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ABSTRACT. Differential-Algebraic Equations (DAE) are today an indepen-
dent field of research, which is gaining in importance and becoming of in-
creasing interest for applications and mathematics itself. This workshop has
drawn the balance after about 25 years investigations of DAEs and the re-
search aims of the future were intensively discussed.
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Introduction by the Organisers

The topic of Differential Algebraic Equations (DAEs) began to attract significant
research interest in applied and numerical mathematics in the early 1980’s. Today,
a quarter of a century later, DAEs are an independent field of research, which is
gaining in importance and becoming of increasing interest for both applications
and mathematical theory.

This Oberwolfach workshop brought together 48 experts in applied mathematics,
among them, on the one hand, some who have already influenced and formed the
developments of the field, and on the other hand, some very young researchers
who have shown outstanding creativity and competence in connection with their
PhD theses and thus raise great hopes for further advances.

The 16 female and 32 male scientists came from 13 countries to meet and work
together in the wonderful, unique Oberwolfach atmosphere, which stimulated a
fruitful and pleasant collaboration.

The schedule comprised a total of 34 presentations, 18 of which were arranged into
14 survey lectures (some of them with more than one speaker) offering a broader
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treatment of a particular subject. 16 shorter contributions supplemented the sci-
entific programmme. The areas can be classified (of course with large overlap)
into 4 groups:
e abstract differential algebraic systems, coupled systems, partial differential
algebraic systems;
e analysis of (ordinary) differential algebraic equations and application of
numerical methods to problems having new mathematical complexity;
e innovative and improved numerical integration methods to solve highly
complex application problems;
e optimization with constraints described by DAEs and control problems
concerning DAEs.

The broad range of these areas and the diversity of the participants stimulated
fruitful discussions between the different branches and gave rise to new contacts
and collaborations. A considerable gain in knowledgde and progress became ob-
vious, which includes the formulation of open questions and challenges for the
future.

We are grateful to the Mathematisches Forschungsinstitut Oberwolfach for pro-
viding an inspiring setting for this workshop.
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Abstracts

DAEs at work: Industrial multibody system simulation
MARTIN ARNOLD

For more than 15 years, the dynamical simulation of constrained mechanical sys-
tems has been one of the central applications of DAE methods in engineering. In
the present contribution we summarize shortly the historical background and some
current developments in this field.

Following a network approach for model setup [16], the state of complex multi-
body systems is described by a vector ¢(t) € R™e of in general redundant position
and orientation coordinates and the corresponding velocities v(t) := ¢(¢t). Redun-
dant coordinates have to satisfy n) holonomic constraints

(1) 0 =g(q(t),t)
that are coupled to the dynamical equations
(2) M (g, t)i(t) = f(q,d,t) = G (g, )\

by constraint forces —G'T A with G(q,t) := (0g9/9q)(q,t) and Lagrangian multipli-
ers A\(t) € R™, see [18]. Egs. (1) and (2) together form the equations of motion,
a second order DAE with the symmetric positive definite mass matrix M and the
force vector f. If G has full rank, the differential index and the perturbation index
of (1)/(2) are v = 3, see [11, 14]. Index reduction is necessary to guarantee the
robust and efficient time integration of the equations of motion.

It is important to note that the constraints (1) result from the use of redundant
coordinates ¢(t). Locally, the constraints may always be avoided using a minimal
set of generalized coordinates ¢(t) € R™~"™*. Coordinate partitioning [20] is a
numerical approach to split the vector ¢(t) of redundant coordinates into ny — ny
independent coordinates ¢(t) and ny dependent ones.

With coordinate partitioning, the dynamical simulation of constrained mechan-
ical systems could be based on any suitable ODE solver. From the engineer’s
viewpoint, the use of DAE methods is attractive only if they result in a faster and
more robust time integration of the equations of motion. For the acceptance of
DAE methods in this field it is essential to provide a convincing physical interpre-
tation of common DAE techniques like index reduction or projection and to have
robust DAE solvers that are prepared to be used by non-experts.

