© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of (η^4 -cycloocta-1,5-dien)-*N*-(2-(diphenylphosphinooxy)-3-(naphthalen-1-yloxy)propyl)-*N*-(pentan-3-yl)-1,1-diphenylphosphin-amine-rhodium(I) tetrafluoroborate, [Rh(C₈H₁₂)(C₄₂H₄₃NO₂P₂)][BF₄]

Zhenya Dai, Detlef Heller, Angelika Preetz and Hans-Joachim Drexler*

Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany

Received March 3, 2007, accepted and available on-line June 26, 2007; CCDC no. 1267/2002

Abstract

C₅₀H₅₅BF₄NO₂P₂Rh, monoclinic, *P*12₁1 (no. 4), a = 12.722(3) Å, b = 15.248(3) Å, c = 12.818(3) Å, $\beta = 115.80(3)^\circ$, V = 2238.7 Å³, Z = 2, $R_{gt}(F) = 0.036$, $wR_{ref}(F^2) = 0.079$, T = 200 K.

Source of material

The synthesis is described in [1].

Discussion

Unexpected differences between the title compound and the related norborna-2,5-diene complex in the catalytic hydrogenation of the diolefines norborna-2,5-diene and (Z,Z)-cycloocta-1,5-diene [2] motivated us to determine the crystal structure of the title compound. The ratio of the rate constants for the hydrogenation of the diolefine complexes is approximately 5.3 [3]. It is well known that the double bonds of the diolefines are not co-

ordinated perpendicular to the P–Rh–P plane. The dihedral angle between the planes P–Rh–P and X–Rh–X (X = centroid of the double bond) is in the case of the (R,R)-COD-complex 5.6° (clockwise twist) and for the (R,R)-NBD-complex 5.3° (clockwise twist).

Table 1. Data collection and handling.

Crystal: Wavelength:	red prism, size $0.2 \times 0.4 \times 0.5$ mm Mo K _m radiation (0.71073 Å)
μ :	5.11 cm^{-1}
Diffractometer, scan mode:	Stoe IPDS 2, ω/φ
$2\theta_{\text{max}}$:	46°
N(hkl) _{measured} , N(hkl) _{unique} :	10753, 6202
Criterion for I_{obs} , $N(hkl)_{gt}$:	$I_{\rm obs} > 2 \sigma(I_{\rm obs}), 5557$
N(param) _{refined} :	550
Programs:	SHELXS-97 [4], SHELXS-97 [5]

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom Site		x	у	z	$U_{ m iso}$	
H(1A)	2a	-0.3981	-0.2615	-0.2900	0.08	
H(2A)	2a	-0.4115	-0.3785	-0.3896	0.08	
H(3A)	2a	-0.2625	-0.3660	-0.4563	0.08	
H(3B)	2a	-0.2579	-0.4545	-0.3951	0.08	
H(4A)	2a	-0.0976	-0.3185	-0.3085	0.08	
H(4B)	2a	-0.0688	-0.4165	-0.3161	0.08	
H(5A)	2a	-0.0397	-0.4344	-0.1325	0.08	
H(6A)	2a	-0.0446	-0.3322	-0.0199	0.08	
H(7A)	2a	-0.0632	-0.1982	-0.1272	0.08	
H(7B)	2a	-0.1509	-0.2028	-0.0731	0.08	
H(8A)	2a	-0.2649	-0.1590	-0.2545	0.08	
H(8B)	2a	-0.2009	-0.2178	-0.3073	0.08	
H(9A)	2a	-0.4585	-0.4378	0.0788	0.08	
H(9B)	2a	-0.4896	-0.3663	-0.0157	0.08	
H(10Å)	2a	-0.2996	-0.3425	0.0251	0.08	
H(11A)	2a	-0.3613	-0.2975	0.1707	0.08	
H(11B)	2a	-0.2923	-0.3776	0.2435	0.08	
H(13A)	2a	-0.3134	-0.2567	0.3435	0.08	
H(14A)	2a	-0.2627	-0.1607	0.5054	0.08	
H(15A)	2a	-0.0831	-0.0909	0.5869	0.08	
H(17A)	2a	0.1066	-0.0557	0.5821	0.08	

^{*} Correspondence author (e-mail: hans-joachim.drexler@catalysis.de)

Table 2. Continued.

Table 2. Continued.

