowing to describe the underlying point density distribution of apple 
RToF as means of each bin within the grid of 40 × 40 bins within the 
shape of each fruit. The number of points in each bin varied according to 
the shape and size of apple. The bin’s mean values allowed to use the 
corresponding values of both LiDAR systems for calculating the fruit 
normalised differential vegetation index (NDVILiDAR). 

NDVILiDAR =
RToF,905 − RToF,660

RToF,905 + RToF,660 

Where RToF,905 and RToF,660 represent the reflected intensity 
measured at 905 and 660 nm, respectively. The derived NDVILiDAR cloud 
of each apple was corrected for outliers by means of Gaussian filter with 
standard deviation of distribution equal to 1. The interquartile range, 
estimated by subtracting the points of lowest and highest quartile, were 
used in further calculations. The process was applied in all segmented 
fruit point clouds over the growth period (Fig. 2). The mean NDVILiDAR of 
each fruit was processed further. The results were categorised in low 
(0–1.8 m) and high (1.8–2.6 m) sections of tree heights determined by 

Fig. 2. Flow chart to calculate fruit NDVILiDAR from segmented 3D fruit point clouds.  
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the wire structure. 

5. Reference measurements 

5.1. Leaf area 

On each measuring date, 3 apple trees neighboring the monitored 12 
trees were manually defoliated. The overall 15 trees were scanned 
before and after defoliation. The obtained leaf area per tree (LARef) was 
manually recorded with a desktop scanner (Scanjet 4850, HP, USA) by 
counting the number of green pixels per leaf with a MATLAB script 
(Vers. 2018b, Mathworks, Natick, MA, USA). The area of 6241 pixel 
corresponded to 1 cm2. The results were categorised in the low and high 
section of canopy determined by the wire structure. 

5.2. Crop load and fruit quality 

Fruit number (FruitRef) was manually counted per tree (n = 12) in low 
and high sections of the canopy, separated by the construction wires at 
1.8 m, on the last three measuring dates. Measurements of fruit diameter 
(n = 180) were recorded at the two tree height ranges over the growth 
period. 

At each of the five measuring dates, 45 fruit were analysed in the 
laboratory. Fruit diameter [mm] was manually measured (Dref) in the 
laboratory by means of a digital calliper gauge considering the mean 
diameter of two measurements taken equatorially with 90◦ difference. 
The fruit fresh mass (FM) [kg] was measured by weighing each fruit 
sample. 

The reference NDVI (NDVIRef) was recorded with a handheld spec
trophotometer (Pigment Analyzer, PA1101, CP, Golm, Germany) in 
remittance geometry by placing the sensor probe on the fruit surface 
avoiding stray light with the silicon probe of the device. Also, these 
analyses were separated in low and high sections of tree canopy. 

The chlorophyll content of skin and associated hypodermis tissue (2 
mm thickness) of apples (n = 45) was destructively analysed at each 
measuring date over the fruit development. The chlorophyll_A, _B, and 
pheophytin_A contents were analysed by spectrophotometry after 
acetone/diethyl ether extraction by means of iterative multiple linear 
regression considering the standard spectra of the three chlorophylls 
(Pflanz and Zude, 2008). 

5.3. Data evaluation 

Descriptive statistics were applied to all datasets capturing mini
mum, maximum, mean, standard deviation. A regression analysis was 
performed to quantify linear and logarithmic relationships between the 
manual measurements and LiDAR-derived data over the growing stages, 
androot mean square error (RMSE), mean bias error (MBE), coefficient 
of determination (R2) were calculated. Descriptive statistics were car
ried out by Matlab (v.R2018b, Mathworks Inc., Natick, MA, USA). 

6. Results and discussion 

6.1. Fruit segmentation 

Slender spindle form the major training system of apple trees in 
world-wide production, providing a 3D structure in which the fruit are 
more or less evenly distributed according to the success of the thinning 
measure. Yield monitoring is considered as an important step when 
implementing precision horticulture techniques in orchards. In the 
present study, fruit detection technique was applied to extract the 
number of fruit from the point cloud of LiDAR905 and LiDAR660 (Fig. S1). 
The fruit segmentation routine was described earlier (Tsoulias et al., 
2020). The 3D point cloud data are provided as supplement. 

