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Abstract

Many high-dimensional complex systems exhibit an enormously complex landscape of possible
asymptotic states. Here, we present a numerical approach geared towards analyzing such systems. It is
situated between the classical analysis with macroscopic order parameters and a more thorough,
detailed bifurcation analysis. With our machine learning method, based on random sampling and
clustering methods, we are able to characterize the different asymptotic states or classes thereof and
even their basins of attraction. In order to do this, suitable, easy to compute, statistics of trajectories
with randomly generated initial conditions and parameters are clustered by an algorithm such as
DBSCAN. Due to its modular and flexible nature, our method has a wide range of possible applications
in many disciplines. While typical applications are oscillator networks, it is not limited only to
ordinary differential equation systems, every complex system yielding trajectories, such as maps or
agent-based models, can be analyzed, as we show by applying it the Dodds—Watts model, a generalized
SIRS-model, modeling social and biological contagion. A second order Kuramoto model, used, e.g. to
investigate power grid dynamics, and a Stuart—Landau oscillator network, each exhibiting a complex
multistable regime, are shown as well. The method is available to use as a package for the Julia
language.

1. Introduction

Multistability is a universal phenomenon of complex systems. Whether it is hysteresis effects in physics, the
human brain [1, 2], gene expression networks [3], in human perception [4], power grids [5] or the climate
system [6—9], almost every sufficiently complex system has a multitude of stable asymptotic states and
bifurcations that occur when control parameters are changed. Most traditional methods of bifurcation analysis,
suchas AUTO [10] rely on tracking states by continuation of the integration, and become increasingly
challenging for high-dimensional systems. Further, for high-dimensional systems, often one is also more
broadly interested in classes of asymptotic states such as synchronized versus unsynchronized states of oscillator
network or states that share a common symmetry. Here, we fill a gap between a coarse analysis with macroscopic
order parameters and more thorough bifurcation analysis.

Our machine learning approach, Monte Carlo Basin Bifurcation Analysis (MCBB), based on random
sampling and clustering methods, resolves different classes of asymptotic behavior into clusters. Rather than
studying the existence of states and orbits on the one hand, or only tracking changes in a single order parameter
on the other, our approach learns which type of attractors are most dominant in terms of the volume of their
basin of attraction, and quantifies the changing size of the basin of attraction of each of these classes as a function
of a control parameter. This provides new insights into the bifurcation structure of multistable high-
dimensional systems. Thus, we can regard MCBB as a way to interpolate between detailed studies of asymptotic
bifurcations tracking every change in asymptotic structure on the one hand, and statistical physics using
specialized order parameters to study the macroscopic behavior at the other end.

First we will introduce the method and the idea behind it in the following section. Then, the algorithm will be
explained in section 2.4. A number of paradigmatic examples that showcase the wide variety of possible real
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world applications: the Dodds—Watts model of social and biological contagion, a network of second order
Kuramoto oscillators, used e.g. to model power grids and a network of Stuart-Landau oscillators, of importance
for many chemical and biological systems, will follow in section 3. Lastly, these results and the performance and
applicability of the presented method will be discussed in section 4.

2. Method

We aim to learn those classes of similar attractors of a high-dimensional system that collectively have the largest
basin of attraction with respect to a measure of initial conditions p,. Further we intend to understand how they,
and their basin volumes, change as a function of a parameter p in arange I,.. A class of attractors C should denote
an equivalence class of attractors, including at different p, that have similar invariant measures.

To do so we will interpret p, as a probability distribution. We can then draw initial conditions from p, and
parameters from I, and simulate the system to generate trajectories. Assuming ergodicity, the tail of the
trajectories then sample the invariant measures on the attractors. We then use these tail samples to estimate
whether the invariant measures were drawn from are similar measure in the sense of the defining equivalence of
our classification. This way we identify clusters among the tail samples that are drawn from the same class. By
then computing the number of samples in each cluster drawn at a particular p (or a small interval around it), we
provide an estimate for the relative size of the basin of attraction of a class at p. Further we can use the samples to
study how the members of the class change as p changes.

Akey step here is the definition of similarity of invariant measures. Comparing all tail samples to each other
is a potentially prohibitively expensive step. Further, in high dimensional systems with a large number of
asymptotic states we might be interested in coarser classes of behavior. Therefore we typically define the
similarity between clusters in terms of statistics of the invariant measures that can easily be estimated using the
tail samples.

To make this idea more precise we need to define how to determine that two asymptotic measures are
similar. We begin by outlining the formal quantities under investigation.

2.1. Classes of attractors and their basin volumes

We investigate a complex system with system parameter p yielding a trajectory x(t; Xy, p) for initial conditions x.
This can be an ordinary differential equations system x = F(x, t; p)oramap X, = F(x,; p). Ifthisisa
sufficiently well behaved dynamical system, the measure p, will asymptotically evolve into p__, alinear
combination of invariant measures p, on the attractors .4 of the system with linear expansion coefficents b,

P = D bapy- )
A

As we vary the parameter p, the set of attractors and invariant measures of the system will change as well.
Given a notion of similarity of invariant measures we define equivalence classes of asymptotic states C. Denoting
C, those elements of the equivalence class that occur for the system parameter p, we have a parameterized space
of measures for each class. Assuming that there are only finitely many at each p, the elements of the space of
measures of a class are given as linear combinations of p with coefficents ¢

pe(P) = > Apy (2)
AeC,

We can then decompose p._ into alinear combination of such p, (p) at each p with coefficients be(p):

P (P) = D be(p) pe(p)- 3)
C

Here we assume p,(p) = 0and be(p) = 0 if the classis emptyat p.
When we sample from the parameters I, and initial conditions pq, then run the system, the resulting
trajectories will have probability be (p) to asymptotically sample an invariant measure in C.

