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Self-consistent field theory for a polymer brush
Part II: The effective chemical potential

Andreas Münch, Barbara Wagner

Abstract

The most successful mean-field model to describe the collective behaviour of the large class
of macromolecular polymers is the self-consistent field theory (SCFT). Still, even for the simple
system of a grafted dry polymer brush, the mean-field equations have to be solved numerically.
As one of very few alternatives that offer some analytical tractability the strong-stretching theory
(SST) has led to explicit expressions for the effective chemical potential and consequently the free
energy to promote an understanding of the underlying physics. Yet, a direct derivation of these
analytical results from the SCFT model is still outstanding. In this study we present a systematic
asymptotic theory based on matched asymtptotic expansions to obtain the effective chemical
potential from the SCFT model for a dry polymer brush for large but finite stretching.

1 Introduction

SCFT has established itself as the mean-field model for polymers of high molecular weight [3, 11].
Since the pioneering works of Edwards [2] and Helfand [4] it has been applied to polymer systems for a
range of macromolecular architectures, such as block copolymers, or polyelectrolytes and for different
geometrical conditions [3]. It has been experimentally validated for a number of phenomena such as
the phenomenon of authophobic dewetting of a polymer film from a chemically identical polymer brush,
and various phase transitions of block copolymers [5, 18]. Its success has inspired investigations on
the theoretical side to derive approximations that allow analytical understanding and therefore also
more physical insight into the problem of interest instead of relying completely on numerical solutions
as is the case even for the simple case of a polymer brush. However, for the case of densely grafted
chains leading to a stretching of the chain such that their length L is large compared to their radius
of gyration Rg, the so-called strong-stretching theory (SST) was developed [7, 8, 14, 15, 19, 20].
However, as discussed in [13] significant discrepancies have been noted and in particular in [10]
(and references therein), for the case of autophobic dewetting (relating to the prediction of interfacial
tension) SST has been shown to disagree with the experimentally established results, which had been
correctly predicted by SCFT.

Initially, the nature of the discrepancies was not clear. Efforts of subsequent investigations sought to
improve the SST by including further physical regimes in the approximation, giving rise to a whole
family of strong-stretching theories and corrections, and on the other hand improve the numerical
resolution of SCFT to allow for computations for higher degrees of stretching. While this has led to a
much better agreement between the SST and the numerical SCFT results, a direct comparison with
an asymptotic approximation derived directly from the SCFT model equations is still outstanding due
to the lack of such a theory [12, 16].

The basic approximation of the SST for the effective potential field µ is the parabolic potential, which
has been shown by Milner and coauthors [14, 15]. The average segment concentration is a constant
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and in our (scaled) notation that constant is φ(x) = 1. Assuming the validity of the parabolic potential
at least to leading order in ε = Rg/L, a systematic asymptotic treatment given in [17] shows that
for the parabolic potential to leading order in ε, the average segment concentration φ for SCFT is
not a constant. In the asymptotic analysis presented here we show that for SCFT, incompressibility
φ(x) = 1 can be enforced, too, as required, but with a chemcial potential µ that is different from a
parabolic potential. While it may be reasonable to expect that the parabolic approximation for µ needs
to be corrected, the fact that it does not give the correct (constant) density even to leading order is
somewhat surprising. A correction was given by [16, 20].

The main result of this study is to derive for the first time an expression for the effective chemical µ for
SCFT by a systematic analytical approach based on matched asymptotic expansions, for the problem
of a dry polymer brush as a fundamental example.

In the following sections we first summarize the formulation of the problem, followed by the expansion
in the outer coordinates of the asymptotic problem, the formulation and matching of the boundary
layer problems and finally by imposing incrompressibility obtain the chemical potential for SCFT for a
strongly stretched polymer brush.

2 Formulation

Here we summarize the the formulation of SCFT [17] for an incompressible polymer brush, consisting
of polymer chains densely grafted polymer chains on a planar substrate at x = 0. As an effect of
the dense grafting, the polymer chain is extended to a length x = L and consists of N segments
which each have statistical length a. The model describes the average segment density φ(x) of the
polymer segments in terms of an unknown effective chemical potential µ(x) that describes the in-
teraction between the chain segments that has to be determined by the global constraint that for an
incompressible polymer brush, the density must be a constant.