The use of modern DAE methods in industrial multibody system simulation
was inspired by the work of Fiihrer [10, 11, 12] who applied index reduction by
differentiation, a very formal technique from DAE theory, to derive the (hidden)
constraints on the level of velocity coordinates

3 0= golat0) = 2@ 00 + Pt = Gl v+ ala.)
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that are combined with (1)/(2) in an analytically equivalent second order index-2
DAE which is known today as stabilized index-2 formulation (or Gear—Gupta—
Leimkuhler formulation [12, 13]) of the equations of motion. With ODASSL [11],
a specially adapted version of the BDF solver DASSL [8], the stabilized index-2
formulation of the equations of motion in standard form (1)/(2) may be solved
very efficiently.

In industrial applications, the model equations of multibody systems are not
restricted to this rather simple standard form (1)/(2). An important extension are
rigid body contact conditions that may be formulated efficiently using parametriza-
tions of the surfaces of the bodies being in contact. Geometric considerations show
that the contact point coordinates s = s(q,t) are implicitly defined by additional
algebraic equations 0 = ¢(gq, s,t), see [10], which have to be appended to (1)/(2).
The stabilized index-2 formulation has been extended to these more general model
equations [1, 6] by an approach that is closely related to the general DAE index
reduction concept according to Kunkel and Mehrmann, see [5].

Today, the stabilized index-2 formulation combined with DASSL / ODASSL or
with the implicit Runge-Kutta solver RADAUS5, see [14], is one of the standard
approaches to the time integration of constrained mechanical systems in industrial
multibody system simulation [2]. Special techniques for Jacobian approximation
and Jacobian update have been developed that exploit the structure of large scale
multibody system models (n, > 100) to reduce the computing time by 80% and
more [3]. With these adapted solvers, large multibody system models like detailed
full vehicle models in automotive and railway engineering may still be handled
efficiently (ng, = 100 ... 1000, ny =10 ... 50).

However, in high-end applications with thousands of degrees of freedom also
these adapted solvers show a dramatical loss of efficiency. Typical examples are the
dynamical simulation of combustion engines with chain drives [15] and multibody
system models of vehicles or vehicle components that move along large elastic
structures like, e.g., a heavy truck that crosses a bridge or the pantograph head of
a high-speed train that moves along the overhead equipment [7, 19].

Often, these large scale problems show a clear modular structure that can be ex-
ploited in the dynamical simulation coupling, e.g., two or more specialized simula-
tion tools in a co-simulation framework [17] or using small stepsizes for (hopefully)
low dimensional subsystems with small time constants and much larger stepsizes
for the remaining part of the model (multi-rate methods [15]). For a large class of
these modular time integration methods, stability and convergence may be studied
by techniques from DAE theory. Following the ideas of the convergence analysis
for one-step methods applied to semi-explicit index-1 DAEs [9], a contractivity
condition is given that is necessary for stability and convergence of modular time
integration [4].
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PDA-Models in Chip Design — Wavelet-based Integration
ANDREAS BARTEL
(joint work with Stephanie Knorr)

1. INTRODUCTION

The usual modelling of electric circuits yields systems of differential-algebraic
equations (DAEs). Due to down-scaling, secondary effects become more and more
important (e.g. [1, 2, 6]): for instance, thermal-conduction, transmission line phe-
nomena and complex semiconductor behaviour, plus additionally inherent multi-
scales of signals. Here more sophisticated models enrich the DAE-description by
spatial systems, which results in a partial differential-algebraic equation (PDAE)
to include adequately down-scaling effects. Roughly speaking, there are three
classes of models: (1) refined networks, where network elements are replaced by a
spatial description of the underlying electric effect; (2) multiphysics, where addi-
tional quantities are introduced; and (3) multirate, where time scales are decoupled
by multiple time variables.

We address here the last case, and investigate the detection of steep gradients
in heterogeneous signal structures (digital-like plus analog) via wavelets.

2. MULTIDIMENSIONAL SIGNAL MODEL

We are interested in computing limit cycles for circuits with widely separated
time scales. Here, these problems are faced by the introduction of a corresponding
variable for each occurring scale [3]. The resulting multidimensional representation
of a signal yields then a multivariate function (MVF). We illustrate this for a 2-tone
quasiperiodic signal x, which is transferred to its MVF z as follows:

) . (27 ¢ s 2T ; St 1) . (2 : . (27 ;
x(t) =sin | ——1|sin | — ~ T =sin | — sin | — .
T T 1,02 " T, 2

In the multidimensional description the time scales are decoupled. In this example,
the MVF is periodic in each coordinate direction and can be resolved with only
few grid points over the rectangle of the periodicities [0,73] x [0,7%]. The more
the time scales differ (77 > T5), the more efficient the multidimensional approach
becomes, since the structure of the MVF is independent from the ratio 71 /75 in
contrast to the original x, which can be reconstructed via z(t) = (¢, t).
Applying the multidimensional signal model to differential-algebraic network
equations leads to multirate partial differential-algebraic equations (MPDAES):

4 q(x(t) = £(b(t),x(t)) ~ aggc) L ‘932) — £ (b(t1, t2), X(t1, 12))

with MVFs x of the unknown node potentials and branch currents and b repre-
senting input signals; the charges and fluxes are described by q.

