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Abstract

We study equilibrium conditions of liquid–vapour phase transitions for a single sub-
stance at constant temperature. The phase transitions are modelled by a classical
sharp interface model with boundary contact energy.
We revisit this old problem mainly for the following reasons. Equilibria in a two–
phase system can be established either under fixed external pressure or under fixed
total volume. These two different settings lead to distinct equilibria, a fact that
is usually ignored in the literature. In nature and in most technical processes, the
approach of a two-phase system to equilibrium runs at constant pressure, whereas
mathematicians prefer to study processes in constant domains, i.e. at constant vol-
ume. Furthermore, in the literature the sharp interface of the liquid and the vapour
phase is usually described by a surface with high symmetry like a plane interface or
a radially symmetric interface which has the shape of the boundary of a ball.
In this paper we establish equilibrium conditions for pressure control as well as for
volume control with arbitrary shapes of the interface. The results are derived by
methods of differential geometry. Further, the common features and differences of
pressure and volume control are worked out for some simple cases.

1 Introduction and setting of the problem

We study the equilibria of liquid–vapour phase transitions for a single substance. We
suppose that the two-phase system is contained in a vessel at constant temperature T
and that the total mass of the system is conserved. The phase transitions are described
by the classical sharp interface model with boundary contact energy.

The aim of this work is to characterize the equilibrium conditions for the following two
configurations, see Figures 1 and 2:

p0 = const.p0 = const.p0 = const.

Figure 1: Pressure control

V0 = const.V0 = const.V0 = const.

Figure 2: Volume control
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(i) The external pressure p0 is prescribed so that the indicated piston can move during
the phase transitions.

(ii) The piston is fixed so that the total volume V0 of the system is constant.

Equilibria in a two–phase system can be established either under fixed external pressure
or under fixed total volume. These different settings lead to different equilibria, a fact
that is usually ignored in the literature. In nature and in most technical processes, the
approach of a two-phase system to equilibrium run at constant pressure. Examples are
nucleation and evolution of liquid droplets in a cloud, or the settings in a cloud chamber,
which are used to study homogeneous nucleation. On the other hand, mathematicians
prefer to study processes in constant domains, i.e. at constant volume. Furthermore, the
sharp interface of the liquid and the vapour phase is usually described either by a plane
interface or by a radially symmetric interface which has the shape of the boundary of
a ball. These two cases, however, are not appropriate to study phenomena where the
interface of the two phases meets the piston or the fixed walls of the chambers in Figures
1 and 2.
The main focus of our work is to establish equilibrium conditions for both kind of settings
with arbitrary shapes of the interface up to some technical assumptions. Our results are
deduced by means of differential geometry. It will turn out that the necessary condition
for phase equilibrium agrees for both cases, i.e. the continuity of the specific Gibbs free
energies at the interface. Furthermore there results for both cases the same conditions
for mechanical equilibrium across the interface, viz. the pressures in ΩL, ΩV are related
by the Young-Laplace law to the mean curvature of the interface. However, the contact
angles only agree at the tight boundary of the vessel. Differences occur at the movable
piston. For pressure control we receive that either the liquid phase or the vapour phase
has contact with the piston whereas for volume control both phases may exist at the
piston.
From the necessary conditions for equilibria we read off those points, where the available
free energy has extrema. A determination of the nature of the extrema, i.e. wether they
correspond to minima or to maxima leads to enormous differences for the cases of fixed
pressure and fixed volume. For instance a droplet, i.e. a radially symmetric ball with
liquid inside, cannot reach stable equilibrium in vapour at fixed pressure. This stands in
contrast to the case of volume control. Here, it becomes possible to stabilize a droplet
in equilibrium. The behaviour of a bubble, i.e. a radially symmetric ball with vapour,
enclosed in the liquid phase is qualitatively the same. There is no stable bubble of finite
size in a process where equilibrium has been reached at fixed pressure.

We like to mention that the described phenomena only regard the behaviour of a single
substance. In a mixture of several different constituents, droplets or bubbles may also co-
exist in equilibrium with the surrounding at fixed pressure. The most prominent example
is fog, which represents water droplets in air. The main constituents of air are gaseous
water, oxygen and nitrogen, and the two latter constituents may stabilize the droplets,
see [Mue85].

Our work generalizes the classical equilibrium conditions in nucleation theory, see [Mue85],

2



as well as various equilibrium results with boundary contact energy concerning the sharp
interface model, cf. [Fin86] and [LL97]. Analogous equilibrium considerations for the case
that the sharp interface model is substituted by the corresponding phase field model, viz.
the van der Waals–Cahn–Hilliard phase model, can be found in [DK].

The paper is organized as follows. In Section 2 and Section 3 we introduce some basics
of thermodynamics and simple constitutive laws that describe the behaviour of vapour
and liquid. Our main results are established in Section 4. We prove necessary equilibrium
conditions for the two–phase system with arbitrary sharp interfaces. In Section 5 we study
in detail the special case of ’a droplet in vapour’. To this end we reduce the available free
energy as a function of a single variable, so that it becomes an easy matter to illustrate the
qualitative and quantitative behaviour of equilibria. Finally we have added an appendix
in which we provide the necessary ingredients of differential geometry.

