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Abstract

Grad-div stabilization has been proved to be a very useful tool in discretizations of incompressible
flow problems. Standard error analysis for inf-sup stable conforming pairs of finite element spaces
predicts that the stabilization parameter should be optimally chosen to be O(1). This paper revisits
this choice for the Stokes equations on the basis of minimizing the H1(Ω) error of the velocity and
the L2(Ω) error of the pressure. It turns out, by applying a refined error analysis, that the optimal
parameter choice is more subtle than known so far in the literature. It depends on the used norm, the
solution, the family of finite element spaces, and the type of mesh. Depending on the situation, the
optimal stabilization parameter might range from being very small to very large. The analytic results
are supported by numerical examples.

1 Introduction

This paper investigates the choice of the parameter for grad-div stabilization in mixed finite element
methods for the Stokes equations, which are given by

−ν∆u +∇p = f , ∇ · u = 0 in Ω.

Grad-div stabilization results from adding 0 = −γ∇(∇ · u) to the continuous Stokes equations, which
yields the term γ(∇ · uh,∇ · vh) in the finite element formulation. Since∇ · uh 6= 0 for most common
finite element methods for the Stokes equations, due to the only discrete enforcement of the divergence-
free condition, this additional term is non-zero and acts to penalize a lack of mass conservation. It is well
known that the use of this type of consistent stabilization can improve solution accuracy [17], condition-
ing of discrete systems [9], convergence of iterative solvers [5,19], and even solution accuracy for related
problems such as the Navier–Stokes equations, Boussinesq equations, and others [7,14,8,13,15,20,11].

Due to the proven usefulness of grad-div stabilization, there is a natural interest to deepen its un-
derstanding, and in particular to study how to choose the stabilization parameter γ optimally. Theoretical
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analysis and numerical simulations, e.g., from [16,17,19,3], suggest that γ = O(1) is an appropriate choice
in the context of inf-sup stable conforming finite element spaces, and this seems to be widely accepted in
the community. However, it was recently shown in [8] that in certain situations, an optimal γ can actually
be much larger than O(1). There, the authors showed analytically and with numerical studies that for
solutions with very large or complicated pressures, e.g., caused by irrotational forcing, one gets very good
results with γ = 104 and bad results with γ = 1 or 10.

The goals of the present paper are to demonstrate for the simplest model problem, the Stokes equations,
that

– the choice of the grad-div stabilization parameter from the analytic point of view is more involved than
it can be found so far in the literature, if the error in the H1(Ω) norm of the velocity is of primary
interest,

– an enormous increase in accuracy can be achieved sometimes by using a parameter that is predicted by
the analysis presented in this paper, instead of a standard O(1) parameter.

The Stokes equations are considered, i.e. instead of Navier-Stokes, in order to concentrate on the main
statement of this paper, the more subtle choice of the stabilization parameter than it is known so far,
without introducing technical difficulties that arise, e.g., from the consideration of nonlinear problems.
In particular, it will be shown first that for minimizing the H1(Ω) velocity error the optimal parameter
choice depends critically on the magnitude of the pressure relative to the velocity in appropriate norms. A
statement of this form can be also found in [16,10], but the possibly large stabilization parameter is not
investigated further. Secondly, it depends on whether the pointwise divergence-free subspace of the finite
element velocity space has some optimal approximation properties, which seems to be a new observation.
These properties are closely related with the specific choice of the finite element space, i.e., with the family
of finite elements and with the mesh. These results will be derived by performing a finite element error
analysis for the H1(Ω) velocity error, considering it as a function of γ, and then minimizing it. It will be
also demonstrated that one obtains different optimal stabilization parameters if one considers the L2(Ω)
error of the pressure.

It turns out, depending on the specific situation, that the optimal stabilization parameter might be of
very different size, e.g., it might depend on the mesh width h. We like to remark that although the theory
consists essentially in refining a standard analysis, it is able to predict phenomena seemingly unobserved
before. However, it does not lead to a formula for choosing the grad-div stabilization parameter that can be
used instantly in practice since the formulas involve usually unknown constants and norms of derivatives
of the velocity and pressure solution of the continuous Stokes equations. Instead, the theory provides a
qualitative understanding for the practitioner, how the discretization method and the mesh influence the
choice of a good stabilization parameter.

The paper starts by introducing the continuous and the discrete Stokes equations as well as the space
of divergence-free and discretely divergence-free functions in Section 2. Section 3 presents the finite element
error analysis that leads to good parameter choices for minimizing different errors and for different approx-
imation properties of the pointwise divergence-free subspace. Numerical studies, presented in Section 4,
support the analytic results. In particular, it is shown that, depending on the example, the finite element
space, and the mesh, the optimal parameter might be vary from O(h2) to O(103). Section 5 summarizes
the results and further steps are discussed that are necessary for the application of the theory to more
difficult problems than considered in this paper. Throughout the paper, standard notations are used for
usual function spaces, norms, and inner products.