2.2. Similarity of asymptotic measures

The key challenge to make this idea operational is to define a notion of similarity. We will approach this
challenge to define a computable pseudometric in the following. Let us first consider an extremal case: A linear
response of asymptotic measures suggests to identify p, (p) and p,(p + Ap) asbelonging to the same class if
they are connected by a smooth continuum of measures. That is, the difference between them vanishes smoothly
in an appropriate sense as Ap goes to zero, e.g. in the sense of [ 11, 12]. When sampling trajectories, we can build
clusters of samples by requiring some discrete notion of this continuity, ensuring that it converges to the right
continuum condition in the appropriate limit.
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Taking classes built up in this way puts us firmly in the realm of bifurcation analysis. We would resolve every
potential difference in asymptotic states. As noted above this might not be desirable when the number of
asymptotic states is large, and designing a discrete similarity measure on the high dimensional space that is not
prohibitively expensive to evaluate is not straightforward.

Going into the other extreme are order parameters. We could consider p,(p)and p,(p + Ap) as similar if
theylead to the same order parameter up to some finite bound. This would place us directly into the realm of
statistical physics, but requires us to know already what meaningful order parameters for our system are.

Generally speaking we build the classes by making use of some pseudometric on the space of measures built
from a weighted sum of differences of statistics Sx(p) of the measures. The sampled trajectories then provide us
with a way to estimate these statistics, and thus the pseudometric distance between the underlying invariant
measures:

D(p', ph) = > wilSk(p)) — Sk(p?)|. 4
P

Specifically we will show that for the examples considered in this paper it is sufficient to track the mean and
the variance of the measures, encoding the position and size of the attractor in phase space:

+ The position of the attractor:

« Thesize of the attractor:

Varp = ((x — Ex)%),,»

where p, denotes the marginal distribution on system dimension k.

We further consider the histograms of these statistics over the dimensions of the system. This is particularly
useful when the system consists of many identical elements, and it allows us to identify asymptotic states related
by permutation symmetry. This is critical for the application to networked systems, for example a dynamical
system on a fully connected network will have a symmetry group S,,. A more detailed discussion of the technical
aspects are given in the next section.

Dependent of the investigated systems, other statistics, such as higher moments or entropy measures can be
used as well. Our implementation of the algorithm provides a flexible framework for this purpose (see
appendix A).

2.3. Clustering

Finally, we construct clusters of samples from the estimates of the distance of measures. Again following the
argument from the previous section, we want to identify two samples as from the same class of asympotic states if
there is a smooth reponse of the distance measure between them (see figure 1). We can require that the observed
distance is (up to a factor) a finite scaling of the linear response of the asymptotic state to the parameter change.
For every sample with a parameter p’ we continue the integration with p’ + 6p where

6p ~ <min;(||p — pY[])>; should be a typical parameter spacing, leading to samples from the measure p'*.
Then, we compare the difference D (p’, p/) between trial i and jwith the difference to the results of the
continuation of the integration 67 = D(p’, p'*). If the former is much larger we assume that there is no direct
continuation between the states. Two states are then in the same cluster if there is a chain of states

connecting them.

Instead of this computationally intensive continuation study we can also try to extract sensible values for the
distance between samples directly from the data. This leads then to a constant response size parameter epg for all
trials that is ideally a specific percentile Qi (p(6:)) of the distribution of actual responses §:. When we
incorporate the parameter proximity constraint with a weight w;, in the distance calculation as well, the new
condition then reads

i and j are connected if

Sk wilSk(p') = Sk(p)| + wolp® — p| < ep. )
Such a criterion is part of density based clustering algorithms such as DBSCAN [13] which we can thus use to
distinguish the different classes of asymptotic states given a certain set of suitable statistics. If a single, constant

threshold like epp is used, it also allows us to vary this threshold in order to resolve different classes of asymptotic
finer or coarser: if we choose a large epp many similar asymptotic states will be grouped into a single cluster that

3
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Parameter p

Figure 1. Schematic illustration of an example dynamic with stable asymptotic states (solid blue lines) and unstable asymptotic states
(dashed blue lines). Two trials i and jare classified as belonging to the same asympotic state if they are connected viaa common epp-
neighborhood.

corresponds to a broad class of asymptotic states. Contrary, a smaller epp will result in more different clusters,
hence resolving the asymptotic states finer. Figure 1 schematically illustrates that: as long as this constant
threshold is smaller than the minimal distance between trajectories of the two asymptotic states in question, they
will be resolved into different clusters.

Crucially, all steps described here can be performed in a time that scales at most quadratic in the system
dimension. This means that high dimensional systems are amenable to being studied in this way.

2.4. Algorithm
We now describe the algorithm that implements the ideas described above in more detail.

MCBB is a modular algorithm: most steps can be modified to suit the dynamical system in question.
Algorithm 1 summarizes this procedure and in the following a detailed description of every step is given.