The density φ(x) is constructed for µ via two partition functions q(x, s) and q∗(x, s) that are used for
obtaining the statistics of the chain part with the free end of the brush and the other at the substrate.
Specifically, the partition function q(x, s) describes the density of end of a length sN , where 0 < s <
1, if s = 0 end is free. Similarly, the complementary partition function q∗(x, s) describes the density
of end of a length sN , where the s = 0 end is attached to the substrate

They are given by the modified diffusion equations for the partition function q:

∂q

∂s
= ε2

∂2q

∂x2
− µ

ε2
q, (2.1a)

q(x, 0) = 1, (2.1b)

∂q

∂x
(0, 0) = 0, (2.1c)

∂q

∂x
(1, 0) = 0, (2.1d)
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Self-consistent field theory: The effective chemical potential 3

and for the complementary partition function q∗,

∂q∗

∂s
= ε2

∂2q∗

∂x2
− µ

ε2
q∗, (2.1e)

q∗(x, 0) = 2
√
6 εδ(x), (2.1f)

∂q∗

∂x
(0, 0) = 0, (2.1g)

∂q∗

∂x
(1, 0) = 0. (2.1h)

The distribution of the segment s for the full chain is obtained by forming the product q(x, s)q∗(x, 1−
s), noticing that the argument in q has been replaced by 1 − s as it is assume that the s = 1 end is
the grafted end of the polymer, while s = 0 is free. The distribution needs to be normalised, which is
done with the help of the full partition function

Q =

∫ 1

0

q(x, s)q∗(x, 1− s)dx. (2.1i)

Since Q is constant in s we can obtain the average segment density as

φ =
1

Q

∫ 1

0

q(x, s)q∗(x, 1− s)ds, (2.1j)

together with the scaled incompressibility condition

φ = 1, (2.1k)

where we have nondimensionalaized the above problem via x = Lx̃, µ = µ̃/ε2, ε = Rg/L, where
for ideal Gaussian chains, Rg = a(N/6)1/2.

We note that the position of a free end is arbitrary, hence q(x, 0) is constant. The situation at x = 0
and x = L is more delicate, as incompressibility breaks down close to the boundaries, i.e., φ(x)
deviates from one close to x = 0, L since this would require φ to be 1 up to the boundary, but out-
side of the [0, L], it is zero, contradicting incompressibility since a smooth density profile is required.
Therefore, the effective chemical potential µ is not defined within the SCFT theory but has to be de-
termined taking into account the details of the molecular interactions. Taken together, (2.1) constitute
and inverse problem for µ.

3 Outer correction for the parabolic potential

In this section, instead of setting µ to be the parabolic potential, we allow for next order corrections by
expanding

µ(x) = µ0(x) + ε2µ1(x) + . . . , (3.1a)

with

µ0(x) = −
π2

16
x2, (3.1b)

and seek to determine µ1. For this purpose, we first derive expressions for the corrections to u0,
σ0, q0 for general µ1, for the starred variables, and then the corrections they induce for φ. Enforcing
φ(x) = 1 for fixed 0 < x < 1 which then yields an integral equation for µ1 that we can solve explicitly.
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3.1 Solutions for u, σ, q

We expand u as before,

u = u0 + ε2u1 + . . . . (3.2)

The leading order solution u0 is unchanged from section (I-3.1) in [17]. The problem for u1 consists of
two parts which split the domain at x = cos(πs/2),

∂su1 −
π

2
x tan(πs/2)∂xu1 =

π

2
tan(πs/2)u1 − µ′1(x), for x ≤ cos(πs/2), (3.3a)

∂su1 −
π

2

√
1− x2∂xu1 = −

πxu1

2
√
1− x2

− π

4(1− x2) 3
2

− µ′1(x), for x > cos(πs/2), (3.3b)

with initial condition

u1(x, 0) = 0. (3.3c)

In the following, we will focus on the case (3.3a), as we expect it will give the dominant contributions
to φ. We introduce characteristic variables giving

∂su1 =
π

2
tan(πs/2)u1 − µ′1(ξ cos(πs/2)). (3.4)

Together with the initial condition this gives the solution

u1 = −
∫ s

0

µ′1(ξ cos(πt/2))
cos(πt/2)

cos(πs/2)
dt, (3.5)

hence, in (x, s) variables,

u1(x, s) = −
∫ s

0

µ′1

(
x
cos(πt/2)

cos(πs/2)