In analogy to the theory of an underlying ODE, a structural analysis of the MP-
DAE [5] revealed the characterisation as a PDE-system restricted to a manifold.
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The hyperbolic type of the inherent PDE allows us to formulate a characteristic
system. We are left with systems of differential-algebraic equations for x.

(1) dd—Tq()_cc(T)) = f(E)(T +¢,7),%c(7))  with Xe(7) =%(7+¢,7),

which exhibit an information transport along straight lines in the direction of the
diagonal. To exploit this, we discretise the DAE (1) on a characteristic grid, which
will be described in the following section.

3. WAVELETS FOR ADAPTIVE GRID GENERATION

We have to determine the MPDAE-solution over the rectangle [0, T1] x [0, T3] of
the periodicities, which is depicted in figure 1 (left), and aims at the limit cycle for
our quasi-periodic problem. The representation of the domain’s diagonal, which
contains the solution x(¢) = %X(¢,t) of the original network equations, is indicated
by the dotted lines; the solid lines show the characteristic curves, along which
we have to solve system (1), only. The periodicity of the MPDAE-solution %X in
to-direction leads to boundary conditions for the restrictions X. via interpolation.

To determine the adaptive grids in ts-direction we integrate the original DAE-
system along the characteristic curves [c, c+ T»| in advance using a standard time
integration algorithm. Thereby it is crucial to specify consistent initial values for
each characteristic curve, which can be obtained by an implicit Euler-step. Then
the obtained solutions are decomposed performing discrete wavelet transforms
(DWTs). The wavelets used for this transformation are hat-functions, which are
“folded” at the edges of the interval [0, T3] following [4]. In this way a multire-
solution analysis of L?([0,T%]) is constructed and the time-frequency localisation
property of the wavelets can be used to generate an adaptive grid by ’simply’
inspecting the magnitude of the wavelet coefficients.

For the time-integration along the characteristic curves we do not have to solve
for the limit cycle, as we only need the basic structure of the solution to determine
an adaptive grid, which could possibly look like the one depicted in figure 1 (right).

| i

Tl tl Tl tl
FIGURE 1. Characteristic curves (left) and adaptive grid (right).

Equipped with a grid tailored to the special structure of the solution, we solve
the DAEs (1) using a finite difference discretisation described in [6]. As the equa-
tions are only coupled via the interpolation for the boundary conditions, the arising
linear system in the Newton iteration is very sparse and can be solved efficiently.
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4. SIMULATION RESULTS AND CONCLUSIONS

To illustrate the adaptive grid generation presented in this paper, we introduce
an industrial test example, the Miller integrator shown in figure 2 (left), which can
be described by a set of index-1 differential-algebraic equations. This circuit com-
prises the two major properties we want to focus on, namely widely separated time
scales and heterogeneous signal structures. Apart of a slowly varying harmonic
input signal (v;,), two pulse functions (p, and pp) are involved, which work on a
much faster time scale than the input and are characterised by steep gradients.

Figure 2 (middle) shows the adaptive grid on the two-dimensional domain ob-
tained after time-integration along the characteristic curves and DW'T of those
solutions. Comparing this grid with the MPDAE-solution at node 1 depicted, fig-
ure 2 right, we notice that the steep gradients arising due to the pulse functions
are perfectly detected by the wavelet transforms.

FIGURE 2. Circuit (left), grid (middle), MPDAE-solution (right).