2 The setup of the problem and its finite element discretization

This paper considers the Stokes equations with homogeneous Dirichlet boundary conditions: find (u, p) ∈
H1

0 (Ω)d × L2
0(Ω) in a Lipschitz domain with polyhedral boundary Ω ⊂ Rd, d ∈ {2, 3}, such that, for all

(v, q) ∈ H1
0 (Ω)d × L2

0(Ω) it holds

ν(∇u,∇v)− (∇ · v, p) = (f ,v),

(∇ · u, q) = 0.
(2.1)

For the finite element discretization, we choose pairs of conforming finite element spaces Vh ⊂ H1
0 (Ω)d

and Qh ⊂ L2
0(Ω) that satisfy the inf-sup stability condition (BB condition, LBB condition), see, e.g. [4,12],

inf
qh∈Qh

sup
vh∈Vh

(∇ · vh, qh)

‖∇vh‖0 ‖qh‖0
≥ β > 0. (2.2)
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In addition, the discrete bilinear form is extended with a grad-div stabilization in order to mitigate problems
with poor mass conservation. Then, the stabilized finite element discretization reads: For fixed γ ≥ 0, find
(uh, ph) ∈ Vh ×Qh such that for all (vh, qh) ∈ Vh ×Qh

ν(∇uh,∇vh) + γ(∇ · uh,∇ · vh)− (∇ · vh, ph) = (f ,vh),

(∇ · uh, qh) = 0.
(2.3)

We introduce now the spaces of weakly differentiable divergence-free functions, and discretely divergence-
free functions

V0 ={v ∈ H1
0 (Ω)d : ∇ · v = 0},

V0,h = {vh ∈ Vh : (∇ · vh, qh) = 0 for all qh ∈ Qh} .

In general, V0,h 6⊂ V0, i.e., discretely divergence-free functions need not to be divergence-free. Note that
there are only few pairs of finite element spaces that satisfy V0,h ⊂ V0. The space of divergence-free and
discretely divergence-free functions

V00,h := V0,h ∩ V0

will become important for an appropriate choice of the stabilization parameter γ.

Definition 1 (Optimal approximation properties of the divergence-free subspace) Consider a se-
quence of quasi-uniform meshes with characteristic mesh size h and the corresponding spaces V00,h. If for

all v ∈ V0 ∩Hk+1(Ω)d there exists a sequence of vh ∈ V00,h with

‖∇v −∇vh‖0 ≤ CV00,h
hk|v|k+1,

with CV00,h
independent of h, then the sequence of spaces V00,h is said to possess optimal approximation

properties (w.r.t. the space V0).

3 On choices of the grad-div parameter that are based on error estimates

The goal of the following analysis consists of finding good values for the stabilization parameter γ. It will
be shown that the standard parameter choice γ ∼ O(1), presented, e.g., in [17,19], is not always adequate,
and that it can even be far from being optimal. This standard choice is justified in a paradigmatic way in
the excellent article [17] by deriving an optimal a-priori estimate for (2.3). We like to emphasize that the

estimate of the optimal stabilization parameter in [17] is based on the norm (ν ‖∇u‖20 +γ ‖∇ · u‖2 +‖p‖20)
1
2 ,

which is called there the ‘natural norm’. In contrast, we will search first for optimality with respect to the
velocity norm ‖∇u‖0, since one is often mainly interested in the control of this error. Following this analysis,
it will be demonstrated that the asymptotic optimal choice of γ which is based on the consideration of the
error in the L2(Ω) pressure norm leads to different values as were derived for the error in the velocity norm.
The choice of a different norm with respect to the derivations in [17,19], as well as the refined analysis,
seem to explain the different results.

3.1 Appropriate choices of the grad-div parameter based on a velocity error estimate

We consider now the H1(Ω) velocity error of the discrete Stokes system with grad-div stabilization (2.3)
and use the resulting error estimate to find a good choice for γ.

Theorem 1 For a given f ∈ H−1(Ω)d, let (u, p) be the solution to (2.1), and let (uh, ph) be the solution to

(2.3). Then, the error in the L2(Ω) norm of the gradient of the velocity is bounded by

‖∇(u− uh)‖20 ≤ inf
wh∈V0,h

(
4‖∇(u−wh)‖20 + 2

γ

ν
‖∇ ·wh‖20

)
+

2

γν
inf

qh∈Qh

‖p− qh‖20. (3.1)
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Proof Write u− uh = (u−wh) + (wh − uh) =: η +ψh, where wh ∈ V0,h is arbitrary. First, by the triangle
inequality and Young’s inequality, one obtains

‖∇u−∇uh‖20 ≤ 2 ‖∇η‖20 + 2 ‖∇ψh‖
2
0 . (3.2)

For any vh ∈ V0,h, one concludes by subtracting (2.1) and (2.3) that

ν(∇ψh,∇vh) + γ(∇ ·ψh,∇ · vh) = −ν(∇η,∇vh)− γ(∇ · η,∇ · vh) + (∇ · vh, p).

Choosing vh = ψh, and using that (∇ · ψh, qh) = 0 for any qh ∈ Qh, the error equation becomes, for any
qh ∈ Qh,

ν‖∇ψh‖
2
0 + γ‖∇ ·ψh‖

2
0 = −ν(∇η,∇ψh)− γ(∇ · η,∇ ·ψh) + (∇ ·ψh, p− qh).