2 Global versions of the balance equations for energy

and entropy

We consider the pressure and volume controlled systems of Figures 1 and 2. The interior
Ω of the vessel is divided into a vapour phase ΩV and a liquid phase ΩL. The two phases
may be arbitrary up to the condition Ω = ΩV∪ΩL. Further we assume that the total mass
is conserved and that the temperature T0 on the boundary ∂Ω of the vessel is constant.
Later on we will make the assumption that the temperature within the vessel is also
constant and equal to T0.

The global balance laws of total energy E and entropy S applied to the systems read

dE

dt
= Q̇+

∮

∂Ω

σijυjdai and
dS

dt
≥ Q̇

T0

. (1)

Equation (1)1 represents the first law of thermodynamics. The quantity Q̇ denotes the
heat power, that may flow in or out, and the surface integral gives the mechanical power
due to stresses σ acting on the boundary of the vessel, ∂Ω, which moves with the velocity
υ . Relation (1)2 expresses Clausius version of the second law of thermodynamics. The
growth of entropy is greater than the ratio of supplied heat and temperature in non–
equilibrium whereas equality holds in equilibrium.
To determine the mechanical power we have to distinguish the cases pressure and volume
control. If we prescribe the external pressure p0 then the total volume V of the vessel
may change with time and can be calculated. On the other hand, if we fix the piston so
that a time–independent total volume V0 is established, the external pressure may change
with time and can be calculated. We have

∮

∂Ω

σijυjdai =







−p0
dV
dt

fixed pressure.
for

0 fixed volume.
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Elimination of the heat power in (1)2 by means of (1)1 leads to the thermodynamic
inequality

dA
dt

≤ 0 with A :=







E − T0S + p0V pressure control,
for

E − T0S volume control,
(2)

where the quantity A is called the available free energy or availability.
Recall, that the total energy E is given by the sum of internal energy U and the kinetic
energy K, i.e. E=U+K. Consequently, if the temperature T in Ω is constant with T = T0,
there appears the combination U − T0S in (2), which represents the total free energy Ψ
of the system. Thus we may express A by

A =







Ψ + p0V pressure control.
for

Ψ volume control.
(3)

From (2) we conclude that for arbitrary thermodynamic processes in Ω that run at con-
stant outer temperature and constant total mass and which are either pressure or volume
controlled, the corresponding availabilities must always decrease and assume their mini-
mum in thermodynamic equilibrium.

3 Constitutive laws for vapour and liquid

3.1 General constitutive laws

The constitutive laws relate the temperature T and the mass density ρ to the pressure
p, the specific internal energy u and the specific entropy s. We suppose the following
dependence

p = p̂(T, ρ), u = û(T, ρ), s = ŝ(T, ρ). (4)

These equations are not independent of each other, because of the Gibbs equation

Tds = du+ p d
1

ρ
, (5)

which allows us to establish equivalent forms for the specific free energy

ψ = u− Ts

and for the specific Gibbs free energy

g = ψ +
p

ρ
. (6)
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We obtain

dψ = −sdT − pd
1

ρ
and dg = −sdT +

1

ρ
dp. (7)

Moreover,

d(ρψ) = −ρsdT + gdρ. (8)

These differential forms and the resulting integrability conditions simplify the exploitation
of inequality (2). In particular, we receive for the Gibbs free energy and the pressure the
formulas

g =
∂(ψ(T, ρ)ρ)

∂ρ
and p = ρ2∂ψ(T, ρ)

∂ρ
. (9)

3.2 Special constitutive laws

We describe the vapour phase as an ideal gas and the liquid phase as a compressible
isotropic body. The pressure of the vapour pV and of the liquid pL are related to the
corresponding mass densities ρV , ρL and the temperature T by

pV =
kT

m
ρV and pL = pR

L(T ) +KL(T )
( ρL

ρR
L(T )

− 1
)

. (10)

Here, k denotes the Boltzmann constant, m is the atomic mass, KL is the compressibility
of the liquid and pR

L as well as ρR
L are reference values of the pressure and the density

of liquid which will be chosen appropriately later on. It is also useful to introduce the
corresponding reference values in the vapour phase, i.e. pR

V (T ) = kT/mρR
V (T ).

In the following we will consider our systems at constant temperature T = T0.
Integration of (7) and (8) gives

(i) for the vapour phase:

(a) ψV = ψR
V +

pR
V

ρR
V

log

(

ρV

ρR
V

)

(11)

(b) gV = gR
V +

pR
V

ρR
V

log

(

ρV

ρR
V

)

or equivalently, (12)

gV = gR
V +

pR
V

ρR
V

log

(

pV

pR
V

)

(13)

(c) ρV ψV = ρR
V ψ

R
V + gR

V (ρV − ρR
V ) +

pR
V

ρR
V

(

ρV log

(

ρV

ρR
V

)

− ρV + ρR
V

)

(14)
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(ii) for the liquid phase:

(a) ψL = ψR
L − KL − pR

L

ρR
L

+
KL − pR

L

ρL

+
KL

ρR
L

log
(ρL

ρR
L

)

(15)

(b) gL = gR
L +

KL

ρR
L

log

(

ρL

ρR
L

)

or equivalently, (16)

gL = gR
L +

KL

ρR
L

log

(

1 +
pL − pR

L

KL

)

(17)

(c) ρLψL = ρR
Lψ

R
L + gR

L (ρL − ρR
L) +

KL

ρR
L

(

ρL log

(

ρL

ρR
L

)

− ρL + ρR
L

)

(18)

In the literature the liquid phase is often considered as an incompressible body, which is
described by the limit KL → ∞. In this case we obtain from (17) for the specific Gibbs
energy

gL = gR
L +

pL − pR
L

ρR
L

. (19)

However, the incompressible limit is only appropriate for the system under fixed external
pressure, whereas it is not a suitable assumption for a system under fixed total volume
because it may lead to large errors in that case.