In conclusion, we have demonstrated on the above example (Miller integrator)
that tailored grids can be defined using a pre-simulation in time domain plus
DWT with hat-wavelets. This also yields different grids on different characteristic
curves. It is Crucial for efficiency that the selection of discretisations by the DWT
coefficients is appropriate. Therefore a general algorithm has to be based on a
larger set of industrial test examples.
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Dynamic Optimization Using Control Parameterization
PauL I. BARTON

Prof. Barton is the Director of the Process Systems Engineering Laboratory at
MIT. He is a chemical engineer by training but also has many interests in ap-
plied mathematics and numerical analysis. The broad theme of his research is
the modeling, simulation, optimization and design of large-scale dynamic systems
encountered in chemical engineering. Applications are drawn from the traditional
chemical process industries, and also from less traditional areas such as pharma-
ceutical and biochemical processes, micro-scale chemical process (e.g., for portable
power generation), signaling and regulation networks in biological systems, com-
plex chemical reaction mechanisms such as those in combustion systems, nuclear
hydrogen generation, design of OLED displays, and natural gas production, dis-
tribution and processing networks. His research interests and contributions in-
clude hybrid (discrete/continuous) dynamic systems; design and modeling of com-
plex distillation systems; numerical analysis of ordinary differential, differential-
algebraic and partial differential-algebraic equations; sensitivity analysis and au-
tomatic differentiation; pollution prevention in process design; mixed-integer and
dynamic optimization theory and algorithms; process safety analysis; open pro-
cess modeling software. Besides these general interests the following paragraphs
describe current research efforts relating to the theme of the workshop.

Global Dynamic Optimization. Deterministic global optimization algorithms
guarantee an e—accurate estimate for a global solution of a nonconvex optimization
problem in finite computational time. This effort is extending existing notions
such as branch-and-bound algorithms to dynamic optimization problems. The
optimization problem is formulated on a Euclidean space, and the real valued
optimization variables influence the objective and constraint functionals through
the solutions of ODEs, DAEs or PDAEs, which are evaluated using numerical
integration. Optimal control problems may be addressed within this framework
via control parameterization (i.e., approximation of controls in terms of a finite
series of basis functions).

Branch-and-bound approaches for global optimization require the construction
of convergent convex relaxations of the nonconvex functions involved in an opti-
mization problem. A convex relaxation is a convex function that underestimates
the nonconvex function on some set of interest. A key question is how to con-
struct, in a computationally tractable manner, tight convergent convex relaxations
of functionals with ODEs, DAEs or PDAEs embedded. Our recent research has
developed methods for constructing convex relaxations of functionals with linear
and nonlinear ODEs embedded. A subsidiary question raised by these methods
is how to estimate the image of a subset of a Euclidean space under the solution
of ODEs, DAEs or PDAEs. The estimates generated from traditional ideas such
as differential inequalities are often too weak for practical application. Our cur-
rent focus is on exploiting the structure of models of physical systems to tighten
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these estimates, new nonlinear convex relaxations, and extensions of these ideas
to DAEs and PDAEs.

The ability to construct convex relaxations also enables the application of
mixed-integer nonconvex optimization algorithms to solve mixed-integer dynamic
optimization (MIDO) problems (dynamic optimization problems that involved a
mixture of integer and real valued decisions), which we have demonstrated re-
cently. Looking to the future, approaches for the global solution of semi-infinite
and bilevel programs with dynamic systems embedded now seem conceivable.

Large-Scale Dynamic Optimization. This research is investigating methods
for finding local solutions of dynamic optimization problems on Euclidean spaces
with very many optimization variables (1,000s-100,000s). Usually, the dynamical
system will also involve very many state variables (1,000s—1,000,000s), e.g., from
a method of lines discretization of a PDAE. Our approach is based on a method
for computing Hessian-vector products of ODE embedded functionals for a small
multiple of the cost of simulating the ODEs. In particular, this multiple does not
change with the number of optimization variables. This ability to compute “cheap”
Hessian-vector products enables the application of large-scale optimization meth-
ods that do not rely on sparsity, e.g., truncated Newton methods. Extensions of
this approach to DAEs are the subject of current research. A potential application
for these ideas is to multiple shooting methods for dynamic optimization, which by
their nature introduce many optimization variables into the optimization problem
solved.