After applying the Cauchy-Schwarz and Young’s inequality on the right hand side, one gets

ν‖∇ψh‖
2
0 + γ‖∇ ·ψh‖

2
0 ≤ ν‖∇η‖20 + γ‖∇ · η‖20 + 2‖p− qh‖0‖∇ ·ψh‖0. (3.3)

The last term on the right hand side can be majorized by

2‖p− qh‖0‖∇ ·ψh‖0 ≤ γ
−1‖p− qh‖20 + γ‖∇ ·ψh‖

2
0, (3.4)

which leads to

‖∇ψh‖
2
0 ≤ ‖∇η‖20 +

γ

ν
‖∇ · η‖20 +

1

γν
inf

qh∈Qh

‖p− qh‖20.

Finally, (3.2) gives

‖∇u−∇uh‖20 ≤ 4‖∇η‖20 + 2
γ

ν
‖∇ · η‖20 +

2

γν
inf

qh∈Qh

‖p− qh‖20

for all wh ∈ V0,h, which is just the statement of the theorem.

For studying the consequences of the error bound (3.1) on the choice of γ, we distinguish two different
cases. These two cases are characterized by whether or not the pointwise divergence-free subspace of the
velocity space has optimal approximation properties.

Corollary 1 (Taylor–Hood elements) Consider (Vh, Qh) = ((Pk)d, Pk−1) on quasi-uniform meshes and

assume that the solution (u, p) of (2.1) lies in Hk+1(Ω)d ×Hk(Ω).

Case 1) In the general case, if V00,h does not have optimal approximation properties, then the a-priori estimate

of Theorem 1 has the form

‖∇u−∇uh‖20 ≤
(

4 +
2γ

ν

)
C2
V0,h

h2k|u|2k+1 +
2C2

Qh

γν
h2k|p|2k. (3.5)

Case 2) If V00,h has optimal approximation properties, one obtains the a-priori error estimate

‖∇u−∇uh‖20 ≤ min

{(
4 +

2γ

ν

)
C2
V0,h

, 4C2
V00,h

}
h2k|u|2k+1 +

2C2
Qh

γν
h2k|p|2k. (3.6)

The constants CQh
, CV00,h

, CV0,h
are constants coming from interpolation estimates, where CV00,h

and CV0,h

depend on β−1.

Proof For the first case, one can only use that ‖∇ ·wh‖ = ‖∇ · (u−wh)‖ ≤ ‖∇(u−wh)‖ holds in this
setting. Then, one applies standard approximation theory to prove (3.5).

For the second case, if the space V00,h has optimal approximation properties, one gets an additional
estimate. Here, one can choose wh ∈ V00,h in (3.1). Hence, the velocity error term can be bounded also by

inf
wh∈V0,h

(
4‖∇(u−wh)‖20 + 2

γ

ν
‖∇ ·wh‖20

)
≤ 4C2

V00,h
h2k|u|2k+1,

since 2γν ‖∇·wh‖20 vanishes. Combining both results gives (3.6). Typically, CV00,h
is significantly larger than

CV0,h
.
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Remark 1 (Taylor–Hood elements) The two different cases from Corollary 1 will be discussed now in more
detail.

Case 1) If V00,h does not have optimal approximation properties, one can regard the right hand side of
(3.5) as a function dependent on γ. This function has a minimum which can be determined by elementary
calculus:

γopt ≈
CQh

CV0,h

|p|k
|u|k+1

. (3.7)

We emphasize that γopt may be quite large, whenever the velocity norm is small compared with the pressure
norm, and that this situation can happen in practice, e.g., in coupled flow problems like Rayleigh–Bénard
convection, see Section 4.

Case 2) If V00,h has optimal approximation properties, the right hand side of estimate (3.6) is not as
easy to analyze. The numerical results in Figure 2 show, depending on the complexity of the pressure, there
may or there may be not an optimal γ, since for |p|k � |u|k+1 one has γopt = ∞, which is not feasible
in practice (but is equivalent to using ((P2)2, Pdisc

1 ) Scott–Vogelius elements [6]). Therefore, giving up the
idea of finding the optimal γ, we only want to find a good γ, which should not be ∞. We used as criterion
for the choice of γ that the contribution of the pressure error equals the maximum possible contribution of
the velocity error 4C2

V00,h
h2k|u|2k+1, which is already asymptotically optimal. This criterion leads to

γgood ≈
1

2ν

(
CQh

CV00,h

|p|k
|u|k+1

)2

. (3.8)

The numerical studies in Section 4 will show that this consideration delivers good results. It is interesting
that only in the second case γgood is ν-dependent, which can be observed in the numerical examples as
well. For both cases, one does not observe a dependence on the mesh width h.

The corollary and remark above are specific to Taylor–Hood elements, but the same techniques can be
applied to any conforming inf-sup stable finite element pair used for computing solutions of (2.3). Naturally,
results for optimal stabilization parameter γ will vary. In the numerical experiments in Section 4, the theory
will be tested on both the Taylor–Hood element and the Mini element.

3.2 Appropriate choices of the grad-div parameter based on a pressure error estimate

We consider now the effect of grad-div stabilization on the L2(Ω) pressure error, and how the optimal
parameter scales with the problem data.

Theorem 2 For a given f ∈ H−1(Ω)d, let (u, p) be the solution to (2.1), let (uh, ph) be the solution to (2.3),

and assume for the inf-sup constant 0 < β ≤ O(1). Then the pressure error is bounded by

‖p− ph‖0 ≤ C(β−1)

{(
1 +

(
ν

γ

)1/2
)

inf
qh∈Qh

‖p− qh‖0

+ inf
wh∈V0,h

((
ν + (νγ)1/2

)
‖∇(u−wh)‖0 +

(
(νγ)1/2 + γ

)
‖∇ ·wh‖0

)}
. (3.9)

Proof Equations (2.1) and (2.3) provide us ∀vh ∈ Vh with

(p− ph,∇ · vh) = ν(∇(u− uh),∇vh) + γ(∇ · (u− uh),∇ · vh).