4 The two-phase system with sharp interfaces

4.1 The sharp interface model

In the sharp interface model the available free energy

A = Ψ +







p0V pressure control,
for

0 volume control,
(20)

consists of the total free energy and a power term in the case of pressure control. The
total free energy is described by three additive parts, viz.

Ψ = ΨL + ΨV + ΨI .

The bulk free energies of liquid and vapour are represented by the integral forms

ΨL =

∫

ΩL

ρLψL(ρL)dx and ΨV =

∫

ΩV

ρV ψV (ρV )dx,

where we have dropped the dependence of the specific free energy on T , since we consider
processes at constant temperature. We assume that ΩL ⊆ Ω and ΩV ⊆ Ω are domains
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in R
3 with Ω = ΩL ∪ ΩV and ΩL ∩ ΩV = ∅ such that Ω is a Lipschitz domain. Here, G

means the closure of a set G. The densities ρL : ΩL → R+ and ρV : ΩV → R+ shall be
continuous differentiable functions. In particular, ρL and ρV may be regarded as restric-
tions of C1–functions with compact support in R

3.

The interfacial free energy ΨI is subdivided into three parts

ΨI = ΨILV
+ ΨILW

+ ΨIV W
.

ΨILV
, ΨIV W

and ΨILW
are the interfacial energy of liquid–vapour, vapour–wall and liquid–

wall, respectively. The interface ILV is modeled by a finite union of orientable C2–
hypersurfaces with locally finite perimeter1. Further, we suppose that ILW = Int(∂Ω ∩
∂ΩL) and IV W = Int(∂Ω∩∂ΩV ) can likewise be represented by a finite union of orientable
C2–hypersurfaces with locally finite perimeter. The symbol IntS stands for the interior
of a hyperset S. Each interfacial energy is assumed to be proportional to the surface
measure of the interface and the corresponding positive proportionality factor is called
the surface tension. There results

ΨI = ΨILV
+ ΨILW

+ ΨIV W
= σLV

∫

ILV

dH2 + σLW

∫

ILW

dH2 + σV W

∫

IV W

dH2,

where Hn denotes the n–dimensional Hausdorff measure.

4.2 Necessary conditions for equilibrium

We derive the equilibria conditions by means of calculus of variations. The available free
energy A has the integral form

A =

∫

ΩL

ρL(x)ψL(ρL(x))dx+

∫

ΩV

ρV (x)ψV (ρV (x))dx + σLV

∫

ILV

dH2

+ σLW

∫

ILW

dH2 + σV W

∫

IV W

dH2 +











p0

∫

Ω
dx pressure control.

for

0 volume control.

Now we vary over the domains ΩL, ΩV and the interface ILV . We assume that Ω =
ΩL ∪ ΩV ∪ ILV (coordinates denoted by x) depends on a parameter t, which is mapped
from the original domain Ω̂ = Ω̂V ∪ Ω̂L ∪ ÎLV (coordinates denoted by x̂) by a C1–
diffeomorphism

x = T (x̂, t) with x̂ = T (x̂, 0).

We suppose that this transformation satisfies the prescribed assumptions of Section 4.1,
i.e. the conditions on the domains ΩL and ΩV , the interfaces ILV , ILW and IV W and their

1An open set with Lipschitz boundary has for instance locally finite perimeter, see [EL92] for more
details.
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corresponding boundaries.
Observe, that in the case of pressure control the domain Ω may vary along the direction
of the piston, whereas for volume control Ω is mapped onto itself.

In both cases the mass densities fulfill the local balance of mass:

∂ρL

∂t
+ div(ρLvL) = 0, (21)

∂ρV

∂t
+ div(ρV vV ) = 0, (22)

where vL : ΩL → R
3 and vV : ΩV → R

3 are the velocities of liquid and vapour, respectively.

In order to determine the equilibrium conditions of the two systems we still have to
introduce some notations, cf. Fig. 3:

∂ΩL: boundary of liquid
∂ΩV : boundary of vapour
IP : surface of the piston
ν: measure theoretic unit outer normal on ∂Ω
νL: measure theoretic unit outer normal on ∂ΩL

νV : measure theoretic unit outer normal on ∂ΩV

νI : continuous measure theoretic unit normal
field on ILV , where we assume without loss
of generality that νI = νL on ILV .

wP : velocity of the piston IP , wP = ∂x
∂t

on IP .
wI : velocity of the interface ILV , wI = ∂x

∂t
on ILV .

wL: velocity of ∂ΩL, wL = ∂x
∂t

on ∂ΩL.

wP

wI

wL

ΩV

ΩL

Figure 3: Two–phase system

We also abbreviate

ILWP
:= IP ∩ ∂ΩL, IV WP

:= IP ∩ ∂ΩV

as well as

vL,ν := vL · νL, vV,ν := vV · νV , wI,ν := wI · νI , wP,ν := wP · ν, wL,ν := wL · νL.