The LiDAR905 was used as a pilot sensor to segment the fruit, 
pointing to R2 = 0.99 for the fruit detection (Table 1).The F1 values were 
85.7, 87.3, 88.6, 91.3, 91.4 at DAFB65, DAFB75, DAFB90, DAFB105, 
DAFB130, respectively. The highest difference between manually coun
ted and estimated number of fruit was observed at DAFB65, when mean 
apple size was DRef = 35.5 mm, reaching R2 = 0.88. On the last 
measuring date, when the fruit reached their maximum size of Dref =

76.1 mm, R2 = 0.99 was found. Differences appeared for individual 
trees, but the overall precision to count fruit was high (Table 1). 

After fruit localization and fruit counting, the estimated fruit size 
(DLiDAR) was compared to the manually measured diameter during the 
growth period (Table 1). The F1 values were 86.5, The DLiDAR was 
related to the manual measurements, especially in the later stages, 
DAFB105 and DAFB130, resulting in R2 = 0.95 and R2 = 0.98 with RMSE 
= 3.1 % and 3.0 %, respectively. Generally, enhanced measuring un
certainty was noticed on the first two measuring dates, when fruit size 
was smaller. More specifically, a less pronounced relation was observed 

Table 1 
Reference data and LiDAR derived estimations with error analysis (mean bias error, MBE; root mean squared error, RMSE; coefficient of determination, R2) considering 
fruit number (FruitLiDAR), fruit diameter (DLiDAR), and leaf area (LALiDAR) measured at the tree in five growth stages of apples in day after full bloom (DAFB). Results of 
leaf area corresponds to manually deafoliated trees (n = 3).    

DAFB65 DAFB75 DAFB90 DAFB105 DAFB130 

No. FruitRef Sum (n = 12 trees) X X 795 771 771 
Mean 65 64 65 
Max 84 84 84 
Min 19 19 19 

No. FruitLiDAR Sum 745 773 788 767 771 
Mean 66 71 71 70 70 
MBE − 4 − 2 − 1 1 0 
RMSE (%) 0.33 0.26 0.69 0.96 0.01 
R2 0.88 0.96 0.96 0.99 0.99 

DRef (mm) Mean 35.5 48.3 59.1 61.4 76.1 
Max 41.7 52.5 65.0 66.0 83.0 
Min 32.0 41.4 52.0 56.0 68.0 

DLiDAR 

(mm) 
Mean 35.8 48.4 59.1 61.5 76.1 
MBE 0.37 0.46 0.11 0.05 − 0.08 
RMSE (%) 6.13 6.04 6.22 3.08 3.02 
R2 0.85 0.87 0.86 0.95 0.98 

LARef (m2) Mean 6.40 6.41 6.47 6.48 6.54 
Max 6.48 6.51 6.54 6.55 6.56 
Min 6.26 6.26 6.20 6.41 6.47 

LALiDAR (m2) Mean 6.41 6.51 6.54 6.50 6.60 
MBE 0.17 0.22 0.23 0.23 0.25 
RMSE (%) 3.14 3.03 3.12 2.42 6.36 
R2 0.89 0.95 0.96 0.95 0.86  
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on the first measuring date, presenting a slight overestimation of fruit 
size (Table 1). Similar good results were reported earlier on fruit 
detection and sizing at harvest (Gongal et al., 2018; Gene-Mola et al., 
2019), whereas the early fruit sizing was not approached frequently. 
Concluding, the LiDAR based analysis provides an accurate tool for fruit 
counting. 

When starting the LiDAR readings in the present study, foliage of 
decidious trees was almost developed. The mean of LALiDAR increased 
slightly from 6.40 m2 to 6.54 m2 during the measuring period capturing 
the range between DAFB65 and DAFB130, respectively (Table 1). LALiDAR 
showed an overestimation at all measuring dates, presenting MBE =
0.17 m2 at DAFB65 and 0.25 m2 at last date. The manually measured leaf 
area was correlated to LALiDAR over the measuring period, showing an 
R2 = 0.89 with RMSE = 3.1 % at DAFB65 and R2 = 0.86 with RMSE = 6.4 
% at DAFB130. The accuracy of the non-invasive analysis was limited due 
to occlusions and coinciding leaf surfaces as suggested in many plant 
species (Deery et al., 2021; Keller et al., 2022). However, such data 
derived from LiDAR point clouds are informative for crop load man
agement, e.g. in late hand thinning of fruit considering the leaf area to 
fruit ratio (Penzel et al., 2021). According to the findings presented in 
Table 1, both information can be obtained with the same sensing 
technique. 