Writing p− ph = (p− qh) + (qh− ph) for arbitrary qh ∈ Qh, and dividing both sides by ‖∇vh‖ and reducing
gives

(qh − ph,∇ · vh)

‖∇vh‖0
= ν

(∇(u− uh),∇vh)

‖∇vh‖0
+ γ

(∇ · (u− uh),∇ · vh)

‖∇vh‖0
− (∇ · vh, p− qh)

‖∇vh‖0
≤ ν ‖∇(u− uh)‖0 + γ ‖∇ · (u− uh)‖0 + ‖p− qh‖0 .

Next, applying the inf-sup stability (2.2) implies that

β ‖ph − qh‖0 ≤ ν ‖∇(u− uh)‖0 + γ ‖∇ · (u− uh)‖0 + ‖p− qh‖0
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for any qh ∈ Qh. Hence by the triangle equality one obtains

‖p− ph‖0 ≤
ν

β
‖∇(u− uh)‖0 +

γ

β
‖∇ · (u− uh)‖0 +

(
1 +

1

β

)
inf

qh∈Qh

‖p− qh‖0 . (3.10)

From (3.1) it follows immediately that

‖∇(u− uh)‖0 ≤ inf
wh∈V0,h

(
2‖∇(u−wh)‖0 +

(
2γ

ν

)1/2

‖∇ ·wh‖0

)
+

(
2

γν

)1/2

inf
qh∈Qh

‖p− qh‖0. (3.11)

Applying to (3.3)

2‖p− qh‖0‖∇ ·ψh‖0 ≤ 2γ−1‖p− qh‖20 +
γ

2
‖∇ ·ψh‖

2
0

instead of (3.4), one can derive with the same arguments the estimate

‖∇ · (u− uh)‖0 ≤ inf
wh∈V0,h

((
2ν

γ

)1/2

‖∇(u−wh)‖0 +
(

1 +
√

2
)
‖∇ ·wh‖0

)
+

2

γ
inf

qh∈Qh

‖p− qh‖0. (3.12)

Then from (3.10)–(3.12), one gets

‖p− ph‖0 ≤ β
−1

{(
β + 1 + 2 +

(
2ν

γ

)1/2
)

inf
qh∈Qh

‖p− qh‖0

+ inf
wh∈V0,h

((
2ν + (2νγ)1/2

)
‖∇(u−wh)‖0 +

(
(2νγ)1/2 +

(
1 +
√

2
)
γ
)
‖∇ ·wh‖0

)}
,

and assuming that β ≤ O(1) allows this to be reduced to (3.9).

Note that the assumption on β is without loss of generality. If (2.2) holds for some positive β, it holds
also for all positive stabilization parameters smaller than β.

The impact of the error bound (3.9) on the choice of the stabilization parameter will be studied in more
detail again for the pairs of Taylor–Hood elements.

Corollary 2 (Taylor–Hood elements) Let the conditions of Corollary 1 hold.

Case 1) If V00,h does not have optimal approximation properties, one obtains the error estimate

‖p− ph‖0 ≤ C(β−1)

((
1 +

(
ν

γ

)1/2
)
CQh

hk|p|k +
(
ν + (νγ)1/2 + γ

)
CV0,h

hk|u|k+1

)
. (3.13)

Case 2) If V00,h has optimal approximation properties, the additional a-priori error estimate becomes

‖p− ph‖0 ≤ C(β−1)

((
1 +

(
ν

γ

)1/2
)
CQh

hk|p|k

+ min
{(
ν + (νγ)1/2 + γ

)
CV0,h

,
(
ν + (νγ)1/2

)
CV00,h

}
hk|u|k+1

)
. (3.14)

Proof The statements follow with the same arguments as were used in the proof of Corollary 1.

Remark 2 Similar to the velocity case, we want to find good values for γ. However, minimizing the a priori
error estimate with respect to γ is more complex than in the velocity case. For instance, the necessary
condition for getting the optimal value of γ from (3.13) leads to an equation of the form

ν

4

(
CQh
|p|k

CV0,h
|u|k+1

− γ
)2

= γ3. (3.15)

Standard calculus gives that there is at least one non-negative value of γ that satisfies (3.15) which is
smaller than (CQh

|p|k)/(CV0,h
|u|k+1). This value is the most left non-negative intersection of the curves on

both sides of (3.15). Since the right hand side of (3.13) is a continuous function for γ ∈ (0,∞) with the
limit ∞ at both ends of this interval, the most left local extremum must be a minimum. In the interesting
case that ν is small, the curve on the left hand side of (3.15) becomes flat and then there will be exactly
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one intersection of both curves, which has to correspond to a minimum and which has to be smaller than
(CQh

|p|k)/(CV0,h
|u|k+1). We could not obtain an analytic expression for this minimum, but a comparison

with (3.7) shows already that one gets a different (smaller) optimum than obtained for minimizing the
H1(Ω) error of the velocity. In the case of small ν, where the lowest powers of ν are of importance, a slight
dependence γgood = O(ν1/3) can be deduced from (3.15).