The necessary equilibrium conditions are achieved by evaluating the total time derivative
of A and setting it to zero. To this end we consider the cases volume and pressure control
separately.

Pressure control:

The available free energy (20) takes on the form

A(t) =

∫

ΩL(t)

ρL(x, t)ψL(ρL(x, t))dx+

∫

ΩV (t)

ρV (x, t)ψV (ρV (x, t))dx

+ σLV

∫

ILV (t)

dH2 + σLW

∫

ILW (t)

dH2 + σV W

∫

IV W (t)

dH2 + p0

(
∫

ΩL(t)

dx+

∫

ΩV (t)

dx

)

.

(23)
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Now, we compute for each term of (23) the time derivative. Due to (6), (9) and Reynold’s
transport we derive

dΨL

dt
=

∫

ΩL

(∂(ρLψL)

∂ρL

∂ρL

∂t
+ div

(

ρLψLwL

)

)

dx

=

∫

ΩL

gL
∂ρL

∂t
dx+

∫

∂ΩL

gLρLwL,νdH2 −
∫

∂ΩL

pLwL,νdH2

=

∫

ΩL

(

gL
∂ρL

∂t
+ div(gLρLvL)

)

dx+

∫

ILV

gLρL(wI,ν − vL,ν)dH2 −
∫

∂ΩL

pLwL,νdH2

(9),(21)
=

∫

ΩL

∂pL

∂xk
vk

Ldx−
∫

ILV

pLwI,ν dH2 −
∫

ILWP

pLwP,ν dH2 +

∫

ILV

gLρL(wI,ν − vL,ν) dH2.

(24)

Similarly as before we compute

dΨV

dt
=

∫

ΩV

∂pV

∂xk
vk

V dx+

∫

ILV

pVwI,ν dH2−
∫

IV WP

pVwP,ν dH2−
∫

ILV

gV ρV (wI,ν −vV,ν) dH2.

To the volume integrals of the latter expression in (23) we also apply Reynold’s transport
theorem. This gives

d

dt

(
∫

ΩL

dx

)

=

∫

ILV

wI,νdH2 +

∫

ILWP

wP,νdH2

as well as
d

dt

(
∫

ΩV

dx

)

= −
∫

ILV

wI,νdH2 +

∫

IV WP

wP,νdH2.

Finally we compute the total derivatives of the interface integrals in (20). Here, we take
advantage from Reynold’s transport theorem for surface vectors, which is deduced in the
appendix, cf. Theorem 2. We receive

(i)
d

dt

∫

ILV

dH2 =

∫

∂∗ILV

wIν1
√
gdH1 −

∫

ILV

2kM,IwI,νdH2, where ν1 is the measure theo-

retic unit outer normal on ∂∗ILV in the tangent plane of ILV and kM,I is the mean
curvature of ILV .

(ii)
d

dt

∫

ILW

dH2 =

∫

∂∗ILW

wIν2
√
gdH1 −

∫

ILWP

2kM,PwP,νdH2, where ν2 is the measure

theoretic unit outer normal on ∂∗ILW in the tangent plane of ILW and kM,P is the
mean curvature of Ip.

(iii)
d

dt

∫

IV W

dH2 = −
∫

∂∗IV W

wIν2
√
gdH1 −

∫

IV WP

2kM,PwP,νdH2.
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Observe,

ν1 = cos γν2 + sin γν, γ : contact angle of ∂Ω and ILV , see Fig. 4.

−ν1

ν2

ν

γ

ν2

ν1
ν

Figure 4: Normal and tangential vectors of the interface ILV

We may now summarize the intermediate steps to obtain

dA
dt

=

∫

ΩL

∂pL

∂xk
vk

Ldx+

∫

ΩV

∂pV

∂xk
vk

V dx+

∫

IV Wp

(p0 − pV − 2σV WkM,P )wP,ν dH2 +

∫

ILWp

(p0 − pL − 2σLWkM,P )wP,ν dH2 +

∫

ILV

(−pL + pV − 2σLV kM,I)wI,ν dH2+

∫

ILV

(gL − gV )ρL(wI,ν − vL,ν) dH2 + (cos γ σLV − σLW + σV W )

∫

∂∗ILV

wIν2
√
g dH1+

sin γ σLV

∫

∂∗ILV

wIν
√
g dH1.

Observe, the right hand side of this equation is linear in vL, vV , wP and wI which may be
arbitrarily chosen. In consequence, each integral expression has to vanish. Thus we end
up with the following necessary conditions for equilibrium:

Mechanical conditions:

(i) pV = locally const. in ΩV and pL = locally const. in ΩL

(ii) γ = 0 on IP , since sin γ
∫

∂∗ILV
wIν

√
g dH1 = 0 has to be satisfied.