7. Bivariate point density histogram at two wavelengths 
measured in laboratory and field conditions 

The backscattered reflectance intensity measured with the two 
LiDAR sensors LiDAR905 (RToF,905) and LiDAR660 (RToF,660) were 
extracted from apple point clouds (Fig. 2) measured in laboratory con
ditions and in the orchard over the fruit growth period. Applying the 

bivariate histogram of apple point clouds allowed to acquire the mean 
backscattered intensity (RToF) with the same point density from both 
laser scanners in dark room and in field measurements (Fig. 3). The 
number of points per apple increased with fruit size during the growth 
period, while the number of bin remained the same allowing a direct 
comparison between all fruit. RToF values found in previous work done 
on apple fruit, aimed at fruit segmentation, ranged between 60 % and 
90 % measured at shortwave near infrared band of 905 nm (Gené-Mola 
et al., 2019). The same range was found in the present study for RToF,905 
(Fig. 3). Comparing lab and field data, a sharper peak between 60 % and 
80 % was found in field measurements. In field conditions, apple surface 
was captured by a lower number of points due to occlusions. The fre
quency distribution of RToF,905 hardly changed over the fruit growth 
period. 

RToF,660 ranged from 0 to 80 % in the lab, whereas in field conditions 
the narrowed range between 0 and 40 % was captured. The RToF,660 
showed lower values compared to RToF,905 due to chlorophyll absorption 
(Fig. 3). Furthermore, frequency curves were moving in direction from 
low to high intensity due to degradation of chlorophyll pigments, which 
corresponds to reduced absorption coefficient in riper fruit. The most 
frequent value in RToF,660 was found at 26.9 %, 33.8 %, 35.7 %, 41.3 %, 
and 63.6 % for DAFB65, DAFB75, DAFB90, DAFB105, and DAFB130, 
respectively. However, in field conditions high overlap of RToF,660 in
tensity curves were found, with the most frequent value fluctuating with 
18.1 %, 13.6 %, 23.5 %, 28.2 %, 27.9 % at DAFB65, DAFB75, DAFB90, 
DAFB105, DAFB130, respectively. 

From the merged point clouds the fruit NDVILiDAR was calculated. 
The frequency curves of NDVILiDAR showed a high variance and, during 
the growth period, moved in the direction from low to high intensity as 
can be assumed due to degradation of chlorophyll pigments which 

Fig. 3. Bivariate histogram considering all bins (n = 160 for each apple) of backscattered reflectance histogram (RToF) at five measuring dates during fruit devel
opment measured in A. laboratory (n = 10) and B. field (n = 771) for LiDAR905 (left column) and LiDAR660 (right column). 
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corresponds to the fruit ripening process (Fig. 4). More specifically, 
NDVILiDAR ranged from 0.05 to 0.72 with a peak value of 0.34 at DAFB65. 
The NDVILiDAR values were reduced following chlorophyll degradation, 
reaching a peak value of 0.11 and a range between − 0.25 and 0.38 at 
DAFB130. Reduced ranges appeared in NDVILiDAR measured in the or
chard over the growing period (Fig. 4), again assumingly due to less 
points captured from the fruit in the partly overlapping foliage. Over the 
early measuring dates, the fruit NDVILiDAR hardly changed. The last 
measuring date showed a clear decrease of NDVILiDAR in the laboratory 
as well as in field measurements. Such findings, obtained non- 
invasively, are consistent with previous findings measured by means 
of spectroscopy with the sensor probe being in contact to the fruit sur
face (Zude-Sasse et al., 2002; Muresan et al., 2017). 