2.4.1. Setup

We aim to distinguish different classes of asymptotic states by using clustering algorithms on sets of measures
that each evaluate one of the N Monte Carlo trials. Given a dynamical system such as an ordinary differential
equation system x = F(x, t; p)oramap X, = F(x,; p) with x € R™, we draw Ninitial conditions xg) from
the distribution ¢ and N parameter values p) from the distribution 2,. In what follows, we will use uniform
distributions for Ufc and U,,. In appendix B the dependence on the distributions is briefly discussed. While we
will mostly focus on systems with one parameter dimension, it is in principal also possible to investigate systems
with more than one parameter dimension. In particular setups with two varying parameters can provide useful
insights into the dynamics of the investigated systems. However, results for systems with three or more
parameter dimensions are harder to visualize and will need exponentially more trial runs to create sufficient
density in the parameter space. In contrast, just as for basin stability, the number of necessary samples does not
scale with the dimension of the space of initial conditions.

2.4.2. Integration

Subsequently, the system is solved for all of the N drawn configurations (x{, p). The integration time has to be
set appropriately to the system, so that the asymptotic states are reached. After discarding the transient, the
system is integrated for a sufficiently long time. While in theory, this choice of a suitable integration time and
transient time is highly non-trivial, in practice, one should have prior knowledge about the time scales of the
system. In most situations choosing these times at reasonably large values and checking them for individual
trajectories is sufficient. A more sophisticated approach will be discussed in future work.

In case of very long transients, if the system has not truly converged, we may instead observe the basins of
attraction of metastable states. See for example [14] for a related discussion of such basins. In this case the result
will depend on simulation time.

The Julia package provided with this paper (see appendix A) uses DifferentialEquations.jl [15] to solve ODE
systems. The library automatically chooses appropriate solvers, such as Tsit5 or Verner methods[16, 17]. Even
though these methods feature an adaptive step width during integration, we save the trajectories at a constant
step width, so that the results of all N trials are saved at the same time steps. We then consider the sample
provided by a set final fraction of the trajectory.

4
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2.4.3. Evaluation of the integration

On each of the tail samples generated this way we evaluate a set of statistics, typically we consider some number
N; of statistics per system dimension N,;. These include per default the position and size of the attractor as the
mean and standard deviation of the tail sample. Other statistics are possible as well, though. Thus, we obtain N
matrices of statistics S; each (N; x N;) sized with elements S, 4.

2.4.4. Clustering
For most clustering algorithms a distance matrix between all samples is needed. This (N x N) distance matrix
can be computed from the S;s with two different approaches. First, by calculating

N,

Nd . .
Dij =Y wiy_ISix — Sjul + wn,+11p? — pP|, (6)
] p

where each measure is weighted with w;. The parameter values can be included in the distance metric with
weight wy, ;1 to ensure that similar asymptotic states with strongly different parameter values are distinguished
from each other. The other possibility is to first fit a one-dimensional histogram H; j to each statistic k across all
system dimensions. This is advantageous when symmetric configuration of asymptotic states should not be
distinguished which is often the case for networks of identical units. The distance matrix then follows with a
suitable histogram distance Dy (H;x, Hj ;) such as the 1-Wasserstein metric with

Nm . .
Dj =Y wiDu(Hig Hjp) + wi,+1lp® — p|. (7)
k

When all H; ; for one specific statistic k share the same binning and norm, the 1-Wasserstein metric can be
computed very efficiently from the empirical CDF of each histogram. The choice of the weights w depends on
the statistics used and the expected asymptotic states. Generally, a good first guess is to give higher moments
such as variance and non-normality measures lower weight than the mean. Given the distance matrix, a
clustering algorithm such as DBSCAN [13], is used. DBSCAN classifies all points that can be reached through a
common epg-area as one cluster. Estimating an appropriate epp parameter is a non-trivial task and there are
different possibilities. In [ 13] the authors recommend to use the k-nearest neighbor (kNN) distance, more
specifically the 4NN distance and use the value of the 4NN distance at the first visual knee in the ordered 4NN
distance graph of all data points as epg. Another, yet similar possibility is to use the median of the cumulative
kNN distance, where k is a certain percentage of all points, e.g. 0.5%. As explained in section 2, the epg can also be
estimated by continuing the integration and tracking the response of D. In the examples we have studied, this
yields similar values like the more empirical KNN-based methods, but is computationally more expensive. This
is why the kNN-based methods are preferred for the estimation of the parameter. Fundamentally there is no
‘right’ choice of epp, in combination with the choice of distance measures it determines how finely we want to
distinguish tail samples. While the choice of statistics and weights determines what aspects we look at, epp
provides us with an overall resolution that we can vary. As the clustering step at this point is very quick, it is easy
to scan a variety of values. We will see an example in section 3.3 where two clusters that are somewhat similar are
no longer resolved as we increase epp. Density-based clustering algorithms such as DBSCAN are sensible to
outliers. Input that is strongly dissimilar to all other data is classified as an outlier. For our purpose, this will
typically happen when an explosion of multistability, many different, yet dissimilar, asymptotic states occur.

2.4.5. Evaluation of the clustering
The clustering algorithm C thus returns the cluster assignments

C=C{Sih ®)

which map each of the N trials to one of the N clusters with C; € [1, N¢]being the number of this cluster for
trial 7. The cluster assignments C enable us to further analyze the system in question. First of all we can track the
size of the basin of each class of asympotic states for changing parameters and thus quantify bifurcations and
multistability within the system. This is done by computing the amount of trials within a parameter window

[ Prins Prmax ] and sliding this window over the complete parameter range. For each cluster C;, thus our estimator

for the relative basin volume at parameter p, l;C,. (p)is

Nc
be,(p) = lICLP11/3IICLP), ©)

j
CL? = {j|(C; = Hn(pD) s ) 10
i {1(C; = DN € [Pins Pmax D} (10)

In order to further assess the dynamics of each class of asymptotic sets, the statistics are subdivided into the sets
belonging to each of the clusters as well. This way we can track, for example, how the position or size of samples
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in a cluster change as a function of p. Investigating solutions of typical trajectories within each cluster can provide
insights as well. In section 3 examples of such analysis are shown.