)
cos(πt/2)

cos(πs/2)
dt, for x < cos(πs/2) (3.6)

Now, σ1 can be obtained from (I-2.13) in [17], yielding

σ(x, s) =

∫ x

0

u0(r, s) + ε2u1(r, s)dr − ln g(s) (3.7)

=
π

8
x2 tan(πs/2)− ε2

[∫ s

0

µ1

(
x
cos(πt/2)

cos(πs/2)

)
dt+ ln g(s)

]
, (3.8)

where the last term emerges from a double integral that is reduced to the above result by swapping
the order of integration. The function g combines the contributions from any boundary layer at x = 0
that may have been neglected upon approximating u by the outer approximation and the contributions
from the last two terms in (I-2.13). Thus

q(x, s) =
exp

[
−
∫ s
0
µ1

(
x cos(πt/2)
cos(πs/2)

)
dt
]

g(s)
exp

(
π

8

x2

ε2
tan(πs/2)

)
for x ≤ cos(πs/2). (3.9)

DOI 10.20347/WIAS.PREPRINT.2649 Berlin 2019



Self-consistent field theory: The effective chemical potential 5

3.2 Solutions for u∗, σ∗, q∗

We first look at the initial layer occurring for s = O(ε2) if the exact δ function for q∗ is replaced by a
Gaussian approximation (I-3.75) so that the initial condition for u∗ is as in (I-3.76). Using the scaling

s = ε2S, u∗ = ε−2W ∗. (3.10)

This gives to leading order
∂SW

∗
0 = 2W ∗

0 ∂xW
∗
0 (3.11)

with initial condition
W ∗

0 = −2x/ω2. (3.12)

The solution is
W ∗

0 = −2x/(4S + ω2). (3.13)

For S →∞, this behaves like

W ∗
0 ∼ −

x

2S
+
ω2x

8S
ε2. (3.14)

The next order correction satisfies

∂su
∗
1 +

π

2
x cot(πs/2)∂xu

∗
1 = −

π

2
cot(πs/2)u∗1 − µ′1(x). (3.15)

with initial condition obtained from (3.14) as

u∗1 ∼
ω2

8s2
x as s→ 0. (3.16)

We introduce characteristic variables x = ξ sin(πs/2), giving

∂su
∗
1 = −

π

2
cot(πs/2)u∗1 − µ′1(ξ sin(πs/2)). (3.17)

The solution is

u∗1 = −
∫ s

0

µ′1 (ξ sin (πt/2))
sin(πt/2)

sin(πs/2)
dt+

c(ξ)

sin(πs/2)
. (3.18)

Converting back to the (x, s) coordinates and using the initial condition fixes c and gives

u∗1(x, s) = −
∫ s

0

µ′1

(
x
sin (πt/2)

sin(πs/2)

)
sin(πt/2)

sin(πs/2)
dt+

π2ω2x

32 sin2(πs/2)
. (3.19)

Now we obtain via (I-2.15) and the initial condition (I-3.75)

σ∗ =− π

8
x2 cot(πs/2)

+ ε2
[∫ s

0

µ1

(
x
sin(πt/2)

sin(πs/2)

)
dt+

π2ω2x2

64 sin2(πs/2)
− ln g∗(s)

]
+O(ε4), (3.20)

where g∗(s) incorporates any boundary layer contributions to u at x = 0 that may have been dropped
upon introducing the outer expansion for u in (I-2.16), and any contributions from the last three terms
in the same equation. Hence

σ∗(x, 1− s) =− π

8
x2 tan(πs/2)

− ε2
[∫ 1

s

µ1

(
x
cos(πt/2)

cos(πs/2)

)
dt+

π2ω2x2

64 cos2(πs/2)
− ln g∗(1− s)

]
+O(ε4), (3.21)
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From this (dropping the error term)

q∗(x, 1− s) =
exp

[
−
∫ 1

s
µ1

(
x cos(πt/2)
cos(πs/2)

)
dt+ π2ω2x2

64 cos2(πs/2)

]
g∗(1− s)

exp
(
− π

8ε2
x2 tan(πs/2)

)
. (3.22)

3.3 Density φ and solution for µ1

From (3.9) and (3.22), we get

q(x, s)q∗(x, 1− s) =
exp

[
−
∫ 1

0
µ1

(
x cos(πt/2)
cos(πs/2)

)
dt+ π2ω2x2

64 cos2(πs/2)

]
g(s)g∗(1− s)

(3.23)

provided x ≤ cos(πs/2). We assume that the contributions from x > cos(πs/2) are of lower order
(the calculation of which requires knowledge of σ1 also for x > cos(πs/2), which we have not carried
out yet).