8. Correlation of NDVILiDAR and fruit reference analyses 

For referencing purpose, after LiDAR scanning, the NDVIRef was 
measured with a handheld spectrophotometer and the chlorophyll 
content (ChlA, ChlB, Chlpheo and ChlA+B+pheo) were chemical analysed 
over the growth period (Fig. 5). The temporal decrease of NDVIRef was 
revealed, presenting a mean value of 0.88 ± 0.05 standard deviation at 
DAFB65 and a mean value of − 0.21 ± 1.21 at DAFB130. The variability of 
ChlA, ChlB, Chlpheo and its sum ChlA+B+pheo were enhanced at DAFB65 and 
DAFB75, and decreased during the following measuring dates. Single 
factor ANOVA revealed clear difference (p < 0.001) among all dates 
considering the spectral-optically measured NDVIRef. Mean values of 
total chlorophyll content (ChlA+B+pheo) were 0.98, 0.63, 0.46, 0.43 and 
0.41 mg cm− 2 at DAFB65, DAFB75, DAFB90, DAFB105, and DAFB130, 
respectively (Fig. 5). 

The fruit NDVILiDAR measured in dark room conditions of indivudual 
fruit (n = 10 at each measuring date) decreased from 0.36 at DAFB65 to 
0.13 DAFB130 (Table 2). A close relationship was observed between 
NDVIRef and NDVILiDAR at DAFB130 (R2 = 0.85, RMSE = 2.12 %), while 
low correlations were found at DAFB65, DAFB90, and DAFB105. The ChlA 
mean value ranged from 0.36 to 0.12 10-2 mg/cm2 over the growth 
period. Generally, NDVILiDAR showed enhanced correlation to ChlA 
compared to other chlorophylls or the sum of chlorophylls over the 
growing period. More specifically, for ChlA the R2 of 0.85, 0.95, 0.82, 
0.59, and 0.81 were found at DAFB65 DAFB75, DAFB90, and DAFB130, 
respectively. Concluding, the NDVILiDAR was confirmed as an index for 
the chlorophyll content of fruit when measured in laboratory conditions. 
Earlier work on the NDVI of apple fruit measured by means of spectral- 
optical measurement in contact to the fruit report slightly enhanced 
correlations (Zude, 2003; Seifert et al., 2015). However, other vegeta
tion indices captured with the available LiDAR sensors may be tested in 
future work (Zhang et al., 2021). 

A linear model was used to express the overall relationship between 

NDVIRef and NDVILiDAR, revealing high R2 = 0.86, RMSE = 3.32 % 
calculated from the 3D point cloud of apples measured in the laboratory 
(Fig. 6). In parallel, the overal relationship between ChlA and NDVILiDAR 
was expressed with a logarithmic equation, revealing R2 = 0.81, RMSE 
= 3.98 % considering all measuring dates (Fig. 6). 

In contrast to the laboratory measurements, mean values of NDVILi

DAR measured in the orchard showed higher range. The R2 of mean fruit 
NDVILiDAR and mean values of spectral-optically measured fruit NDVIRef 
was 0.65 considering all measuring dates (Table 3). However, low and 
moderate correlations were observed over fruit development with 
highest coefficients of determination at DAFB75 (R2 = 0.51, RMSE =
1.58 %) and DAFB90 (R2 = 0.61, RMSE = 1.54 %). Additionally, the 
mean fruit NDVILiDAR, measured in the orchard, was evaluated with the 
spectral-optically measured mean NDVIRef in low and high sections of 
the tree canopy (Fig. 7). The fruit measured in low section below 1.8 m, 
revealed R2 = 0.62 (Fig. 7A), while R2 = 0.71 was found in high sections 
> 1.8 m of canopy (Fig. 7B). The relationship of mean ChlA and mean 
NDVILiDAR separated at each measuring date appeared scattered. How
ever, the overall range of mean ChlA and mean NDVILiDAR showed high 
relationship of R2 = 0.78 and RMSE = 1.31 %. Furthermore, ChlA 
measurements were separated in low and high sections of canopies, 
resulting in R2 = 0.41 and R2 = 0.81 at last measurement, respectively. 
The visually higher canopy density in lower tree section enhanced the 
error. 

8.1. Impact of crop load on fruit NDVILiDAR 

Destructive measurements of LARef and points per tree (PPT) 
excluding points of wood were used to build a linear regression model 
for estimating the LA of each tree from the 3D tree point clouds (Fig. S1). 
Including all measuring dates, LALiDAR showed R2 of 0.87 with RMSE =
1.32 % and R2 = 0.96 with 0.83 %, in low and high sections of the tree, 
respectively. The mean of segmented leaf area by means of LALiDAR 
increased from 5.85 m2 to 5.98 m2 during measuring period in upper 
section (>1.8 m) of the tree, while lower tree section (<1.8 m) devel
oped higher LALiDAR with 6.17 m2 and 7.44 m2 between DAFB65and 
DAFB130, respectively. 