Site	x	У	z	$U_{ m iso}$	Atom	Site	x	У	z	Uiso
2 <i>a</i>	0.2340	-0.0737	0.4976	0.08	H(31A)	2 <i>a</i>	-0.4363	-0.7811	-0.2237	0.08
2a	0.1811	-0.1598	0.3288	0.08	H(32A)	2a	-0.4337	-0.6486	-0.1281	0.08
2a	-0.0042	-0.2272	0.2455	0.08	H(34A)	2a	-0.5148	-0.2839	-0.2049	0.08
2a	-0.6034	-0.5645	-0.1581	0.08	H(35A)	2a	-0.6892	-0.2049	-0.3049	0.08
2a	-0.5012	-0.5710	0.0853	0.08	H(36A)	2a	-0.8568	-0.2775	-0.4335	0.08
2a	-0.4882	-0.6417	0.0047	0.08	H(37A)	2a	-0.8507	-0.4249	-0.4677	0.08
2a	-0.6166	-0.6922	0.0768	0.08	H(38A)	2a	-0.6715	-0.5050	-0.3795	0.08
2a	-0.6967	-0.6103	0.0233	0.08	H(40A)	2a	-0.1555	-0.6071	-0.1340	0.08
2a	-0.6836	-0.6818	-0.0581	0.08	H(41A)	2a	-0.1545	-0.7614	-0.1396	0.08
2a	-0.6669	-0.4168	-0.1280	0.08	H(42A)	2a	-0.1927	-0.8419	-0.0056	0.08
2a	-0.6678	-0.4594	-0.0187	0.08	H(43A)	2a	-0.2171	-0.7713	0.1447	0.08
2a	-0.8568	-0.4635	-0.1707	0.08	H(44A)	2a	-0.2150	-0.6159	0.1526	0.08
2a	-0.8108	-0.5166	-0.2471	0.08	H(46A)	2a	0.0403	-0.5407	0.0147	0.08
2a	-0.8117	-0.5598	-0.1365	0.08	H(47A)	2a	0.2394	-0.5158	0.1323	0.08
2a	-0.4868	-0.5117	-0.4188	0.08	H(48A)	2a	0.2985	-0.4304	0.3003	0.08
2a	-0.4878	-0.6446	-0.5140	0.08	H(49A)	2a	0.1579	-0.3709	0.3498	0.08
2a	-0.4653	-0.7784	-0.4167	0.08	H(50A)	2a	-0.0414	-0.3903	0.2325	0.08
	Site 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a	Site x $2a$ 0.2340 $2a$ 0.1811 $2a$ -0.0042 $2a$ -0.6034 $2a$ -0.61012 $2a$ -0.4882 $2a$ -0.6166 $2a$ -0.6667 $2a$ -0.6836 $2a$ -0.6667 $2a$ -0.6678 $2a$ -0.8568 $2a$ -0.8108 $2a$ -0.8117 $2a$ -0.4868 $2a$ -0.4878 $2a$ -0.4878 $2a$ -0.4653	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sitexyz U_{iso} AtomSitexyz2a0.2340-0.07370.49760.08H(31A)2a-0.4363-0.7811-0.22372a0.1811-0.15980.32880.08H(32A)2a-0.4337-0.6486-0.12812a-0.0042-0.22720.24550.08H(34A)2a-0.5148-0.2839-0.20492a-0.6034-0.5645-0.15810.08H(35A)2a-0.6892-0.2049-0.30492a-0.5012-0.57100.08530.08H(36A)2a-0.8568-0.2775-0.43352a-0.6466-0.69220.07680.08H(37A)2a-0.8507-0.4249-0.46772a-0.6967-0.61030.02330.08H(40A)2a-0.1555-0.6071-0.13402a-0.6836-0.6818-0.05810.08H(41A)2a-0.1545-0.7614-0.13962a-0.6669-0.4168-0.12800.08H(42A)2a-0.2171-0.77130.14472a-0.6678-0.4594-0.01870.08H(44A)2a-0.2171-0.77130.14472a-0.6678-0.4594-0.01870.08H(44A)2a-0.2150-0.61590.15262a-0.6678-0.4594-0.01870.08H(46A)2a0.0403-0.54070.01472a-0.6678-0.4594-0.186 <t< td=""></t<>

Table 3. Atomic coordinates and displacement parameters (in \AA^2).