Simulation and Optimization of PDAEs with a Separation of Time
Scales. An application related to the start-up of micro-scale chemical processes
for electrical power generation highlighted a class of PDAESs in time and one spa-
tial dimension with a natural separation of time scales. The slow variables are
lumped, and the fast variables are hyperbolic with all characteristics pointing in
the same direction. If the fast variables are approximated as quasi-steady-state
(QSS), a natural decomposition occurs in which an adaptive numerical integrator
can be used to solve for the spatial profile of the fast variables at each time step for
the slow variables. In start-up problems, where shocksand fronts can develop and
move around the spatial domain, an adaptive spatial mesh is highly advantageous
to the reliability of the simulation, and this reliability is particularly important for
optimizations embedding these simulations. Furthermore, preliminary numerical
studies indicate that this approach is several orders of magnitude faster than a uni-
form spatial mesh that yields comparable accuracy (i.e., the spatial discretization
error is comparable to the error introduced by the QSS approximation). Efficient
implementation of this concept requires the careful application of state-of-the-art
sensitivity analysis algorithms. There appears some scope to extend these ideas to
situations in which the fast problem is a BVP, and the slow variables are spatially
distributed.

Hybrid Systems. Hybrid (discrete/continuous) dynamic systems exhibit both
discrete state and continuous state dynamics that are coupled. A popular hybrid
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system model is the hybrid automaton, in which the discrete state is represented
by a finite set of modes, and the continuous dynamics while a particular mode
is active are described by ODEs or DAEs associated with the active mode. At
any point in time one mode is active, but an instantaneous switch can also occur
to a different mode described by different equations. Switching can occur as a
consequence of an explicit control action, or implicitly as a consequence of some
condition on the continuous state variables becoming satisfied. Also, at a switch
a jump may occur in the continuous states, as described by a transition function
that maps the final state in one mode to the initial state in the next mode. This
model appropriately describes the dynamics of many physical and technological
systems of current interest. We have developed many of the key concepts in the
theory and algorithms for simulation, sensitivity analysis and optimization of this
hybrid automaton model.

Current research is investigating approaches for solving optimization problems
with hybrid automata embedded. Two directions are being pursued. One is a
global optimization approach based on mixed-integer dynamic optimization, which
is primarily aimed at solving problems in formal safety verification of embedded
systems. The other direction is local optimization based on nonsmooth optimiza-
tion techniques, and the computation of associated quantities such as elements of
the generalized gradient.

Sensitivity Analysis of Oscillatory Systems. Oscillatory systems are perva-
sive, for example, in biological systems. Often it is desirable to compute the sen-
sitivity with respect to parameters of characteristics of oscillations such as period,
amplitude, phase and derived quantities based on these. However, conventional
sensitivity analysis notions do not directly yield this information. We are devel-
oping an efficient computational approach based on a BVP formulation that can
compute directly all sensitivity information of an oscillating system. Our current
approach applies to ODEs, but extensions to DAEs and hybrid systems would be
desirable.

Model Reduction for Chemical and Biological Networks. Modern exper-
imental techniques in conjunction with quantum computational chemistry are fa-
cilitating the construction of detailed chemical kinetic models that can predict
accurately the formation and destruction of byproducts and pollutants in pro-
cesses such as combustion, pyrolysis, and super-critical water oxidation. Similarly,
high throughput experimental techniques, amongst others, are facilitating eluci-
dation of the biochemical networks that govern phenomena such as signaling and
regulation in cells. Today these detailed ODE/DAE models can often involve
100s-1,000s chemical species and 1,000s-10,000s chemical reactions.

It is often desirable to embed these chemical/biochemical kinetic models in
reacting flow simulations where it is necessary to repeat the chemistry model at
a large number of spatial grid points associated with the semi-discretization of
PDAESs, or in cell ensemble or population balance simulations of large groups of
cells. The need to repeat the large-scale chemical kinetic model at every spatial
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grid point or for each cell in an ensemble or having each species concentration as
an independent variable in a population balance can easily overwhelm state-of-
the-art algorithms running on advanced computing architectures. It is therefore
necessary to consider approaches for reducing the size of the chemical kinetic model
while still guaranteeing accuracy in the simulation results. We are developing a
fully automated local kinetic model reduction procedure that deletes reactions
and/or species from the model using a mixed-integer optimization formulation.
This procedure can guarantee finding the smallest possible kinetic model that
satisfies user specified error tolerances. Moreover, the resulting reduced model
can still be interpreted physically as a subset of the original chemical mechanism.
Current research is showing that these notions can be extended to generate models
that have rigorous regions of validity, i.e., the prediction of the reduced model is
guaranteed to be within some tolerance of the full model for some region of state
space. In conjunction with Profs. Green and Tidor at MIT we are also exploring
the use of libraries of these reduced models in adaptive chemistry and adaptive
biology simulations that adapt the reduced kinetic model to local conditions in
order to maintain model accuracy while reducing computational time.