The segmented LALiDAR and number of fruit (FruitLiDAR) were used to 
estimate the leaf area to fruit ratio (LALiDAR:FruitLiDAR) in low and and 
high section of tree canopy (Fig. 8). The LALiDAR:FruitLiDAR varied from 
0.12 m2 fruit− 1 at DAFB65 to 0.17 m2 fruit− 1 at DAFB130 in low sections, 
while a higher range was found in the upper part of canopies reaching 
0.31 m2 fruit− 1 at last measuring date. Clear difference was observed (p 
< 0.001) during fruit development in the two canopy sections. The 
highest percentage difference was found at last measuring date reaching 
58.3 %. 

The fruit NDVILiDAR showed no interaction with LALiDAR:FruitLiDAR 

Fig. 4. Bivariate histogram of NDVILiDAR considering all bins (n = 160 for each fruit) measured in A. dark room (n = 10) and B. orchard (n = 771) at five measuring 
dates during fruit development. 
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over the growth period. However, a logarithmic model was able to ex
press the relationship of the two variables, considering the average 
values of each measuring date (Fig. 8). The LALiDAR:FruitLiDAR correlated 
to fruit NDVILiDAR, revealing R2 = 0.71 and RMSE = 2.86 % in the upper 
canopy section, while similar R2 = 0.74 with RMSE = 2.46 % was 
observed in the lower section. 

The manually measured fruit fresh mass showed the expected high 
correlation to manually measured fruit diameter (DRef) with R2 of 0.95 
and RMSE of 0.86 %. The fruit diameter derived by means of LiDAR 
scanning (DLiDAR) showed a similar R2 of 0.94 with RMSE = 0.96 % 
(Figure S2). Using the LiDAR estimates of leaf area and fruit fresh mass 
allowed to monitor LALiDAR:FMLiDAR ratio during fruit growth. A steep 
decrease of LALiDAR:FMLiDAR was analysed between values at DAFB65 and 
DAFB75 in the entire canopy (Fig. 9A). Both curves, of low and high 
sections, showed a reciprocal trend that decreased due to fruit growth. 
At early measuring date, LALiDAR:FMLiDAR was reduced in the upper 
canopy section, revealing a mean value of 0.22 m2/g at DAFB65. In the 
low section of canopy, 0.29 m2/g was found at DAFB65. At the last 

Fig. 5. NDVIRef and fruit chlorophyll content during fruit development in day after full bloom (DAFB) (n = 45, total = 225). In each box, the centre line represents the 
mean value, the top and bottom of the box correspond to the 25th and 75th percentiles, and whiskers represent the 10th and 90th percentiles. Note: ‘***’ indicates a 
significant difference between groups (p < 0.001) and ‘ns’ indicates non-significant. 

Table 2 
Relationship of LiDAR derived fruit NDVI estimation (NDVILiDAR) measured in 
the laboratory (n = 50), fruit NDVI measured with handheld spectrophotometer 
(NDVIRef), and chemically analysed fruit chlorophyll content (ChlA) in 10-2 mg/ 
cm2 at five measuring dates during apple growth provided in day after full bloom 
(DAFB).    

DAFB65 DAFB75 DAFB90 DAFB105 DAFB130  

Mean  0.36  0.35  0.29  0.26  0.13 
NDVILiDAR Max  0.47  0.42  0.34  0.33  0.29  

Min  0.28  0.24  0.24  0.17  0.07  
Mean  0.95  0.89  0.47  0.35  0.26 

NDVIRef RMSE (%)  5.15  2.12  3.43  4.54  2.12  
R2  0.51  0.67  0.35  0.50  0.85  
Mean  0.36  0.34  0.24  0.15  0.12 

ChlA RMSE (%)  3.13  5.25  3.22  5.05  3.63  
R2  0.85  0.95  0.82  0.59  0.81  

Fig. 6. Scatterplots of LiDAR derived fruit NDVI (NDVILiDAR) measured in the laboratory with A. manually measured NDVIRef and B. chemically measured chlorophyll 
content at five measuring dates during fruit development of apples (n = 50). 
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measuring date, DAFB130, low and high sections of the canopy reached 
equal reduced value of 0.03 m2/g (Fig. 9). 