Atom	Site	x	у	z	<i>U</i> ₁₁	U_{22}	<i>U</i> 33	U_{12}	<i>U</i> ₁₃	U ₂₃
Rh(1)	2a	-0.26122(3)	-0.40252(2)	-0.15335(3)	0.0174(2)	0.0194(2)	0.0206(2)	-0.0012(2)	0.0080(1)	0.0020(2)
P(2)	2a	-0.1776(1)	-0.47961(8)	0.0161(1)	0.0174(7)	0.0193(7)	0.0206(6)	0.0011(5)	0.0083(6)	0.0014(5)
P(1)	2a	-0.4436(1)	-0.46178(8)	-0.1884(1)	0.0165(7)	0.0211(7)	0.0208(6)	-0.0016(5)	0.0067(6)	-0.0011(5)
O(1)	2a	-0.2306(3)	-0.4543(2)	0.1070(3)	0.023(2)	0.025(2)	0.021(2)	0.005(2)	0.013(2)	0.004(1)
O(2)	2a	-0.1905(3)	-0.2851(2)	0.2273(3)	0.022(2)	0.031(2)	0.027(2)	-0.008(2)	0.010(2)	-0.011(2)
N(1)	2a	-0.4661(3)	-0.4845(2)	-0.0699(3)	0.017(2)	0.023(2)	0.023(2)	-0.004(2)	0.012(2)	-0.003(2)
C(1)	2a	-0.3239(5)	-0.2845(3)	-0.2795(4)	0.027(3)	0.019(3)	0.021(3)	0.001(2)	0.004(2)	0.012(2)
C(2)	2a	-0.3327(5)	-0.3598(3)	-0.3432(4)	0.030(3)	0.032(3)	0.009(2)	0.000(2)	0.000(2)	0.009(2)
C(3)	2a	-0.2465(4)	-0.3924(5)	-0.3829(4)	0.043(3)	0.039(4)	0.033(3)	-0.004(3)	0.016(3)	-0.005(3)
C(4)	2a	-0.1177(5)	-0.3774(3)	-0.2980(4)	0.040(3)	0.039(4)	0.038(3)	0.007(2)	0.019(3)	0.004(2)
C(5)	2a	-0.0957(4)	-0.3894(4)	-0.1719(4)	0.017(2)	0.032(4)	0.033(2)	-0.002(3)	0.014(2)	0.004(3)
C(6)	2a	-0.0982(4)	-0.3236(4)	-0.0997(4)	0.015(3)	0.031(3)	0.032(3)	-0.015(2)	0.002(2)	0.005(2)
C(7)	2a	-0.1303(5)	-0.2287(3)	-0.1298(4)	0.039(4)	0.030(3)	0.030(3)	-0.003(3)	0.009(3)	0.000(2)
C(8)	2a	-0.2308(5)	-0.2158(4)	-0.2503(5)	0.041(4)	0.029(3)	0.037(3)	-0.001(3)	0.014(3)	0.002(2)
C(9)	2a	-0.4394(4)	-0.4155(4)	0.0191(4)	0.021(2)	0.023(3)	0.026(2)	0.002(2)	0.010(2)	-0.010(2)
C(10)	2a	-0.3127(4)	-0.3823(3)	0.0762(4)	0.018(3)	0.021(3)	0.019(2)	0.005(2)	0.008(2)	-0.001(2)
C(11)	2a	-0.2963(4)	-0.3358(3)	0.1859(4)	0.026(3)	0.028(3)	0.025(3)	-0.006(2)	0.014(2)	-0.010(2)
C(12)	2a	-0.1671(5)	-0.2326(3)	0.3235(4)	0.025(3)	0.020(3)	0.022(3)	0.003(2)	0.005(2)	0.002(2)
C(13)	2a	-0.2413(5)	-0.2247(4)	0.3732(4)	0.029(3)	0.039(3)	0.025(3)	0.010(3)	0.006(3)	-0.004(2)
C(14)	2a	-0.2094(6)	-0.1690(4)	0.4716(5)	0.049(4)	0.044(4)	0.026(3)	0.019(3)	0.012(3)	-0.001(3)
C(15)	2a	-0.1040(6)	-0.1267(4)	0.5191(5)	0.059(5)	0.032(3)	0.029(3)	0.011(3)	0.006(3)	-0.008(3)
C(16)	2a	-0.0268(5)	-0.1346(3)	0.4674(4)	0.041(4)	0.020(3)	0.030(3)	0.002(3)	-0.002(3)	0.002(2)
C(17)	2a	0.0840(6)	-0.0914(4)	0.5140(5)	0.058(5)	0.026(3)	0.028(3)	-0.012(3)	-0.013(3)	0.006(3)
C(18)	2a	0.1594(7)	-0.1025(4)	0.4641(5)	0.054(5)	0.041(4)	0.042(4)	-0.022(3)	-0.002(4)	0.016(3)