=⇒ IP = ILWp
or IP = IV Wp

=⇒ pV = p0 − 2σV WkM,P on Ip or pL = p0 − 2σLWkM,P on Ip

(iii) pV − pL = 2σLV kM,I on ILV

(iv) cos γ =
σLW − σV W

σLV

on ∂∗ILV
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Phase condition:
gL = gV on ILV

Volume control:

In the case of fixed total volume we have for the available free energy the representation

A(t) =

∫

ΩL(t)

ρL(x, t)ψL(ρL(x, t))dx+

∫

ΩV (t)

ρV (x, t)ψV (ρV (x, t))dx

+ σLV

∫

ILV (t)

dH2 + σLW

∫

ILW (t)

dH2 + σV W

∫

IV W (t)

dH2

(25)

with ΩL(t) ∪ ΩV (t) ∪ ILV (t) = Ω = const.. The total derivative of A can be computed
analogously to the case of pressure control. In fact, the formulas even simplify since we
do not have contributions of the surface terms at the piston. We derive

dA
dt

=

∫

ΩL

∂pL

∂xk
vk

Ldx+

∫

ΩV

∂pV

∂xk
vk

V dx+

∫

ILV

(−pL + pV − 2σLV kM,I)wI,νdH2+

∫

ILV

(gL − gV )ρL(wI,ν − vL,ν)dH2 + (cos γσLV − σLW + σV W )

∫

∂∗ILV

wIν2
√
gdH1.

(26)

Thus we obtain the following necessary conditions for equilibrium.

Mechanical conditions:

(i) pV = locally const. in ΩV and pL = locally const. in ΩL

(ii) pV − pL = 2σLV kM,I on ILV

(iii) cos γ =
σLW − σV W

σLV
on ∂∗ILV

(iv) V0= VL + VV

Phase condition:
gL = gV on ILV

Let us compare the results of volume control and pressure control. For both cases we
obtain the same condition for phase equilibrium, i.e. the continuity of the specific Gibbs
free energies at the interface ILV . The mechanical conditions for the pressures pL and pV

in ΩL, ΩV and on the interface ILV also agree for volume control as well as for pressure
control. The jump condition for the pressures pL and pV on ILV represents the classical
Laplace law, where the higher pressure is inside the enclosed phase. The fact that the
higher pressure is always inside the enclosed phase can be extracted from the definition
of the mean curvature which is linear in the normal field νI = νL. The formula for the
contact angle γ only coincides for volume and pressure control on the fixed boundary of
the vessel. Differences occur at the movable piston. For pressure control we conclude
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that either the liquid phase or the vapour phase has contact with the piston IP . Further
we obtain an analogous jump condition for the pressure on IP as on the interface ILV .
The corresponding outer condition for volume control states that the total volume V0 is
constant.

4.3 Plane interface

The case kM,I ≡ 0 on the liquid-vapour interface characterizes a two-phase system with a
plane interface. In this case the necessary conditions for equilibrium imply that not only
the specific Gibbs free energies but also the pressures are continuous across the interface:

p̄ := pV = pL and gV (T, pV ) = gL(T, pL). (27)

The pressure p̄ is called the vapour pressure, that may be calculated from (27)2 as a
function of temperature. By means of the constitutive laws (10)1 and (10)2 we can then
compute the corresponding mass densities ρ̄L(T ) and ρ̄V (T ).
In our further considerations we will use the thermodynamic state determined by (27) as
the reference state, i.e. we set in (11)–(19)

pR
L = pR

V = p̄(T ), ρR
L = ρ̄L(T ), ρR

V = ρ̄V (T ), gR
L = gR

V = ḡ(T ). (28)

5 Droplet–vapour and bubble–liquid systems

5.1 Necessary Conditions for equilibrium

In this paragraph we consider equilibrium conditions for the special situation that we
have either a single droplet in vapour or a single bubble in liquid at constant temperature
T = T0, cf. Figures 5 and 6. We assume that droplet and bubble have spherical symmetry.

p0 = const.p0 = const.p0 = const.

Figure 5: Pressure control

V0 = const.V0 = const.V0 = const.

Figure 6: Volume control

12



As a consequence of the results of Section 4 we suppose that the phases are homogeneous
in ΩL and ΩV . Then the thermodynamic fields may only change across the interface
ILV . Thus the bulk free energies can be written as mass × specific free energy and the
interfacial energy as surface tension × surface area of the interface. In consequence,

Ψ = ΨL + ΨV + ΨI = mLψL

(

T,
mL

VL

)

+mV ψV

(

T,
mV

VV

)

+ σ(T )4π
( 3

4π

)2/3

V
2/3
L . (29)

If we denote by α the number of atoms in the droplet and in the bubble, respectively, and
by m and N0 as before the molecular mass and the total number of atoms of the system,
we obtain for a single droplet in vapour

Ψ = mαψL

(

T,
mα

VL

)

+m(N0 − α)ψV

(

T,
m(N0 − α)

VV

)

+ σ(T )4π
( 3

4π

)2/3

V
2/3
L (30)

and for a bubble in liquid

Ψ = m(N0 − α)ψL

(

T,
m(N0 − α)

VL

)

+mαψV

(

T,
mα

VV

)

+ σ(T )4π
( 3

4π

)2/3

V
2/3
V . (31)

A comparison of (30) and (31) shows that the bubble–liquid system can be treated sim-
ilarly to the droplet–vapour system. We just have to switch VV and VL. Therefore we
want to restrict the study of equilibrium conditions to the cases

i) a single droplet in vapour under fixed pressure and
ii) a single droplet in vapour under fixed volume.