In contrast to the LALiDAR:FruitLiDAR, moderate and high correlations 
were observed between LALiDAR:FMLiDAR and fruit NDVILiDAR during fruit 
development. More specifically, R2 of 0.43 and 0.71 was found at 
DAFB65 and DAFB130 in high canopy section, respectively. Lower parts 
of the tree revealed enhanced R2 of 0.83 and 0.85, in earliest and last 
measurement, respectively. 

Additionally to the analysis of fruit chlorophyll based on fruit 
NDVILiDAR, also the leaf NDVILiDAR was measured. Earlier work showed 
high correlation of LiDAR data and leaf chlorophyll content (Hosoi et al., 
2019; Sun et al., 2019). In the present work such, findings were 
confirmed for apple trees measured during fruit growth period, pre
senting moderate correlations (Figure S3). The leaf NDVILiDAR was lin
early related with the corresponding leaf ChlA, resulting in R2 = 0.61 and 

RMSE = 1.32 % and R2 = 0.62 with RMSE = 1.12 % in low and high 
section of canopies, respectively. 

9. Conclusions 

LiDAR 3D point clouds were acquired from apples in dark room and 
entire apple trees in field conditions. It was found that 660 and 905 nm 
wavelength of the LiDAR enabled to estimate the NDVILiDAR point cloud 
of apples and leaves. The fruit NDVILiDAR curves derived in the labora
tory and field followed chlorophyll content degradation of apples during 
ripening. The fruit NDVILiDAR resulted in high coefficient of determina
tion with ChlA (R2 = 0.81) and NDVIRef (R2 = 0.85), when measured in 
dark room conditions. Less pronounced correlation of NDVILiDAR to 
NVDIRef were observed in the field, considering mean values of apples 
located in low (R2 = 0.62) and high (R2 = 0.71) sections of canopies. 

Table 3 
LiDAR derived mean fruit NDVI (NDVILiDAR) measured in the orchard with error analysis considering mean NDVI measured spectral-optically in contact to the fruit at 
the tree (NDVIRef) (n = 12 trees) at five measuring dates during apple development provided in day after full bloom (DAFB).    

DAFB65 DAFB75 DAFB90 DAFB105 DAFB130 overall  

Mean  0.95  0.89  0.47  0.35  0.26  0.41 
NDVILiDAR RMSE (%)  1.54  1.58  1.54  2.87  2.26  0.58  

R2  0.41  0.51  0.61  0.12  0.37  0.65  

Fig. 7. Scatter plots of mean LiDAR derived NDVI (NDVILiDAR) and mean spectral-optically measured NDVIRef (n = 12) in A. low and B. high sections of the tree 
measured in the field, at five growth stages of apples provided in day after full bloom (DAFB). 

Fig. 8. A. Temporal development of leaf area to fruit ratio estimated by means of LiDAR (LALiDAR and FruitLiDAR) B. Regression analysis of LALiDAR:FruitLiDAR ratio and 
fruit NDVI (NDVILiDAR) in low (open) and high (closed symbol) section of the canopy (n = 12) during fruit development in day after full blum (DAFB). Note: ‘***’ 
indicates a significant difference between classes (p < 0.001). 
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The leaf area to fruit ratio derived by means of LiDAR interacted with 
the NDVILiDAR of apples. Also, the regression curve of LALiDAR:FMLiDAR 
and NDVILiDAR exhibited high correlations of R2 = 0.71 and R2 = 0.85 in 
high and low sections of the tree, respectively. 

Overall, this study shows the applicability of LiDAR backscattered 
intensity to analyse the NDVILiDAR and estimate the chlorophyll contents 
of fruit and leaves. LiDAR-derived data on crop load and chlorophyll 
content can support decision making of apple harvesting robots, find 
application in crop load management, and allow further physiological 
studies on fruit development. 
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Gené-Mola, J., Gregorio, E., Guevara, J., Auat, F., Sanz-Cortiella, R., Escolà, A., 
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