C(19)	2a	0.1278(6)	-0.1529(4)	0.3631(5)	0.040(4)	0.046(4)	0.040(3)	-0.014(3)	0.006(3)	0.009(3)
C(20)	2a	0.0189(5)	-0.1941(4)	0.3157(5)	0.027(3)	0.034(3)	0.031(3)	-0.005(3)	-0.001(3)	0.005(2)
C(21)	$\frac{2a}{2a}$	-0.0577(5)	-0.1878(3)	0.3664(4)	0.031(3)	0.020(3)	0.018(2)	0.003(2)	0.002(2)	0.001(2)
C(22)	$\frac{2a}{2a}$	-0.5768(4)	-0.5326(3)	-0.0866(4)	0.013(2)	0.024(3)	0.023(2)	-0.005(2)	0.002(2)	-0.001(2)
C(22)	$\frac{2a}{2a}$	-0.5416(5)	-0.6007(3)	0.0000(4) 0.0125(4)	0.013(2) 0.031(3)	0.024(3)	0.020(2)	0.000(2)	0.007(2)	0.001(2)
C(24)	2a	-0.6439(5)	-0.6510(4)	0.0129(4) 0.0139(5)	0.031(3) 0.049(4)	0.030(3)	0.050(5)	-0.005(3)	0.010(2)	0.007(2) 0.014(3)
C(25)	$\frac{2a}{2a}$	-0.6759(4)	-0.4713(3)	-0.0954(4)	0.049(4)	0.029(3)	0.032(4)	-0.003(3)	0.020(3)	-0.005(2)
C(26)	2a	-0.8006(5)	-0.5060(4)	-0.1695(5)	0.017(3)	0.030(3) 0.047(4)	0.030(3) 0.045(3)	-0.007(3)	0.012(2)	-0.001(3)
C(27)	2a	-0.4577(4)	-0.5678(3)	-0.2629(4)	0.017(3)	0.077(7)	0.043(3)	-0.007(3)	0.000(3)	-0.001(3)
C(28)	$\frac{2u}{2a}$	-0.4377(4) -0.4745(5)	-0.5676(3)	-0.2029(4) -0.3783(4)	0.019(3)	0.022(3)	0.027(3)	-0.003(2)	0.014(2)	-0.003(2)
C(20)	$\frac{2u}{2a}$	-0.4743(3)	-0.5005(4)	-0.3783(4)	0.039(3)	0.030(3)	0.029(3)	-0.002(3)	0.010(3)	-0.002(2)
C(29)	$\frac{2u}{2a}$	-0.4770(3)	-0.0+33(4)	-0.4330(3)	0.040(4)	0.044(4)	0.041(3)	-0.004(3)	0.029(3)	-0.009(3)
C(30) C(21)	$\frac{2u}{2a}$	-0.4031(3)	-0.7242(4) 0.7261(4)	-0.3770(3)	0.039(4)	0.029(3)	0.033(4)	-0.001(3)	0.022(3)	-0.018(3)
C(31)	20	-0.4403(3)	-0.7201(4)	-0.2055(0)	0.022(3)	0.031(4)	0.046(4)	0.000(3)	0.012(3)	-0.004(3)
C(32)	2a	-0.4436(4)	-0.0474(3)	-0.2008(4)	0.021(3)	0.020(3)	0.032(3)	-0.000(2)	0.014(2)	-0.003(2)
C(33)	2a	-0.5754(3)	-0.4012(5)	-0.2834(3)	0.019(2)	0.029(2)	0.020(2)	-0.005(3)	0.009(2)	0.005(3)
C(34)	2a	-0.5823(5)	-0.3130(3)	-0.2619(4)	0.034(3)	0.028(3)	0.029(3)	-0.004(3)	0.017(3)	0.001(2)
C(35)	2a	-0.6866(5)	-0.2665(4)	-0.318/(5)	0.040(4)	0.030(3)	0.042(3)	0.005(3)	0.018(3)	0.008(3)
C(36)	2a	-0.7850(5)	-0.3093(4)	-0.3947(5)	0.031(3)	0.038(4)	0.043(3)	0.014(3)	0.009(3)	0.014(3)
C(37)	2a	-0.7804(4)	-0.3957(5)	-0.4158(4)	0.030(3)	0.044(3)	0.033(3)	0.005(4)	0.007(2)	0.018(4)
C(38)	2a	-0.6745(5)	-0.4440(4)	-0.3624(4)	0.027(3)	0.033(3)	0.023(3)	-0.003(2)	0.004(2)	0.002(2)
C(39)	2a	-0.1865(4)	-0.5978(3)	0.0091(4)	0.016(3)	0.016(3)	0.023(2)	0.000(2)	0.002(2)	0.005(2)