To i) The available free energy A in (3) may be written as a function of the three variables
VL, VV and α. We have

A(VL, VV , α) = mαψL

(

T,
mα

VL

)

+m(N0−α)ψV

(

T,
m(N0 − α)

VV

)

+

σ(T )4π
( 3

4π

)2/3

V
2/3
L + p0(VL + VV ).

(32)

Next we calculate the first derivatives of A with respect to these variables and set
the resulting equations equal to zero. There result by means of (6)

pL = pV +
2σ

r
, pV = p0 and gL = gV , (33)

where r =
(

3
4π
VL

)1/3
.

To ii) Here, the available free energy A may be represented in contrast to the case above as
a function of the two variables VL and α since we have the condition V0 = VL +VV =
const.. Thus we receive for the available free energy

A(VL, α) = mαψL

(

T,
mα

VL

)

+m(N0 − α)ψV

(

T,
m(N0 − α)

V0 − VL

)

+ σ(T )4π
( 3

4π

)2/3

V
2/3
L

(34)

13



the following conditions at critical points

pL = pV +
2σ

r
and gL = gV with V0 = VL + VL, (35)

where r =
(

3
4π
VL

)1/3
.

5.2 Reduction of A to a function of a single variable

Part 1: Derivation

The fact that mechanical equilibrium is much faster approached than phase equilibrium
simplifies the exploitation of the necessary conditions for equilibrium and in particular
the identification of the nature of the extrema. Taking care of mechanical equilibrium we
may reduce the available free energy A of (32) and (34) to a function of a single variable.
(i) Fixed pressure:

A (33),(6)
= m(N0 − α)gV (T, p0) +mαgL

(

T, p0 +
2σ(T )

r

)

+ σ(T )
4π

3
r2.

(13),(17)
= mN0 gV (T, p0) +mα

(

KL(T )

ρ̄
log
(

1 +
p0 + 2σ(T )

r
− p̄

KL(T )

)

− kT

m
log
(p0

p̄

)

)

+ σ(T )
4π

3
r2 (36)

We observe that A becomes a function of the single variable r if we express α as a function
of r:

α =
1

m

4π

3
r3ρL =

1

m

4π

3
ρ̄L

(

(

1 +
p0 − p̄

KL

)

r3 +
2σ(T )

KL
r2

)

. (37)

(ii) Fixed volume:

A(35),(6)
= mαgL

(

T, pV +
2σ(T )

r

)

+m(N0 − α)gV (T, pV ) + σ(T )
4π

3
r2 − pV V0

(13),(17)
= mN0 gV (T, p0) +mα

(

KL(T )

ρ̄
log
(

1 +
p0 + 2σ(T )

r
− p̄

KL(T )

)

− kT

m
log
(p0

p̄

)

)

+ σ(T )
4π

3
r2 − pV V0. (38)

Proceeding as in the case of fixed pressure we write

α =
1

m

4π

3
r3ρL =

1

m

4π

3
r3ρ̄L

(

1 +
pV + 2σ

r
− p̄

KL

)

(39)
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and observe that α now depends on r and pV . Therefore we need an additional relation
in order to eliminate pV which is based on the conservation of mass. We have

mN0 = m(α + (N0 − α))

=
4π

3
r3ρL +

(

V0 −
4π

3
r3
)

ρV

=
4π

3
r3ρ̄L

(

1 +
pV + 2σ

r
− p̄

KL

)

+
(

V0 −
4π

3
r3
)

ρ̄V
pV

p̄
.

In consequence, we can express pV as a function of r:

pV = p̄
mN0 − 4π

3
r3 ρ̄L

KL(T )
(KL(T ) + 2σ(T )

r
− p̄)

ρ̄V (V0 − 4π
3
r3) + p̄

KL(T )
ρ̄L

4π
3
r3

(40)

This shows that we can also write A as a function of the single variable r in the volume
controlled case.
Note that the assumption of an incompressible liquid, i.e. KL → ∞, becomes a non-valid
approximation if the droplet volume 4π

3
r3 approaches the total volume V0 of the system.

5.3 Reduction of A to a function of a single variable

Part 2: Summary of results in dimensionless quantities

5.3.1 Introduction of dimensionless quantities

Next we write the available free energies of (36) and (38) as a function of dimensionless
quantities. Therefore we utilize the following dimensionless notations

p→ p̂ =
p

p̄(T )
, ρ→ ρ̂ =

ρ

ρ̄V (T )
, V → V̂ =

V ρ̄V (T )

mN0

, A → Â =
A−mN0gV (T, p0)

N0kT
(41)

and K̂L(T ) := KL/p̄(T ). Moreover, we define the atomic phase fraction

z =
α

N0

∈ [0, 1] (42)

and for systems with fixed total volume V0 we introduce the volumetric phase fraction

ϕ =
VL

V0

∈ [0, 1]. (43)

For further considerations it is useful to introduce a constant c, so that we may write

2σ

p̄r
= cV̂ −1/3 and

σ4πr2

3N0kT
=

1

2
cV̂ 2/3 with c =

2σ

p̄

(

4π

3

ρ̄V

mN0

)1/3

. (44)
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5.3.2 Droplet–vapour system under fixed pressure