Hence, integration with respect to x = 0 . . . 1 reduces to the interval 0 ≤ x ≤ cos(πs/2) so that we
get for Q, after a variable transform x = z cos(πs/2),

Q =
cos(πs/2)

g(s)g∗(1− s)

∫ 1

0

h(z)dz, (3.24)

with

h(z) ≡ exp

[
−
∫ 1

0

µ1(z cos(πt/2))dt+
π2ω2z2

64

]
= exp

[
− 2

π

∫ z

0

µ1(η)√
z2 − η2

dη +
π2ω2z2

64

]
. (3.25)

Since, to each order, Q has to be independent of s, we need to to assume that the prefactor must
cancel, so that

cos(πs/2)

g(s)g∗(1− s)
= cQ, (3.26)

and therefore

Q = cQ

∫ 1

0

h(z)dz. (3.27)

Furthermore,

φ(x) =
cQ
Q

∫ (2/π) arccosx

0

h(x/ cos(πs/2))

cos(πs/2)
ds

=
2

π

∫ 1

x

1

r
√
1− r2

h(x/r)∫ 1

0
h(z)dz

dr

=
2

π

∫ 1

x

1√
y2 − x2

h(y)∫ 1

0
h(z)dz

dy. (3.28)
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Figure 1: Comparison of the analytical approximation for u∗(x, 1), that is = u∗1(x, 1), with the numer-
ical results, via the red and black line, respectively. The right panel is a zoom of the left.

Now we enforce the condition φ(x) = 1. This turns the last expression into an integral equation for
h, which has the solution (to be derived via Laplace transform – is solution unique up to the constant
factor?)

h(y) =
eKy√
1− y2

, (3.29)

where eK is an arbitrary, positive constant. It has to be positive, as we need to solve (3.25) for µ1 with
the resulting h. Taking the log on both sides gives

− 2

π

∫ z

0

µ1(η)√
z2 − η2

dη +
π2ω2z2

64
= lnh(z) = ln(z)− 1

2
ln(1− z2) +K. (3.30)

Solving this for µ1 gives

µ1(x) = −
x√

1− x2
arctan

(
x√

1− x2

)
− ln c− ln 2− lnx− π2ω2x2

32

= − x√
1− x2

arcsin(x)− ln(2cx)− π2ω2x2

32
. (3.31)

From µ1, we can compute u∗1 via (3.19), and for s = 1, this is in fact the approximation for u∗(x, 1). We
compare this analytical approximation with the numerical solution in fig. 1. The agreement is excellent
away from x = 0 and x = 1, where we expect boundary layers.
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4 Boundary layer for the potential at x = 1

We adopt the scalings that we found in (I-3.13) and the following equations for the boundary layer at
x = 1 for the solution to u with the parabolic potential, that is, we introduce

x = 1− ε4/3z, u = ε2/3w. (4.1)

The x-scaling is consistent with an end layer width for the chains suggested by Likhtman and Semenov
[8]. We need to determine the appropriate rescaling for µ. If we expand µ0 + ε2µ1 at x = 0 and
introduce the rescaling into (4.1) for x, we obtain

µ0 + ε2µ1 ∼ −
π2

16
+
π2

8
ε4/3z − π

2
√
2z
ε4/3 + . . . , (4.2)

thus suggesting that we let

µ(x) = −π
2

16
+ ε4/3m(z), (4.3)

where the leading order of m(z) has to satisfy

m0(z) ∼
π2

8
z − π

2
√
2z

for z →∞. (4.4)

4.1 Determining the boundary layer solution for u

Using these rescalings for u gives to leading order

∂ŝw0 = ∂2zw0 − 2w0∂zw0 +
dm0

dz
(4.5a)

We have kept the time derivative to leading order by rescaling s = ε2/3ŝ. Initial and boundary condi-
tions are

w0(z, 0) = 0, (4.5b)

w0(0, ŝ) = 0. (4.5c)

Using the scalings for u and x as stated in (4.1) and for s as given in the text in the outer solution
(I-3.6) for u yields

u0 =
π

4
(1− ε4/3z) tan(πε2/3ŝ/2) = π

4
(πε2/3ŝ/2) +O(ε2)