Considering Case 2 on the same basis like in Remark 1 gives

γgood =
CQh
|p|k

CV00,h
|u|k+1

. (3.16)

Again, the parameter is different from those obtained for minimizing the H1(Ω) error of the velocity. In
contrast to (3.8), the parameter (3.16) does not depend on the inverse of ν such that one can expect that
for small ν the parameter (3.8) is larger than (3.16).

4 Numerical experiments

Two numerical experiments will be presented in this section. The first one is for an analytic test problem
with known solution to support the analysis. In this experiment, the optimal values for γ can be computed
and these values will be compared with the predictions from Section 3. The second example is of more
practical interest; it is Rayleigh–Bénard convection for silicon oil. Here, an analytic expression for the
analytic solution is unknown, but from experiments one can hypothesize that |p|2/|u3 is very large, and
therefore large grad-div stabilization parameters may significantly improve results. It will be demonstrated
that this is indeed the case.

4.1 Optimal stabilization parameters for an analytic test problem

This section will demonstrate that the different regimes for choosing γopt or γgood given in the previous
section can be observed in numerical simulations. For this demonstration, examples with prescribed analytic
solutions will be considered. Further steps of the application of the analytic results to more complicated
situations will be pointed out in Section 5.

The discretization of the Stokes problem was considered with two choices of conforming inf-sup stable
pairs of finite element spaces and with three types of meshes. We consider (2.1) with Ω = (0, 1)2 and with
the prescribed velocity solution

u =

(
cos(2πy)
sin(2πx)

)
.

Three values for the viscosity will be studied, ν ∈ {1, 10−1, 10−2}, and three different functions that serve
as a prescribed pressure solution:

p1 = sin(2πy), p2 = sin(8πy), p3 = 100 sin(2πy).

For each of these nine solutions, the forcing f was computed using the Stokes equation. In all examples,
Dirichlet boundary conditions for the velocity were applied. The discrete problem (2.3) was then solved
with varying stabilization parameter γ.

The first purpose of these numerical studies was to verify that the analysis-based selections of γopt or
γgood, see (3.7) or (3.8) for the Taylor–Hood finite element, are close to the actual optimal γ, in the sense
of minimizing the H1(Ω) velocity error. As there are unknown interpolation constants in (3.7) and (3.8),
we used the computed optimal γ from coarse meshes to fit the constant(s), and then used it to predict the
good values of γ on finer meshes. Secondly, the optimal stabilization parameters were computed also on
the basis of minimizing the L2(Ω) error of the pressure to show the differences to the velocity case and to
illustrate the predictions from Remark 2.

Delaunay triangulations, barycenter refinements of triangular meshes, and Union Jack (criss-cross)
meshes were considered. The use of these meshes allows us to study the cases of optimal vs. non-optimal
approximation properties of the pointwise divergence-free subspaces of the velocity spaces for the ((P2)2, P1)
and the ((Pbub

1 )2, P1) pairs of finite elements. From [2,18] it is known that the pointwise divergence-free
subspace of the (P2)2 velocity space has optimal approximation properties on a barycenter refinement of a
regular mesh. Also, the pointwise divergence-free subspace of the (Pbub

1 )2 velocity has optimal approxima-
tion properties, see [21]. An example of each of the considered mesh types is shown in Figure 1.
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Fig. 1 Barycenter-refined, Delaunay, and Union Jack (criss-cross) meshes (left to right) used in the numerical studies.

4.1.1 ((P2)2, P1) Taylor–Hood element on barycenter-refined meshes

We consider now ((P2)2, P1) Taylor–Hood elements on a barycenter-refined uniform mesh, a case where one
knows that the divergence-free subspace of the velocity space has optimal approximation properties. Thus,
following the scaling analysis of the previous section, a good choice of γ for this test problem for minimizing
the H1(Ω) velocity error will satisfy, cf. (3.8),

γgood ≈ C0
1

2ν

|p|22
|u|23

=



C0

16νπ2
for p1,

4C0

νπ2
for p2,

10, 000C0

16νπ2
for p3,

(4.1)

where C0 is an unknown constant, which is independent of h and γ. Numerical simulations were performed
on three meshes, with h ∈ {1/8, 1/16, 1/32} (the h = 1/8 mesh is shown in Figure 1 on the left hand side).
On this mesh, the actual optimal γ was used, along with (4.1), to approximate C0 for each of the nine
examples. Using these values, choices of γgood based on (4.1) were predicted for the finer meshes. This
strategy was applied for all cases of the first numerical experiment.

The results of the numerical studies are presented in Figure 2, for all nine chosen analytic solutions, where
the H1(Ω) velocity error is plotted against the grad-div stabilization parameter γ. The actual optimal γ is
displayed as a downward triangle and the predicted parameter γgood is given as an upward facing triangle.
These results indicate that γgood was always a good choice. In addition, the choice γgood leads often to
clearly better results than picking γ = 1 or γ = O(1), e.g., in the bottom right plot, one can see that
using the analysis-based selection γgood gives dramatically smaller errors than the solution with γ = 1,
particularly for the case ν = 0.01. Lastly, we note the clear dependence of the optimal γ on ν and its
independence of h, both of which are predicted by (4.1).