Allin all, the two main parameters of the method are the weights w of the distance calculation and the
clustering parameter, in case of DBSCAN epp. As a default for w, we take wg = 1, wy,, = 0.5, w, = l.Inthe
section 3 we will explain in more detail for every system why we chose the weights presented. For the clustering
parameter, an estimate with the kNN distance or a response analysis is made and if needed this value is increased
(decreased) if one wants to resolve more (fewer) clusters. As for most Monte Carlo methods, the number of trials
Nshould be chosen sufficiently large so that the results are independent from it. A reasonable test is therefore to
run the experiment twice: if the results differ qualitatively, one has to increase N.

The computational complexity of MCBB very much depends on the system in question. The most expensive
parts of the approach are N times integrating the system and the computation of the distance matrix. The
integration scales with O(N - N) for sparsely coupled systems, whereas the integration of more densely coupled
systems scales with higher powers of N,;. The computation of the distance matrix scales with O(N?2) and is
typically the bottleneck only for systems that integrate very fast and very large N.

Algorithm 1. Monte Carlo Basin Bifurcation Analysis (MCBB)

1: Given: A system X = F(x, t; p) with system dimension N (can be an ODE system but also a map)

2: Given: A set of N, statistics { S} on the components of trajectories R™ — R (e.g. mean and variance)
3: Given: A distribution Ujc of the initial conditions and parameters I,

4: for i +— 1, Ndo

5: Sample Ninitial conditions x, from p, and N parameter values p

6:  Solve system for along trajectory x(t; p)

7:  for dim «— 1, N; do

8 for meas — 1, N,do

9

compute matrix of statistics S; gim, meas = Smeas(Xdim (t)) on the tail of the trajectories.
10: end for
11:  endfor
12: end for

13: Obtained: N (N; x N;)-matrices S;

14: Compute (N x N)-sized distance matrix D ofall S; to each other.

15: Density-based clustering (e.g. DBSCAN) of D

16: Analyze cluster memberships and statistics S for each cluster dependent on the parameter values p

3. Results

MCBB is a method that can be applied to a wide range of dynamical systems. Both, systems with discrete and
with continuous state spaces are possible to investigate, as are systems with discrete and continuous time
evolution. Typical applications are networks of oscillators as will be shown in the following, but also discrete
agent-based models with models such as the Dodds—Watts model. Every system that returns a trajectory given an
initial condition and parameter can in principal be analyzed with MCBB. In the following the Dodds—Watts
model, Kuramoto oscillator networks and Stuart—Landau oscillator networks will be investigated with MCBB.
The source code of all these results is available in the GitHub repository of the accompanying software
implementation.

3.1. Dodds—Watts model

The Dodds—Watts model of social and biological contagion [18, 19] is a generalization of contagion models such
as the SIS and SIR model [20, e.g.]. Given is a population of Nyindividuals that are connected to all other
individuals. Each of the individuals is either in the susceptible (S), infected (I) or recovered (R) state and has a
memory of doses they received within the last T'time steps D; ;. Thus, showcasing the ability of MCBB to also
deal with systems with finite delays or memories. At each time steps each individual i comes into contact with
another individual j that is randomly selected from all other individuals. If j is infected, i receive a dose d with
exposure probability p. The amount of the dose d is drawn from a distribution f(d). The dose adds to the dose
memory D, ; of iat time step tso that D, ; = 3} 1 dy ;. If the dose memory of an individual exceeds the dose
threshold d;*, it becomes infected. Latter dose threshold d;* is drawn from a distribution g (d*). Assoonas D; ;
drops below the threshold, the individual recovers with probability r at each time step. A recovered individual
becomes susceptible again with probability s. One gets the classic SIS model for example for the configuration
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Dodds-Watts model - configuration 1
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Figure 2. Approximate relative basin volume of the two different classes of asymptotic states, fully infected (blue) and fully healthy
(red), for configuration (A) of the Dodds—Watts model. The colored areas in the plot represents the basin volume of the respective
state. Computed by using a sliding parameter window over the clustering results (see section 2.4), a window length of 0.05 and an
offset of 0.01 were used.

s=1,gd*) =6Wd*—1),f(d)=86d— 1), T = 1withpandrasfree parameters. For more details on the
model, see [19]. For this Ny dimensional model with discrete states s;, € [S, I, R]and discrete time

t € [1, 2, .., ty]wedirectly evaluate the count of susceptible N(S) and infected states N(I) within the time
evolution of each individual as measures for the algorithm. As shown by [19], there are several configuration
which possess multistable regimes where also a mixed population with N(I) unequal 0 or Ny can be stable.