Hence, the far-field condition for the leading order solution comes from matching to the outer, giving

w0(z, ŝ) ∼
π2

8
ŝ for z →∞. (4.5d)

4.2 Determining boundary layer solution for u∗

Using the rescalings for u∗ gives to leading order

∂s∗w
∗
0 = ∂2zw

∗
0 − 2w∗0∂zw

∗
0 +

dm0

dz
(4.6a)
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where dm0/dz = π2/8. We have kept the time derivative to leading order by rescaling s = ε2/3s∗+1.
The boundary condition is

w∗0(0, s
∗) = 0. (4.6b)

Using the scaling for x, i.e. x = 1− ε4/3z yields

∂s∗w
∗
0 = ε8/3∂2xw

∗
0 − 2ε4/3w∗0∂xw

∗
0 +

π2

8

Hence, the far-field condition for the leading order solution comes from matching to the outer, giving

w∗0(z, s
∗) ∼ π2

8
s∗ for z →∞. (4.6c)

We also need to match the s→ −∞ limit with the solution in region 1B. Following the the derivation
given in part I in section I-3.2.2 of [17], we obtain

w∗0 ∼ −
π2

8
s tanh

(
π2

8
sz

)
as s→ −∞. (4.7)

4.3 Density φ and boundary layer solution for m0.

For completeness, we first state some identities that hold for both σ and σ∗, starting with

σ(x, s) =

∫ x

a

∂xσ(r, s)dr +

∫ s

b

∂sσ(a, t)dt+ σ(a, b) (4.8)

for any 0 ≤ a ≤ 1, 0 ≤ b ≤ 1 (for σ∗: if σ∗(a, b) is finite). Since

∂xσ = u, (4.9)

∂sσ = ε2∂xu+ u2 − µ, (4.10)

we get

σ(x, s) =

∫ x

a

u(r, s)dr +

∫ s

b

ε2∂xu(a, t) + u2(a, t)dt− µ(a)(s− b) + σ(a, b), (4.11)

σ∗(x, s) =

∫ x

a

u∗(r, s)dr +

∫ s

b

ε2∂xu
∗(a, t) + (u∗(a, t))2dt− µ(a)(s− b) + σ∗(a, b). (4.12)

For the following derivation, we note some special cases:

σ(x, s) =

∫ x

1

u(r, s)dr +

∫ s

0

ε2∂xu(1, t)dt− µ(1)s, (4.13)

where we have set a = 1, b = 0 and used that σ(1, 0) = 0 (initial condition) and u(1, t) = 0
(boundary condition).

σ∗(x, s) =

∫ x

1

u∗(r, s)dr +

∫ s

1

ε2∂xu
∗(1, t)dt− µ(1)(s− 1) + σ∗(1, 1), (4.14)

where we have set a = 1, b = 1 and used that u∗(1, t) = 0 (boundary condition).
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Now we have from (2.1i) that

Q =

∫ 1

0

q∗(x, 1)dx (4.15)

hence

Q =

∫ 1

0

exp

(
ε−2
[∫ x

1

u∗(r, 1)dr + σ∗(1, 1)

])
dx. (4.16)

For φ, we have from (2.1j)

φ =
1

Q

∫ 1

0

exp
(
ε−2 [σ(x, s) + σ∗(x, 1− s)]

)
ds, (4.17)

hence

φ =
1

Q

∫ 1

0

exp

(
ε−2
[∫ x

1

u(r, s)dr +

∫ s

0

ε2∂xu(1, t)dt

+

∫ x

1

u∗(r, 1− s)dr +
∫ 1−s

1

ε2∂xu
∗(1, t)dt+ σ∗(1, 1)

])
ds, (4.18)

which, after using the most recent expression for Q, can be simplified to

φ =
Ĩ

Q̃
, (4.19a)

with

Ĩ =

∫ 1

0

exp

(
ε−2
[∫ x

1

u(r, s) + u∗(r, 1− s)dr
]

+

∫ s

0

∂xu(1, t)− ∂xu∗(1, 1− t)dt
)
ds, (4.19b)

Q̃ =

∫ 1

0

exp

(
ε−2
[∫ x

1

u∗(r, 1)dr

])
dx. (4.19c)

The problem is closed by enforcing the incompressibility condition, i.e.