Results for this test case for the L2(Ω) pressure error are shown in Figure 3. One can observe that
for larger and more complex pressures, the optimal stabilization parameter increases. This behavior is in
agreement with (3.16) since the numerator in this expression becomes larger for complex pressures, although
one should keep in mind that (3.16) was derived under the assumption of the maximal possible second term
in (3.14). A dependence of the optimal parameter on the mesh width cannot be seen. The optimal γ does
not appear to scale with ν significantly, but if there is any dependence, it appears to be inverse from the
velocity case. An expectation formulated in Remark 2 was that for small ν the optimal parameter based
on minimizing the H1(Ω) velocity error should be larger. This expectation is clearly met, in particular for
p2 and p3, cf. Figs. 2 and 3. It should be noted that the change in the pressure error due to varying γ is
relatively small compared with the velocity case.

4.1.2 ((P2)2, P1) Taylor–Hood element on Delaunay-generated triangulations

Next, we consider the case of ((P2)2, P1) Taylor–Hood elements on a Delaunay-generated triangulation,
which is a situation where it is not expected that the pointwise divergence-free subspace of the velocity
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Fig. 2 H1(Ω) velocity errors vs. grad-div stabilization parameter γ, for each of the nine chosen Stokes solutions, on
successive refinements of barycenter-refined uniform meshes. The actual optimal γ is plotted using a downward triangle
and the predicted values γgood are displayed using an upward triangle.

space has optimal approximation properties. Hence, the parameter choice (3.7) should be applied

γgood ≈ −ν +

√
ν2 +

C0|p|22
|u|23

=



−ν +

√
ν2 +

C0

8π2
for p1,

−ν +

√
ν2 +

8C0

π2
for p2,

−ν +

√
ν2 +

10, 000C0

8π2
for p3.

This scaling suggests that the γgood will be independent of the mesh width h and it will be essentially
independent of ν when ν is small.

The nine test problems were computed on three successively finer Delaunay-generated triangulations
with h ∈ {1/8, 1/16, 1/32}. The h = 1/16 mesh is depicted in Figure 1. Estimates of C0 were derived in the
same way as described above.

The results for these numerical experiments are displayed in Figure 4. They show again that the pre-
dicted value γgood is often close to the actual optimal value or that at least the error obtained with γgood is
close to the error obtained with the optimal stabilization parameter. Also in this regime, it turns out that
picking γ = 1 or γ = O(1) leads often to considerably worse results than obtained with γgood, particularly
for larger pressures and smaller viscosities. Furthermore, the numerical results agree with the theory in the
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Fig. 3 L2(Ω) pressure errors vs. grad-div stabilization parameter γ, for each of the nine Stokes solutions, on three
barycenter refined triangulations with h ∈ {1/8, 1/16, 1/32}. The actual optimal γ are plotted using a downward triangle.

sense that the a good choice of γ for this case is independent of h and only slightly (if at all) dependent on
ν.

Figure 5 presents results with respect to the optimal stabilization parameter obtained by minimizing
the L2(Ω) error of the pressure. It is again interesting to note that the change in this error due to varying
γ is relatively small compared with the velocity case. The optimal stabilization parameters appear to be
independent of the mesh width. A clear dependence on ν cannot be observed. Due to Remark 2 it can be
expected that the optimal stabilization parameters are smaller than in the velocity case. Comparing the
results of Figs. 4 and 5, one finds that this is indeed usually the case.

4.1.3 The Mini element on Union Jack triangulations

Now, the element pair ((Pbub
1 )2, P1), the mini element, is considered, which was first studied in [1]. The

simulations were performed on meshes of Union Jack type with h ∈ {1/16, 1/32, 1/64}, see the right hand
side picture in Figure 1 for the coarsest of these meshes. From [21] it is known that on this type of meshes
the mini element has the property that the pointwise divergence-free subspace of the velocity space has
optimal approximation properties. Arguing the same way as for the Taylor–Hood finite element, the theory
derived in the previous section predicts that a good choice of γ should satisfy

γgood ≈
C0h

2

2ν

|p|22
|u|22

=


C0h

2ν−1 for p1,
16C0h

2ν−1 for p2,
2, 500C0h

2ν−1 for p3.
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Fig. 4 H1(Ω) velocity errors vs. grad-div stabilization parameter γ, for each of the nine Stokes solutions, on three
Delaunay-generated triangulations with h ∈ {1/8, 1/16, 1/32}. The actual optimal γ are plotted using a downward triangle
and the predicted values γgood are displayed using an upward triangle.

Note that there is now a dependence of the parameter on the mesh width, which comes from the equal-order
interpolation of the velocity and pressure finite element space. Asymptotically, one has γgood = O(h2) and
in particular γgood → 0 as h→ 0.

Again, the coarsest mesh optimal γ were used to fit the constants C0. The results of the simulations
are presented in Figure 6. They show once more that γgood is always a good choice. For the considered
viscosities and pressures, the dependence of the error on γ is much weaker than for the Taylor–Hood finite
element. Thus, using γgood instead of γ = 1 or γ = O(1) leads usually only to somewhat better results. The
differences might increase if different examples are considered. The dependence of the optimal γ on h and
ν, that is predicted by the analysis, can be clearly observed.