In particular we are investigating the two configurations: (A) with
Ny =1000, T=12,r=1,g(d) = 6(d—3),s = land(B)with N; = 1000
g(d) = 0.0756(d — 1) + 0.46(d — 2) + 0.5256(d — 12), T = 20, r = lands = 1. The number of initially
infected individuals is drawn from a uniform distributed between 0 and N;. We evolve the system for 1000 time
steps from which we regard the first 800 time steps as the transient. Configuration (B) is roughly similar to the
SIS model but with a dosage memory of 20 steps and a dosage threshold distribution so that roughly half of the
population is quite resilient against becoming infected. For both configurations N = 5000 trajectories with
random initial conditions and parameter values were computed. As both of the measures are equally important,
we choose w; = wg = 1 and w, = 0, so that we do not use the parameter value in the distance calculation. The
distance D was constructed using histograms of the statistics as described in section 2.4.

Based on a visual inspection of a 4NN-distance graph, the clustering parameter epg = 0.15 was chosen for
configuration (A). Figure 2 shows the results of the analysis. Similar to the results reported in [19], we see for
such a configuration a bifurcation occur around p = 0.4. For values larger than this the fully infected state
becomes stable. Its basin of attraction quickly grows, but the fully healthy state remains stable as well with a very
small basin of attraction for large p values.

Configuration (B) exhibits a slightly more complex structure as figure 3 reveals in accordance with the results
in [19]. Additionally, figure 3 features sliding histograms as well. These can be helpful to identify the dynamics of
the clusters. For each sliding parameter window a histogram is fitted to all measure results within this window.
These histograms are then plotted directly next to each so that we can visualize changes of the measures within
each cluster for changing parameter values. In the case of the Dodds—Watts model where we measure the
fraction of time an individual agent was infected and susceptible, these are predominantly either 1 or 0 as most
agents are either infected or susceptible the whole time. Figure 3(A) shows the behavior of the system. For small
values p only the fully healthy state is stable (see also figure 3(B)). The first bifurcation occurs around p = 0.3
when a mixed state (MS), for which susceptible and infected individuals coexist, becomes stable. Its basin of
attraction quickly grows, while the healthy state remains stable but with a very small basin of attraction. Figure 3
shows that for growing p the amount of infected individuals rises. Eventually, around p = 0.7 a fully (or almost
fully) infected state becomes stables. As figure 3(D) shows directly at the bifurcation point not all individuals of
the fully infected state are infected which is the case for larger p. Comparing the results to these reported in [19]
we see that the fully infected and the MS are indeed two distinctive stable branches of the system and thus
rightfully classified by MCBB into two separate clusters.




I0OP Publishing New J. Phys. 22 (2020) 033032 M Gelbrecht et al

Fully Healthy Cluster

Dodds-Watts model - configuration 2

3

Prdibabili(f‘y of exposu(’Fe P

1.00 E

Approximate Relative Basin Volume

Mixed Cluster Fully Infected Cluster
1.00 E‘

~ 075 0.75
Y
o 1.0
S [}
0.8
O os0 0.50 °
pr]
@] 06 2
@© o
— 04 ©
L 025 0.25 4 s
02 g
g
0.00 0.00 00

0.8

0.0 0.2 - 0.4 0.6 0.0 0.2 - 014 D.‘E
Probability of exposure p Probability of exposure p

0.8

Figure 3. (A) Approximate relative basin volume of the different asymptotic states of configuration (B) of the Dodds—Watts model. It
exhibits a fully infected (blue), fully healthy (red) and mixed state (green). Computed by using a sliding parameter window over the
clustering results (see section 2.4), a window length of 0.05 and an offset of 0.01 were used.

Network
© 1.00
5
o o g 7
» €0.75
[ ] ‘B L
° ° &
o %
* 1t ® 2050
S . o % o L L
. o o Eoos BEINEREEEERERER e
. 3 :
° o :
° drive §
® -1 0.00, . . ;
®+1 Coupling K
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3.2. Kuramoto networks

The Kuramoto Model is one of the fundamental examples of synchronization theory and network science. The

version with inertia has been used in a variety of contexts, most importantly to model nodes in power grids

[21-26]. In the transition towards globally stable synchronization, the Kuramoto model with inertia exhibits an

extreme form of multistability, with a large number of attractors. Studying the dominant patterns of

synchronization in the transition region was one of the motivating questions for the development of MCBB.
The system is given by the equations

(bi:wi)
Wi=+1- 01w~ K ¥, Aysin(¢; — ¢, (11)

with equally many 41 and —1. For K = 0 the oscillators rotate freely with w = £10. As Kincreases
synchronization starts to occur in the network. At K = 10 the system typically synchronizes completely with
w; = 0. While a large number of works have studied the stability of this synchronous state as a function of the
local network topology [24, 26—36], comparatively little is known about the intermediate regime.

As the main dynamics is in the frequency, we will only consider the frequency dimensions in the analysis
here. Figure 4(a) shows the network on which the oscillators are coupled. It is a random regular graph for which
every node has degree k = 3. The statistic we will use on the asymtptotic state are the positions of the frequency
of all the nodes and the distance is D computed according to equation (6). The results shown are for N = 25 000
trajectories.
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Figure 6. Sliding histogram plot similar to figure 5. Here, the standard deviation of all frequency time series is shown depending on the
coupling parameter.

The basin bifurcation structure, with distances calculated from the per-dimension mean of the frequency, is
given in figure 4(b). We see that for K = 0 the oscillators rotate freely, the frequencies are located atw = £10.
This state persists, until its basin starts to shrink from K = 1 onward. In the intermediate regime most of the
asymptotic states occur. These are classed together in the outlier cluster here, meaning that they occur so
infrequently that not enough samples can be obtained for a statistical treatment. This shows that the basin
structure isn’t dominated by one transitional state but an explosion of multi-stability occurs. However, the basin
bifurcation diagram also shows two states that achieve a higher basin in the transition region. Each of these
clusters occurred in more than 0.5% of the total runs, and peaks at taking up more than 10% of the basin volume
atsome p.