φ = 1. (4.20)

We now need to insert the expansions to evaluate Q̃ and φ. We are at this point mainly interested
in the behaviour in the boundary layer at x = 1, and so we will evaluate Ĩ in this region. For Q̃, we
need, however, the fully matched solution for u∗ across the entire interval 0 < x < 1, which we do
not have yet. Numerical evaluation for ε = 0.025 gives a value of Q = 0.083, which is very close to
ε2/3 = 0.085, so we will operate on the assumption that

Q̃ ∼ ε2/3. (4.21)

For Ĩ , we introduce the boundary layer variables, so that we have

u(x, s) + u∗(x, 1− s) = ε2/3
(
w
(
z, s/ε2/3

)
+ w∗

(
z,−s/ε2/3

))
, (4.22)

= (w (z, ŝ) + w∗ (z,−ŝ)) , (4.23)∫ x

1

u(r, s) + u∗(r, 1− s)dx = ε2
∫ z

0

(w(ρ, ŝ) + w∗(ρ,−ŝ)) dρ, (4.24)
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so that to leading order we have

ε−2
∫ x

1

u(x, s) + u∗(x, 1− s)dx =

∫ z

0

(w0(ρ, ŝ) + w∗0(ρ,−ŝ)) dρ. (4.25)

Next, we have ∫ s

0

∂xu(1, t)dt =

∫ ŝ

0

∂zw(0, τ)dτ, (4.26)

∫ s

0

∂xu
∗(1, 1− t)dt =

∫ ŝ

0

∂zw
∗(0,−τ)dτ, (4.27)

so that, to leading order∫ s

0

∂xu(1, t)− ∂xu∗(1, 1− t)dt =
∫ ŝ

0

∂zw0(0, τ)− ∂zw∗0(0,−τ)dτ. (4.28)

Therefore, to leading order

Ĩ = ε2/3
∫ ε−2/3

0

exp

(∫ z

0

(w0(ρ, ŝ) + w∗0(ρ,−ŝ)) dρ

+

∫ ŝ

0

∂zw0(0, τ)− ∂zw∗0(0,−τ)dτ
)
dŝ (4.29)

Noting (4.21) gives, after taking the limit ε→ 0 in the limit of the outermost integration

φ(z) =

∫ ∞
0

exp

(∫ z

0

(w0(ρ, ŝ) + w∗0(ρ,−ŝ)) dρ

+

∫ ŝ

0

∂zw0(0, τ)− ∂zw∗0(0,−τ)dτ
)
dŝ (4.30)

With (5.29), that is,
φ(z) = 1 for 0 ≤ z <∞, (4.31)

and the initial boundary value problems for w0 and w∗0 we have a closed problem to solve for de-
termining dm0/dz and hence, up to an integration constant, the boundary layer solution m0 for the
potential.

5 Boundary layer at x = 0

Near x = 0, µ0 and ε2µ1 behave like

µ0 ∼ −
π2

16
x2, ε2µ1 ∼ (c− ln 2)ε2 − ε2 lnx.

Hence, for sufficiently small x, ε2µ1 actually dominates µ1. Ignoring the logarithmic contribution, the
two terms balance for x = O(ε), hence we scale

x = εy, µ = ε2M. (5.1)
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However, we need a second scaling, for even thinner layers in x. One way to motivate is to consider
using a Gaussian of width ωε2 instead of an exact δ-function for the initial data for q∗, that is

q∗(x, 0) =
2
√
6√

πωε
exp

(
− x2

ω2ε4

)
, (5.2)

hence

u∗(x, 0) = − 2x

ω2ε2
. (5.3)

Numerical evidence suggests that for ω fixed and ε → 0, the potential µ develops a narrow peak at
x = 0 of widthO(ε2) but the height tends to a constant. Hence we use the scaling

x = ε2Y, n = µ = ε2M. (5.4)

5.1 Solutions for u

5.1.1 Region s = O(1)

Innermost boundary layer. Using the scalings (5.4) and also

u(x, s) = V (Y, s) (5.5)

in (I-2.11a) (for smaller u, all u terms would be subdominant) gives

ε2∂sV = ∂2Y V + 2V ∂Y V + nY , (5.6)

with the leading order being
∂2Y V0 + 2V0∂Y V0 + n0,Y = 0, (5.7)

The boundary condition at y = 0 is
V0(0, s) = 0. (5.8)

Integrating once with respect to y gives

∂Y V0 + V 2
0 + n0 = a1(s), (5.9)

with a constant of integration a1(s).