We now express the dimensionless available free energy Â as function of the dimensionless
droplet volume V̂L. For this purpose we represent z as a function of V̂L

z(V̂L) = ˆ̄ρL

(

(

1 +
p̂0 − 1

K̂L

)

V̂L +
c

K̂L

V̂
2/3
L

)

(45)

and receive

Â(V̂L) = z(V̂L)

(

K̂L

ˆ̄ρL

log
(

1 +
p̂0 − 1

K̂L

+
c

K̂L

V̂
−1/3
L

)

− log(p̂0)

)

+
1

2
c V̂

2/3
L . (46)

Let us also consider the limiting case K̂L → ∞. It treats the liquid as an incompress-
ible body which is for the droplet–vapour configuration under fixed pressure a suitable
assumption. Then the available free energy simplifies to

ÂK̂L→∞
(V̂L) = ˆ̄ρL

( p̂0 − 1

ˆ̄ρL

− log(p̂0)
)

V̂L +
3

2
c V̂

2/3
L . (47)

In the literature one usually finds ÂK̂L→∞
without the term (p̂0 − 1)/ ˆ̄ρL, which is only

appropriate if ˆ̄ρL >> 1. If p̂0 > 1 then the available free energy Â assumes a maximum
at V̂ C

L ∈ (0, 1/ ˆ̄ρL) between the two end point minima at V̂L = 0 and V̂L = 1/ ˆ̄ρL.

V̂ C
L is the so–called critical volume which gives the location of the nucleation barrier. The

interpretation is as follows: A droplet which appears by fluctuation with initial volume
V̂L < V̂ C

L disappears again, whereas it growths for V̂L > V̂ C
L further on. For p0 < 1, in

contrast, the only minimum is at V̂L = 0. This means that only the vapour phase is stable.
We infer that a droplet within vapour cannot be stable under fixed external pressure.

Â

2·10
-24

4·10
-24

6·10
-24

8·10
-24

1·10
-23

1.2·10
-23

1.4·10
-23

5·10
-19

1·10
-18

1.5·10
-18

2·10
-18

V̂L

p̂0 increasing

Figure 7: Available free energy Â
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Figure 7 illustrates the available free energy Â for the external pressures p0,i = i p̂/5,
i ∈ {3, 4, 5, 6, 7, 8}. For the numerical computation we have used the following material
data for water:

m = 2.988997 · 10−26kg (molecular mass)

N0 = 6.0 · 1021 (total number of molecules)

T0 = 275.15K with the corresponding data

p̄ = 710
N

m2
, ρ̄V = 0.0056

kg

m3
, ρ̄L = 1000

kg

m3
, σ = 7.5 · 10−2N

m
, KL = 1.98926 · 109 N

m2
.

5.3.3 Droplet–vapour system under fixed volume

In this case we represent the available free energy as a function of the volumetric phase
fraction ϕ.
For reasons of more clarity we express at first the pressure of the vapour phase and the
atomic phase fraction by ϕ. Owing to (39) and (40) we compute

p̂V (ϕ) =

K̂L

V̂0

− ˆ̄ρL(K̂L − 1)ϕ− ˆ̄ρLcV̂
−1/3
0 ϕ2/3

K̂L(1 − ϕ) + ˆ̄ρLϕ
(48)

and

z(ϕ) = V̂0 ˆ̄ρL

(

(

1 − 1

K̂L

)

ϕ+
p̂V (ϕ)

K̂L

ϕ+
c

K̂L

V̂
−1/3
0 ϕ2/3

)

. (49)

Thus Â can be written in the form

Â(ϕ) = (1 − z(ϕ)) log(p̂V (ϕ)) + z(ϕ)
K̂L

ˆ̄ρL

log

(

1 +
p̂V (ϕ) + cV̂

−1/3
0 ϕ−1/3 − 1

K̂L

)

+

c

2
V̂

2/3
0 ϕ2/3 − p̂V (ϕ)V̂0. (50)

Ã
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Figure 8: Available free energy Ã for small

values of ϕ
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Figure 9: Figure 8 on a larger scale
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Under fixed volume it becomes now possible to stabilize a droplet. For an appropriate
choice of the total volume V̂0, the available free energy assumes a local interior maximum
and a local interior minimum. For the calculation of the available free energy Â we take
the same material data as in the case of pressure control. Since the maximum and the
minimum occur on different scales we plot Ã(ϕ) = Â(ϕ)− Â(10−20) in the Figures 8 and
9 for the total volumes V̂0,i = (0.999 + i 0.001) m N0/ρ̄V , i ∈ {3, 4, 5, 6, 7, 8}.

5.3.4 Remark on heterogeneous nucleation

Finally we study heterogenous nucleation of a droplet where the contact angle between
the liquid and the wall of the pressure vessel comes into play. In this case the simplest
setting is a system under fixed volume and we consider the device which is depicted in
Figure 10. The droplet is located in the apex with cone angle β, and the contact angle
between the droplet and the wall is denoted by γ. We assume as before that mechanical
equilibrium is much faster established as phase equilibrium, which reduces the available
free energy to a function of a single variable. For simplicity we furthermore assume that
the interface between droplet and vapour is a portion of a sphere with radius r. Relying
on the results from Section 4.2 we find that the pressures pV and pL in vapour and liquid
are constant, and that they are related by pL − pV = 2σ/r.