If welook a bit deeper into these clusters, we find that they represent partial synchronization, in which a
region of the network is synchronized, while all other oscillators still rotate at their natural frequency figure 5.

To understand how these intermediate clusters lose stability as K increases, we can consider the size of the
asymptotic states considered in figure 6. Here we see that the size of the attractor increases as K increases. In
other words, the frequency itself starts to oscilate around a stable average frequency. This suggests an interesting
insight into the behavior for the transition regime. As K increases some neighboring oscillators couple and
synchronize. As the attractor of the partially synchronized (PS) state grows, the oscillators at non-synchronized
nodes spend more and more time far from their natural frequency. Eventually they would have to spend
considerable time close to the frequency of a synchronized component that they couple to and get entrained.

To verify that these are the mechanisms that drive the transition, and to understand which network
properties enable early partial synchronized states, is beyond the scope of MCBB and this paper. However, the
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basin map of the bifurcation transition that is revealed by this approach provides immediate and crucial insights
into how the basin structure and the structure of the attractors themselves change in the transition. In particular
it reveals that the attractors do not move, but grow until they lose stability.

3.3. Stuart-Landau oscillator networks
Another paradigmatic type of oscillator is the Stuart-Landau oscillator which can be written as

z=\+iw — |z])z, (12)

where z € C, \isthebifurcation parameter and wis its eigenfrequency. Originally found by Lev Landau and
later derived by Stuart and Watson [37—39] to describe the transition to disturbance in hydrodynamics, it is also
anormal form of the Andronov—Hopf bifurcation and hence widely applicable and of great importance in many
fields [40]. Coupling Stuart Landau Oscillator can lead to several interesting phenomena. Most importantly
oscillator quenching in the form of Amplitude Death and Oscillator Death (OD) [41, 42, e.g]. An other
interesting phenomena are Chimera states [43, 44, e.g.]. These are states of systems of coupled identical
oscillators that exhibit ainhomogeneous pattern in which phase-locked states coexist with drifting states. To
apply MCBB for Stuart—-Landau systems, we use the configuration of [45] as it prominently features a multistable
regime with traveling wave (TW), oscillation death (OD) and what the authors refer to as stable amplitude
chimera dynamics. In this setup Ny Stuart—-Landau oscillator with identical eigenfrequency ware coupled by
attractive coupling to its P; nearest neighbors and repulsive coupling to its P, nearest neighbors with the
following equations:
K R K P
zi=(1+iw — |Z,‘|2)Z,‘ + — Z R(zp—z;) — i— Z I(z—2z;). (13)
i ki Py 2Py 57,

where RR(x) is the real part and J(x) the imaginary part of x. We can also investigate this setup with the coupling
mediated on two Watts—Strogatz random graphs [46], one for the repulsive and one for the attractive coupling.
With the rewiring probability p, = 0, we get the same equation as above, for p, = 0 we expect changes in the
dynamic.

3.3.1. Parameter configuration

We choose the same parameter configuration asin [45]: w = 2, Ny = 100, P, = land P, = 22.Inour
experiments we vary K, r, = P, /Ny and p,. We use random initial conditions with real and imaginary part
uniformly distributed between —1 and 1 (in contrast to the cluster initial conditions used for some calculations
in [45]) and vary K from 1.8 to 2.5. As per dimension measures we use mean and standard deviation. Since the
Stuart-Landau oscillators are complex valued, all measures are applied separately to the real and imaginary part.
From our a priori knowledge about Stuart—-Landau oscillators, we know that their asymptotic states will exhibit
different kinds of oscillatory behavior, thus it is a good choice to put the largest weight on the standard deviation.
We choose wg = 0.25, wsp = 1, w, = landrun N = 15 000 trials that are integrated from #, = 0to t; = 200.
The first 70% of this time span are regarded as the transient and are not used for the evaluation. The first
experiment is performed with p, = 0 and r, = 0.22 and the distance D is calculated using histograms according
to equation (7).