For matching, we need the expansion of V0 at y →∞, which is

V0 ∼ (a1(s)− n0,∞)
1/2 as Y →∞, (5.10)

where we have assumed that n0 → n0,∞ in this limit.

Next boundary layer. We now use the scalings (5.1). To balance µx with the second of the spatial
derivatives, we need to assume u = O(ε). Hence we also rescale

u = εU. (5.11)
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Introducing these new scalings gives

∂sU = ∂2yU − 2U∂yU +
dM0

dy
, (5.12a)

U(y, 0) = 0. (5.12b)

Hence, the leading order problem for U0 is trivially found to be

∂sU0 = ∂2yU0 − 2U0∂yU0 +
dM0

dy
, (5.13a)

U0(y, 0) = 0, (5.13b)

By matching to the expansion of u0 + ε2u1 at x = 0, we obtain the far-field condition

U0 ∼
π

4
y tan(πs/2)− s

y
as y →∞. (5.13c)

On the other hand, matching U at y = 0 with the far-field expansion (5.21) of the innermost solution
gives

U0(0, s) = (a1(s)− n0,∞)
1/2 . (5.13d)

5.1.2 Region s = 1−O(ε)

The boundary layer structure that we identified for s = O(1) breaks down when the outer solution
in the region x < cos(πs/2) shrinks so that the boundary layer and the corner layer merge, both of
which haveO(ε) width. Hence the breakdown happens when s = 1−O(ε).

5.2 Solutions for u∗

5.2.1 Region s = O(ε2)

Here, we use the scalings (5.4). Then the initial condition (5.3) becomes an O(1) expression for u∗,
while to keep the s-derivative, we need to scale it by ε2, hence

s = ε2S, W ∗ = u∗. (5.14)

Introducing the new variables gives

∂SW
∗
0 = ∂2YW

∗
0 − 2W ∗

0 ∂YW
∗
0 +

dn0

dY
, (5.15a)

W ∗
0 (Y, 0) = −

2Y

ω2
, (5.15b)

W ∗
0 (0, S) = 0, (5.15c)

W ∗
0 ∼ −

Y

2S
as Y →∞. (5.15d)
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5.2.2 Region s = O(1)

Innermost boundary layer. Using the scalings as for u, that is (5.4) and also

V ∗(Y, s) = u∗(x, s) (5.16)

in (I-2.14a) gives
ε2∂sV

∗ = ∂2Y V
∗ + 2V ∗∂Y V

∗ + nY , (5.17)

with the leading order being
∂2Y V

∗
0 + 2V ∗0 ∂Y V

∗
0 + n0,Y = 0, (5.18)

The boundary condition at y = 0 is
V ∗0 (0, s) = 0. (5.19)

Integrating once with respect to y gives

∂Y V
∗
0 + (V ∗0 )

2 + n0 = a∗1(s), (5.20)

with a constant of integration a∗2(s).

For matching, we need the expansion of V ∗0 at y →∞, which is

V ∗0 ∼ (a∗2(s)− n0,∞)
1/2 as Y →∞, (5.21)

where we have assumed that n0 → n0,∞ in this limit.

Next boundary layer. We now use the scalings (5.1) and proceed as for u. Hence we rescale

u∗ = εU∗. (5.22)

Introducing these new scalings and taking the leading order gives

∂sU
∗
0 = ∂2yU

∗
0 − 2U∗0∂yU

∗
0 +

dM0

dy
, (5.23a)

U∗0 (0, s) = 0, (5.23b)

U∗0 ∼ −
π

4
y cot(πs/2)− s

y
as y →∞. (5.23c)

On the other hand, matching U at y = 0 with the far-field expansion (5.21) of the innermost solution
gives

U∗0 (0, s) = (a∗2(s)− n0,∞)
1/2 . (5.23d)

5.3 Density φ and boundary layer solution for n0

We first express σ and σ∗ in terms of u and u∗ (and also µ) via the expressions (4.11) and (4.12)
derived in an earlier section, this time integrating from the left interval end. We obtain

σ(x, s) =

∫ x

0

u(r, s)dr +

∫ s

0

ε2∂xu(0, t)dt− µ(0)s, (5.24)
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where we have set a = 0, b = 0 and used that σ(0, 0) = 0 (initial condition) and u(0, t) = 0
(boundary condition). Moreover, we have

σ∗(x, s) =

∫ x

0

u∗(r, s)dr +

∫ s

1

ε2∂xu
∗(0, t)dt− µ(0)(s− 1) + σ∗(0, 1), (5.25)

where we have set a = 0, b = 1 and used that u∗(0, t) = 0 (boundary condition).