4.1.4 The mini element on Delaunay-generated triangulations

Finally, the mini element on Delaunay-generated triangulations will be considered, where one does not
expect the divergence-free subspace of the velocity space to have optimal approximation properties. Hence,
the optimal stabilization parameter should be derived with the same arguments that were used to get (3.7).
Applying these arguments, one finds that the optimal stability parameter should satisfy

γ2good + 2νγgood − C0h
2 |p|22
|u|22

≈ 0.
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Fig. 5 L2(Ω) pressure errors vs. grad-div stabilization parameter γ, for each of the nine Stokes solutions, on three
Delaunay-generated triangulations with h ∈ {1/8, 1/16, 1/32}. The actual optimal γ are plotted using a downward triangle.

It follows that

γgood ≈ −ν +

√
ν2 + C0h2

|p|22
|u|22

=



−ν +

√
ν2 +

C0h2

2π2
for p1,

−ν +

√
ν2 +

32C0h2

π2
for p2,

−ν +

√
ν2 +

5, 000C0h2

π2
for p3.

The results of the numerical studies for this setup are presented in Figure 7. Again, one can observe
that the analysis-based parameter γgood was always a good choice. In particular, the results were in general
better than generically picking γ = 1. The dependence on h, although weaker than in the case of Union
Jack meshes, can be observed. Also, as predicted, there does not appear to be a significant dependence on
ν.

4.2 Rayleigh–Bénard convection for silicon oil

The second test problem we consider is the differentially heated cavity on the unit square with Rayleigh
number Ra = 106, Prandtl number Pr =∞ (corresponding to silicon oil), with no slip boundary conditions
for the velocity, and mixed Dirichlet/Neumann conditions for the temperature, see Figure 8. Since Pr =∞,

12



10 2 100 102 104
0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

|| 
u 

 u
h ||

1

    (P1
b,P1), Union Jack mesh, h=1/16, p=sin(2  y)

 

 

=1
=0.1
=0.01

10 2 100 102 104
0

1

2

3

4

5

6

7

8

|| 
u 

 u
h ||

1

    (P1
b,P1), Union Jack mesh, h=1/16, p=sin(8  y)

 

 
=1
=0.1
=0.01

10 1 100 101 102 103 104
0

2

4

6

8

10

12

14

16

18

20

|| 
u 

 u
h ||

1

(P1
b,P1), Union Jack mesh, h=1/16, p=100sin(2  y)

 

 
=1
=0.1
=0.01

10 2 100 102 104
0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

|| 
u 

 u
h ||

1

    (P1
b,P1), Union Jack mesh, h=1/32, p=sin(2  y)

 

 

=1
=0.1
=0.01

10 2 100 102 104
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

|| 
u 

 u
h ||

1

    (P1
b,P1), Union Jack mesh, h=1/32, p=sin(8  y)

 

 
=1
=0.1
=0.01

10 1 100 101 102 103 104
0

0.1

0.2

0.3

0.4

0.5

|| 
u 

 u
h ||

1

(P1
b,P1), Union Jack mesh, h=1/32, p=100sin(2  y)

 

 
=1
=0.1
=0.01

10 2 100 102 104
0.02

0.022

0.024

0.026

0.028

0.03

0.032

|| 
u 

 u
h ||

1

    (P1
b,P1), Union Jack mesh, h=1/64, p=sin(2  y)

 

 

=1
=0.1
=0.01

10 2 100 102 104
0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

0.036

0.038

0.04

|| 
u 

 u
h ||

1

    (P1
b,P1), Union Jack mesh, h=1/64, p=sin(8  y)

 

 
=1
=0.1
=0.01

10 1 100 101 102 103 104
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

|| 
u 

 u
h ||

1

(P1
b,P1), Union Jack mesh, h=1/64, p=100sin(2  y)

 

 
=1
=0.1
=0.01

Fig. 6 H1(Ω) velocity errors vs. grad-div stabilization parameter γ, for each of the nine chosen Stokes solutions, using the
mini element on Union Jack triangulations with h ∈ {1/16, 1/32, 1/64}. The actual optimal γ is plotted using a downward
triangle and the predicted values γgood are displayed using an upward triangle.

the system of equations that governs this flow is given by

−∆u +∇p = (0,Ra T )T in Ω,

∇ · u = 0 in Ω,

−∆T + u · ∇T = 0 in Ω.

Although this system is nonlinear because of the energy equation, the momentum equation is a Stokes
equation. Thus, the theory developed in this paper is applicable.

This system was implemented with a standard finite element approach, see, e.g., [8], using (Vh, Qh) =
((P2)2, P1) Taylor–Hood elements to approximate velocity and pressure, respectively, and Xh = P2 to
approximate temperature. The finite element formulation for a specified Ra takes the form: Find (uh, ph, Th−
Td,h) ∈ Vh ×Qh ×Xh such that for all (vh, qh, sh) ∈ Vh ×Qh ×Xh

ν(∇uh,∇vh) + γ(∇ · uh,∇ · vh)− (∇ · vh, ph) = ((0, Ra Th)T,vh),

(∇ · uh, qh) = 0,

(∇Th,∇sh) + (u · ∇Th, sh) = 0,

(4.2)

where Td,h is an extension of the Dirichlet data to the finite element space with inhomogeneous Dirichlet
boundary conditions. The nonlinearity of (4.2) is resolved using Newton’s method, to a relative difference
of 10−10 in successive iterates. We also found it necessary to use a continuation method in Ra to get
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Fig. 7 H1(Ω) velocity errors vs. grad-div stabilization parameter γ, for each of the nine Stokes solutions, using the
mini element on Delaunay-generated triangulations with h ∈ {1/16, 1/32, 1/64}. The actual optimal γ is plotted using a
downward triangle and the predicted values γgood are displayed using an upward triangle.