3.3.2. Varying the coupling

After running the experiment and calculating the distance matrix D, the associated 4-dist graph exhibits the knee
pointataround 0.01. We slightly decreased this value to 0.009 and 0.008 in the reported results. Figures 7(A) and
(B) show these results for the approximate relative basin volume. Similar to the results reported in [45] we see a
multistable regime, in which TW dynamics are prevalent for K < 1.95and OD dynamics are for K > 2.2.1n
between there are various states in which some oscillators show OD-like behavior and others exhibit a
synchronized oscillation. We thus prefer to refer to these kinds of states as PS states. Importantly, the PS states
are a mixture of many similarly PS states and not just a single asymptotic state. If we choose a larger epg like in
figure 7(A), the states with full OD and the PS states with only few PS oscillators and otherwise mostly OD
dynamics are merged into one cluster (OD+PS). For smaller €5 they are separated into two distinct clusters
(figure 7(A)). One particular structured and more common kind of PS states can be found for 1.9 < K < 2.0. As
figure 8 shows, these states are highly regular stationary waves, interrupted by oscillators exhibiting OD, we thus
refer to these states as regularly clustered stationary wave states (RCSW). Aside from these more regular
dynamics, there are all kinds of different MS between wave-like dynamics and oscillation death. Many are so
dissimilar to each other that they fall into the outlier cluster. The outlier cluster has the most members during the
transitions from TW to PS via RCSW at K ~ 2.0 and at the transition between OD and PSat K = 2.2. A handful
of smaller clusters with less than 60 members (or 0.4% of all trials) were neglected. They contain PS states with
more similarities to each other than to those in the outlier cluster. We identified these dynamics by further
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Figure 7. Cluster diagram of the Stuart-Landau Oscillator network with p, = 0 for two different values of the clustering parameter
epp. For (A) epg = 0.009 and for (C) and (D) epp = 0.008. MCBB resolves the different classes of asymptotic states: traveling wave
(TW), regular clustered stationary waves (RCSW), (full) oscillation death (OD) and mixed partial synchronized / oscillation death
(PS) states. When increasing epjp states in which most (but not all) oscillators exhibit OD, while the remaining few oscillators are
synchronized (PS) and the states in which all oscillators exhibit OD (OD) are merged to one cluster (OD+PS). The window size used is
0.025 and the offsetis 0.01.
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Figure 8. Introspective analysis of the two of the clusters also shown in figure 7. Plots (A), (B), (E), (F) are sliding histogram plots. For
each sliding window of coupling values K, the respective measures of trajectories within the said cluster are plotted as a histogram in y-
direction. (A)—(C) inspect the RCSW cluster. (A), (B) Show the mean and the standard deviation of the RSCW cluster. (C) and (D) are
example trajectories from the respective clusters. (E), (F) Show the mean and standard deviation of the PS cluster.

analyzing the statistics within each cluster. Figure 8 shows example plots and sliding histogram plots for two of
these clusters. The RCSW states mostly oscillate and thus almost all oscillators have a mean of zero and a
constant standard deviation different from zero. We see that these histograms change little for different coupling
values. The cluster is very homogeneous with almost all members looking like the example shown in figure 8(C).
The PS cluster, on the other hand, is much more inhomogenous. Its members have in common that most of the
oscillators exhibit OD, thus as figure 8 confirms, they exhibit nonzero means, with both positive and negative
values while having a vanishing standard deviation which corresponds to the typical stable fixed points of OD
dynamics. Figure 8(D) shows one example, the amount of oscillators still exhibiting a synchronized oscillators is
different within the cluster, though. Additional results for the other clusters can be found in the appendix.

3.3.3. Varying the coupling and amount of coupled neighbors
Similarly to the additional setup in [45], we can also investigate this system with two varying parameters with
MCBB. First, we choose to vary K, the coupling, and r,, the relative amount of neighbors the oscillators are

11
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Figure 10. Results from the setup with two parameters, varying rewiring p, of the Watts—Strogatz random graph that mediates the
repulsive coupling and the coupling strength K.

coupled to repulsively. Figure 9 shows similar clusters of similar asymptotic behavior as in the one-dimensional
setup. We see that TW dynamics are present only for small K and large r, values, while OD+PS dynamics are
present even for small K values when r, is small. For very small r, there is also a desynchronized (DS) cluster.
Most notably the distinctive RCSW type dynamics are only present for r, > 0.1 and its basin becomes larger for
larger r, values.

3.3.4. Rewiring of the network

14 When we start to randomize the coupling by rewiring it according to the scheme of Watts—Strogatz random
graphs, we get the results presented in figure 10. Here, we added the outlier cluster together with several smaller
clusters that all exhibit mixed, PS, partially OD dynamics to the MS cluster. The range of K for which these kinds
of dynamics appear gets wider when the rewiring p, increases. TW dynamics appear less for larger p, values.
RSCW type dynamics do not appear when we rewire the network.

12
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4. Discussion

Given a complex system, such as a ODE system, like the Kuramoto and Stuart-Landau networks demonstrated
in sections 3.2 and 3.3, or a map like the Dodds—Watts model presented in section 3.1, MCBB is able to analyze
and quantify which classes of asymptotic states are occuring. As demonstrated with the paradigmatic example
systems MCBB is a widely applicable approach. It is suitable to analyze the behavior of every high-dimensional
system that returns a trajectory, be it agent-based models such as the Dodds—Watts model or Differential
equations like the Kuramoto and Stuart—Landau networks. The known bifurcations of these systems were
reproduced by MCBB as shown for example with the Dodds—Watts model. Additionally, it enables us to reveal
clusters of qualitatively similar asymptotic states for all these systems as the results investigated in section 3.3
show. It does successfully identify the sizes of the basins of the most important asymptotic states even in
transition regimes, what a traditional bifurcation analysis can not reveal. For the Kuramoto system we see how
and when the basins of the unsynchronized states shrinks and how the basins of the completely synchronized
states emerges. We also get an insight into the transition between these states, as we can see how the size of the
states increases before they destabilize. Hence, for the Kuramoto model it provides an intuitive way of visualizing
the synchronization process. When applying MCBB to a Stuart-Landau system the different asymptotic
behaviors, TW states, oscillator quenching phenomena such as OD and mixed stated, are classified in different
clusters and interesting dynamics such as RCSW states are revealed and their basins quantified.