Software. Our goal is always to develop software implementing our research ideas
that can be effectively used by a broader community. Jacobian is a modeling envi-
ronment for hybrid DAE based models that supports model analysis, simulation,
sensitivity analysis, parameter estimation and optimization. DAEPACK is an
automatic differentiation tool and numerical library implementing many of our
symbolic and numeric algorithms. GDOC implements the global dynamic opti-
mization ideas. RIOT implements the model reduction ideas. All of this software
is distributed for free for academic use.

Numerical Methods for Efficient Nonlinear Model Predictive Control
and Moving Horizon State Estimation

HaNs GEORG BOCK

(joint work with Jan Albersmeyer, Moritz Diehl, Ekaterina Kostina, Peter Kiihl,
Andreas Schéfer, Johannes P. Schléder, Leonard Wirsching,
Frank Allgéwer, Rolf Findeisen)

The presentation reports on recent progress in the development of numerical
methods for the real-time computation of constrained closed-loop optimal controls,
and in particular the case of nonlinear model predictive control (NMPC) and
moving horizon estimation of states and parameters (MHE), for processes governed
by large systems of Differential Algebraic Equation (DAE) as they arise e.g. from
semi-discretization of instationary Partial Differential Equations.

Closed-loop optimal controls as in NMPC are important in dynamic processes
with uncertainties in order to cope with perturbations of states and systems param-
eters. One possible way to compute them is to solve the Hamilton-Jacobi-Bellman
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equation and tabulate the resulting closed-loop solution, which is a cumbersome
task in high dimensional state spaces.

An alternative way, followed here, is to solve the corresponding open-loop con-
strained optimal control problem in real time for the perturbed data, and use the
first optimal control instant as the feedback control, see [1, 8]. The challenge here,
however, is that in order to be feasible in practice, numerical solution algorithms
have to be developed that minimize the response time with respect to perturbations,
while at the same time dealing with non-linear dynamics and boundary conditions
as well as non-linear control and state inequality constraints. For time critical
applications, the solution of such problems by choosing even the fastest off-line
optimization methods is therefore out of the question, and new methods have to
be developed [3, 4].

Of particular interest in the present talk are problems in which the required
response times may be orders of magnitude shorter than the time for solving an
off-line optimal control problem. As the basic solution approach we choose the
direct multiple shooting method which is an “all-at-once” optimization method
that consists of a finite dimensional parameterization of the control functions and
a time discretization - or more precisely a re-parameterization - of the differential-
algebraic equations. The result is a transcription to a large-scale constrained
non-linear programming problem with a system of non-linear equality constraints
that exhibit a special boundary value problem structure, for which very effective
solution methods have already been developed.

The direct multiple shooting approach has several advantages that are impor-
tant in the NMPC and the real-time optimization context: The incorporation of
the state variables as unknowns in the optimization process reduces the nonlinear-
ity and improves both local and global convergence, the algorithm allows a numer-
ically stable treatment of optimal control problems with highly unstable and even
chaotic dynamics, the decomposition of the integration process into independent
subintervals allows a convenient parallelization of the computationally intensive
parts. Moreover, since in multiple shooting modified standard DAE integrators
can be applied, an effective adaptive discretization error control of trajectories and
derivatives is possible. Starting from here, the so-called “real-time iteration” ap-
proach [4] is developed, which integrates, among others, the following algorithmic
components:

e a perturbation embedding, which makes the computation of function val-
ues and derivatives largely independent of the actual value of system and
parameter estimates,

e approximate Newton, Gauss-Newton and quasi-Newton optimization me-
thods for the equality and inequality constrained non-linear programming
problem, and

e structure exploiting linear algebra techniques to decompose and solve the
quadratic program (QP) sub-problems.
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One of its basic features is that now in each iteration of the optimization process,
the latest available process data are being used. A reformulation of the optimiza-
tion algorithm and a pre-computation - as far as possible - of constraint residuals,
gradients, Hessians and QP decompositions splits each iteration into a preparation
and a feedback phase. As a consequence, the response times to perturbations of
states and systems parameters are minimized. In real experiments for a high purity
distillation column, the response times realiz