Therefore

σ(x, s) + σ∗(x, 1− s) =
∫ x

0

u(r, s) + u∗(r, 1− s)dr (5.26)

+

∫ s

0

ε2 (∂xu(0, t)− ∂xu(0, 1− t)) dt+ σ∗(0, 1). (5.27)

Proceeding further, we get

φ =
Ĩ

Q̃
, (5.28a)

with

Ĩ =

∫ 1

0

exp

(
ε−2
[∫ x

0

u(r, s) + u∗(r, 1− s)dr
]

+

∫ s

0

∂xu(0, t)− ∂xu∗(0, 1− t)dt
)
ds, (5.28b)

Q̃ =

∫ 1

0

exp

(
ε−2
[∫ x

0

u∗(r, 1)dr

])
dx. (5.28c)

For the last expression, we have used the initial condition for u to set u(0, 0) = 0. The problem is
closed by enforcing the incompressibility condition, i.e.

φ = 1. (5.29)

We continue with Ĩ . Rescaling into innermost variables, that is, using the first equation in (5.4), while
keeping s = O(1), we obtain

Ĩ =

∫ 1

0

exp

([∫ Y

0

V (ρ, s) + V ∗(ρ, 1− s)dρ
]

+ε−2
∫ s

0

∂Y V (0, t)− ∂Y V ∗(0, 1− t)dt
)
ds, (5.30)

To leading order, the integrand in the last expression has to vanish for a all s to give a finite limit, since,
due to the dependence on s, the O(ε−1) contribution cannot be cancelled by Q̃. Hence we need to
have

∂Y V0(0, s) = ∂Y V
∗
0 (0, 1− s) ≡ b(s). (5.31)

Using this in the problems for V0 and V ∗0 , we obtain

∂Y V0 + V 2
0 + n0 = b(s), (5.32a)

V0(0, s) = 0 (5.32b)

V0 ∼ (b(s)− n0,∞)
1/2 as Y →∞, (5.32c)
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and

∂Y V
∗
0 + (V ∗0 )

2 + n0 = b(1− s), (5.33a)

V ∗0 (0, s) = 0 (5.33b)

V ∗0 ∼ (b(1− s)− n0,∞)
1/2 as Y →∞. (5.33c)

But this implies that V ∗0 (Y, 1− s) = V0(Y, s), hence we only need to solve (5.32), and then obtain to
leading order for Ĩ

Ĩ0 =

∫ 1

0

exp

(∫ Y

0

V (ρ, s)dρ

)2

k
(
(1− s)/ε2

)
ds. (5.34)

The factor last factor in the integrand deserves some explanation. The argument that leads to (5.31)
breaks down in theO(ε2) thin s-layer near s = 1, thus we have to evaluate

ln k(S) = ε−2
∫ 1+ε2S

0

∂Y V (0, t)− ∂Y V ∗(0, 1− t)dt (5.35)

there explicitly. In terms of the Variables W ∗ (and correspondingly introduce W we obtain

k(S) = exp

[∫ S

−∞
∂YW0(0, T )− ∂YW ∗

0 (0,−T )dT
]
. (5.36)

6 Conclusions

The asymptotic analysis given in this article reveals and justifies the different physical regimes of the
solution, of the effective chemical potential of a grafted stretched polymer brush, via a systematic
mathematical approach that does not rely on physical intuition. As we have shown, this mathematical
approach has the ability to uncover subtle features of the solution that are easily missed otherwise
and guarantees that all contributions to a correction at a certain level are included. Our analysis also
provides a toolbox establishing a mathematical method to treat other and more complex problems,
for which no SST theory has been developed. Moreover, our results yield an important limit, against
which other models, such as phase-field type models, can be calibrated. These methods, while they
offer other analytical approaches, have gained attention again recently as an approach for larger scale
simulations required in real-world applications [1, 6, 9], where they offer a significant speed advantage
compared to numerical solutions of SCFT and its dynamic variants.
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