The analysis can always be fine tuned by changing the clustering parameters to resolve the asymptotic states
finer or coarser. Additionally, the weights of the distance calculation provide another mean of adjustment. The
flexible nature of the method also allows for experimentation with the statistics used to evaluate the trajectories
and the exact clustering algorithm. In particular various entropy-based statistics seem promising to use. While
designing the method we already used the per dimension Kullback—Leibler divergence of the time series to the
Gaussian measure KLG; = Dy (p°(E;, Var;)||p;) as a statistic to track structural changes of investigated systems.
This was especially useful for relatively low-dimensional systems. The curve entropy [47] of the complete
trajectory was tested as well. Additionally, we also experimented with a distance between histograms of the
covariance matrices as a statistic. This expands variance-based size measure to also take cross-correlations
between the dimensions into consideration which could be useful for systems that exhibit multiple possible
cross-correlations structures in the asymptotic states that otherwise behave similar, e.g. different kinds of
collective oscillations. For the example systems presented here, it was however sufficient to only use the position
and size of the attractors as measures. Additional measures were not necessary to resolve the different classes of
asymptotic states. This should not stop experimentation with additional measures though, as some of them are
already implemented in the accompanying software as well with further additional ones easy to add.

Aside from the approximate basin volume and the sliding histograms shown in this paper, it is also possible
to further investigate the clusters found by the clustering algorithm, e.g. by analyzing which kind of initial
conditions lead to certain class of asymptotic states or by analyzing how each dimension is changing with the
control parameters separately and not in histogram form. These options are already implemented in the Julia
package (see appendix A) and more could be envisioned in the future.

Itis further possible to extend the method to systems with unknown background parameters that adhere to
certain distribution and additional control parameters or forcings, such as some climate models which will be
further discussed in future work.

While this work focused on introducing the method and testing it with paradigmatic models, we believe that
this opens the door to studying a wide variety of systems in novel ways. We expect that the method will be fruitful
in diverse contexts where a mix of multistability and high dimensional behavior are important. Most notable
among those would be biological networks and climate systems. Already the three examples presented here,
showcase the broad possibilities of MCBB for many interdisciplinary fields, be it disease and opinion spreading
(Dodds—Watts model), power grid dynamics (Kuramoto network) or chemical and biological systems (Stuart—
Landau network).

A distinct limit of the approach is that it is only able to detect and track stable solutions of the investigated
systems. Unstable solutions are not accessible with MCBB. A further important avenue of investigation is to
study the mathematical properties of the algorithm described here in much more detail. In particular it would be
highly desirable to understand the convergence properties of the algorithm. We also suspect that there is
considerable scope for improving the clustering by making use of information from the continuation, rather
than reverting to a standard density based algorithm. One other avenue of investigation where we will improve
the method further is to use the statistics of the tail sample we record in order to track when the integration has
reached the asymptotic regime in a suitable sense.

MCBB provides an excellent way to visualize the complex behavior of systems where a traditional
bifurcation analysis is often not useful or difficult to implement. It resolves the most important classes of
asymptotic states and enables the user to track the size of its basins along changing parameters.
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Appendix A. Julia package

The algorithm is implemented in Julia. It can be installed directly from the GitHub repository https://github.
com/maximilian-gelbrecht/MCBB.jl/. This library makes heavy use of Julia’s DifferentialEquations.jl library
[15]. There is an extensive documentation available that explains the package with many examples that is linked
in the page of the repository.

Appendix B. Dependence on the distribution of the initial conditions

Often there is a natural choice, given the parametrization and coordinates used, for the distribution of the initial
conditions, and it is typical in basin studies to use a uniform distribution in a box. However, there is no a priori
reason to expect that the limit of infinite box size converges, but experience shows that often plausible ranges for
the box are naturally given by the system and the results do not depend heavily on box size (or even on
substituting a normal distribution for the box). To further investigate this, we changed the distribution of the
initial conditions of the frequencies of the second order Kuramoto model which is presented in section 3.2.
Figure B1 shows results for uniform distributions with different bounds (—, 7], as shown in the main text of
the article, [—5, 7] and [— 10, 107]) and a normal distribution with mean 0 and standard deviation 7. All other
parameters (e.g. the clustering parameter epp) are kept constant. Qualitatively the results are very similar: they
show an unsynchronized regime (violet), a fully synchronized regime (blue) and several PS states. Quantitatively
they differ. The broader the distributions of the frequencies gets, the later the fully synchronized states becomes
the only existing asymptotic states. This behavior can be expected from a second order Kuramoto system: with
initial frequencies very far apart from each other, it will synchronize less well.
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Figure D1. Further analysis on the clusters also shown in figure 7. (A), (B), (E), (F) Are sliding window histograms fits of the denoted
measures for trials with parameters within the respective window. (C) and (D) are example trajectories of trials within these clusters.

Appendix C. Logistic map

While designed for high-dimensional systems, MCBB will also still work in the fringe case of a one-dimensional
system such as the logistic map x,.; = rx,(1 — x,,). Figure C1 shows the approximate relative basin volume
computed with MCBB compared to the bifurcation diagram. It was computed using the mean, standard
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deviation and Kullbach-Leibler divergence as measures with the weights 1, 0.5 and 0.5. The major bifurcation
points are reproduced as do the stable regions inside the chaotic regime form seperate clusters, while most of the
chaotic regime is grouped into to distinct clusters, one before and one after the larger stable region

aroundr =~ 3.8.

Appendix D. More results

Additionally to the results presented in section 3, one can also further inspect the other clusters found by MCBB
for the Stuart—Landau systems. This is done in figures D1 and D2. The Julia package (see section appendix A) also
allows for further other visualizations and inspections of the measures and the clusters. The documentation of
the package explains these in more detail.
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