Table 3. Continued.

Atom	Site	x	у	z	U_{11}	<i>U</i> ₂₂	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
C(40)	2 <i>a</i>	-0.1689(4)	-0.6407(3)	-0.0776(4)	0.021(3)	0.036(3)	0.026(3)	0.000(2)	0.005(2)	-0.003(2)
C(41)	2a	-0.1695(5)	-0.7317(3)	-0.0814(5)	0.021(3)	0.031(3)	0.046(3)	-0.001(2)	0.011(3)	-0.006(3)
C(42)	2a	-0.1885(5)	-0.7791(4)	-0.0001(6)	0.029(3)	0.027(3)	0.062(4)	0.004(3)	0.017(3)	0.006(3)
C(43)	2a	-0.2060(6)	-0.7378(3)	0.0870(5)	0.055(4)	0.022(3)	0.053(4)	-0.003(3)	0.029(3)	0.003(3)
C(44)	2a	-0.2040(5)	-0.6457(3)	0.0921(4)	0.037(3)	0.032(3)	0.032(3)	-0.002(2)	0.017(3)	0.002(2)
C(45)	2a	-0.0219(4)	-0.4657(3)	0.1094(4)	0.016(3)	0.019(3)	0.020(2)	0.000(2)	0.003(2)	0.006(2)
C(46)	2a	0.0636(5)	-0.5044(3)	0.0823(4)	0.031(3)	0.023(3)	0.035(3)	-0.001(2)	0.017(3)	0.003(2)
C(47)	2a	0.1817(5)	-0.4903(4)	0.1524(5)	0.023(3)	0.038(3)	0.043(3)	0.003(2)	0.016(3)	0.008(3)
C(48)	2a	0.2171(5)	-0.4402(4)	0.2516(5)	0.023(3)	0.037(3)	0.041(3)	0.000(2)	0.010(3)	0.004(2)
C(49)	2a	0.1336(4)	-0.4048(5)	0.2800(4)	0.027(3)	0.042(3)	0.027(2)	0.001(4)	0.005(2)	0.004(4)
C(50)	2a	0.0149(4)	-0.4162(4)	0.2107(4)	0.020(2)	0.029(4)	0.020(2)	0.004(2)	0.004(2)	0.001(2)
B(1)	2a	-0.5214(6)	-0.9973(5)	-0.3050(5)	0.031(4)	0.051(5)	0.026(3)	0.003(3)	0.010(3)	-0.007(3)
F(1)	2a	-0.4560(3)	-0.9449(2)	-0.2114(2)	0.041(2)	0.058(2)	0.031(2)	-0.014(2)	0.016(2)	-0.011(1)
F(2)	2a	-0.5234(4)	-0.9591(3)	-0.4048(3)	0.077(3)	0.080(3)	0.031(2)	0.019(2)	0.019(2)	0.008(2)
F(3)	2a	-0.6335(3)	-1.0058(3)	-0.3139(4)	0.030(2)	0.114(4)	0.083(3)	-0.016(2)	0.026(2)	-0.048(3)
F(4)	2a	-0.4708(4)	-1.0790(3)	-0.2894(3)	0.087(3)	0.048(3)	0.061(3)	0.023(2)	0.036(2)	-0.002(2)

Acknowledgments. We thank Ute Schmidt for the ligand synthesis and Cornelia Pribbenow for complex preparation.

References

- 1. Krause, H. W.; Schmidt, U.; Taudien, S.; Costisella, B.; Michalik, M.: Aminophosphin phosphinites of propanolol analogues as ligands for Rhcatalyzed asymmetric hydrogenation. J. Mol. Cat. A: Chem. 104 (1995) 147-157.
- 2. Heller, D.; Borns, S.; Baumann, W.; Selke, R.: Kinetic investigations of the hydrogenation of diolefin ligands in catalyst precursors for the asymmetric reduction of prochiral olefins (II). Chem. Ber. 129 (1996) 85-89.
- 3. Heller, D.; de Vries, A. H. M.; de Vries, J. G.: Catalyst Inhibition and Deactivation in Homogeneous Hydrogenation in Homogeneous Hydrogenation (ed. J. G. de Vries). Elsevier, Wiley-VCH, 2007, p. 1483-1516. Sheldrick, G. M.: SHELXS-97. Program for the Solution of Crystal
- 4. Structures. University of Göttingen, Germany 1997.
- 5. Sheldrick, G. M.: SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany 1997.