convergence with Ra = 106 (via Ra ∈ {104, 105, 106}), and each Newton iteration typically took 4 or
5 iterations to converge. Plots of the resolved solution’s velocity streamlines, pressure contours, speed
contours, and temperature contours are shown in Figure 9. Observe that the size of the pressure ph is on
the order of 105, while the speed |uh|2 is on the order of 102, and hence the size of the velocity is on the
order 101. Thus, the ratio of the size of the pressure to the size of the velocity is very large, and from
the contour plots one can expect |p|2/|u|3 to be large as well. Considering this problem on a coarse mesh,
a larger velocity error (compared with the reference solution) can be expected that is dominated by the
contribution from the pressure. The analysis presented in this paper suggests that this contribution can be
reduced by increasing the grad-div stabilization parameter γ, thereby reducing the overall error, and finally
leading to significantly improved solutions for the velocity.

We computed solutions to (4.2), using ((P2)2, P1, P2) elements for velocity-pressure-temperature, on the
mesh shown in Figure 10 that provided 3,679 total degrees of freedom, with varying grad-div stabilization
parameter γ. Solutions are shown in Figure 11, as velocity streamlines and temperature contours. Comparing
with the resolved solution in Figure 9, the temperature contours agree for all solutions except when γ = 0,
but the velocity streamlines are correct only for the γ = 1, 000 and γ = 10, 000 simulations. Hence, one
observes an increase in accuracy from the use of large grad-div stabilization parameters, as expected. A
similar observation was reported in [7] for the case Pr = 1.

14



0 0.5 1
0

0.5

1

T=1
u=0 u=0

T=0

u=0, (  T  n)=0

u=0, (  T  n)=0

Fig. 8 The domain and boundary conditions for the natural convection problem.

Max vertical velocity at y = 0.5 is 237.705
Max horizontal velocity at x = 0.5 is 84.6975
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Fig. 9 The velocity streamlines (top left), temperature contours (top right), pressure contours (bottom left), and speed
contours (bottom right) of the resolved solution to the differentially heated cavity.

5 Conclusions and outlook

A re-investigation of the question of optimal grad-div stabilization parameters in finite element methods for
the Stokes equations was presented that clarified that one has to distinguish several situations for designing
such a parameter for conforming inf-sup stable pairs of finite element spaces, depending on whether the
H1(Ω) error of the velocity or the L2(Ω) error of the pressure is of interest. It was demonstrated that the
question of the existence of a divergence-free subspace with optimal approximation properties is crucial.
Consequently, the optimal parameter choice does not even have the same expression within classes of finite
element spaces, e.g. within the class of Taylor–Hood finite elements, as it depends on the concrete space
itself, i.e. on the properties of the grid and the element choice together. In addition, the regularity of
the solution also plays a role for the optimal stabilization parameter. Based on estimate (3.1), one can
derive parameters for solutions with reduced smoothness by applying interpolation estimates to spaces
with appropriate regularity.
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Fig. 10 The mesh used for the differentially heated cavity problem.

γ = 0 γ = 1

Max vertical velocity at y = 0.5 is 242.214
Max horizontal velocity at x = 0.5 is 84.6142

Max vertical velocity at y = 0.5 is 242.281
Max horizontal velocity at x = 0.5 is 84.3389

γ = 10 γ = 100

Max vertical velocity at y = 0.5 is 242.356
Max horizontal velocity at x = 0.5 is 83.8464

Max vertical velocity at y = 0.5 is 242.091
Max horizontal velocity at x = 0.5 is 83.4913

γ = 1, 000 γ = 10, 000

Max vertical velocity at y = 0.5 is 242.023
Max horizontal velocity at x = 0.5 is 83.4122

Max vertical velocity at y = 0.5 is 242.015
Max horizontal velocity at x = 0.5 is 83.4028

Fig. 11 Differentially heated cavity problem: velocity streamlines and temperature contours of solutions with varying γ.

The present paper gave an analytic support for the observation from [8] that the use of large stabilization
parameters is appropriate in certain situations. Numerical studies were presented that support the analytic
results. Moreover, and particularly important for applications, an enormous error reduction (in the H1(Ω)
error of the velocity) could be observed in certain cases by using parameters predicted from the present
analysis instead of parameters of O(1), as they were proposed in the literature (based on error estimates for
other norms). Also in a more complex flow problem, the choice of large stabilization parameters resulted
in considerable improvements of the computed velocity field.

Extending the analytic considerations to more complex equations or systems from Computational Fluid
Dynamics will result in more terms on the right hand side of the error estimates. Hence, it will become more
complicated to derive information about a good value of the stabilization parameters. This issue will be
studied in future work. Also from the practical point of view, a number of issues need to be addressed. How
to determine whether the divergence-free subspace of the finite element velocity has optimal approximation
properties? How to estimate parameters of form (3.7) or (3.8) efficiently without knowledge of the analytic
solution? We think that none of these questions can be answered easily. Altogether, there are a number of
topics for further research on the grad-div stabilization.
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