Figure 10: droplet on the wall of the vessel

Recall that we have three contributions to the interfacial free energy, viz.

ΨI = σLV OLV + σLWOLW + σV WOV W . (51)

We now introduce for the indicated two-phase system the total external surface O =
OV W + OLW . In the case of fixed total volume, also the total external surface is fixed,
so that in the following we may ignore the constant term σV WO, and after introducing
the mechanical equilibrium conditions of volume control, cf. Section 4.2, we obtain with
σ ≡ σLV

ΨI = σ(OLV + cos(γ)OLW ). (52)
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The calculation of the surface term within the bracket and of the volume VL of the droplet
by means of some trigonometric identities yields

OLV + cos(γ)OLW = 4πr2F (γ, β), VL =
4π

3
r3F (γ, β), (53)

where the common factor is a function of the contact angle and cone angle which reads

F (γ, β) =
1

2
(1 − sin(γ − β)) +

1

4
cos(γ)

cos(γ − β)2

sin(β)
. (54)

Thus with respect to homogeneous nucleation, the interfacial free energy and the volume
of the droplet, which is proportional to the number of droplet particles, is changed by the
factor F (γ, β). Its behaviour is illustrated in the following graph that shows F for three
cone angels as a function of the contact angle.

Figure 11: F for different cone angles

We observe that ranges exist where F < 1, and in these cases the interfacial free energy
and the number of droplet particles, which are necessary to form a critical droplet, may
be apparently reduced. If we meet these cases heterogeneous nucleation sets in before
homogeneous nucleation takes place.
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6 Appendix

In this appendix we provide the necessary notations and auxiliary theorems of differential
geometry for Section 5. The main objective is to transfer the well–known transport
theorem to surface functions in a version which we could not find in the literature.

6.1 Gaussian description of surfaces

Let D ⊂ R
2 be a domain and let x : D → R

3 be a function represented by

x = (x1, x2, x3) = (x̂1(u1, u2), x̂2(u1, u2), x̂3(u1, u2)), (u1, u2) ∈ D.

Then the range of x is called a surface I and u = (u1, u2) are the Gaussian surface
parameters. A surface I is said to be a C2–surface if x is twice differentiable and
xu1 :=

(

∂x1

∂u1 ,
∂x2

∂u1 ,
∂x3

∂u1

)

and xu2 :=
(

∂x1

∂u2 ,
∂x2

∂u2 ,
∂x3

∂u2

)

fulfill the condition xu1 × xu2 6= 0 in D.

In this study we consider C2–surfaces It depending on the parameter t, which in our case
represents the time. We assume that It : [0,∞) ×D → R

3 is a C2–surface which is also
continuous differentiable in t and has a parametrization of the form

x = x̂(t, u) = (x̂1(t, u1, u2), x̂2(t, u1, u2), x̂3(t, u1, u2)), (t, u1, u2) ∈ [0,∞) ×D.

To each surface point x we define the tangential vectors, the metric tensor and the unit
normal vector, respectively, by

τα =
∂x̂

∂uα
, gαβ = τα · τβ , ν =

τ1 × τ2√
g

=
(εijkτ j

1 τ
k
2√

g

)

i=1,2,3
, α, β ∈ {1, 2}, (55)

where g := det(gαβ) and εijk denotes the Levi–Civita–symbol. Here, we used the Einstein’s
sum convention.
The spatial derivative of τγ , γ ∈ {1, 2}, may be decomposed with respect to tangential
and normal components, i.e.

∂τα
∂uβ

= Γγ
αβτγ + bαβν with Γγ

αβ = gγδ ∂τ
i
α

∂uβ
τ i
δ and bαβ =

∂τ i
α

∂uβ
νi,

where Γγ
αβ and bαβ are the Christoffel symbols and the curvature tensor, respectively.

The spatial derivative of the normal vector ν can be expressed as follows

∂ν

∂uβ
= −gαγbαβτγ .

Next we define the speed w of a surface point x and its decomposition into tangential and
normal parts by

w =
∂x̂

∂t
= wα

τ τα + wνν.
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A simple calculation of the spatial derivative of w yields

∂w

∂uα
= (wβ

τ ;α − wνg
βγbγα)τβ +

(∂wν

∂uα
+ wβ

τ bβα

)

ν.

Here, the semicolon stands for the covariant derivative, e.g. wβ
τ ;α = ∂wβ

τ

∂α
+ Γβ

γαw
γ
τ . Later

on we need the time derivatives of the metric tensor and of the normal vector. Both can
be computed in a similar manner. We deduce

∂gαβ

∂t
= wγ

τ ;αgγβ + wγ
τ ;βgγα − 4wνkMgαβ and

∂ν

∂t
= −

(∂wν

∂uα
+ wβ

τ bαβ

)

gαδτδ, (56)

where kM = 1
2
bαβg

αβ is the mean curvature.

6.2 Stokes’ theorem and the transport theorem for surface func-

tions

The intention of this section is to evaluate Stokes’ theorem and the transport theorem for
surface functions, which are vector fields of the type Φ = ϕα(u1, u2)τα.
Our starting point is the generalized version of Stokes’ theorem, cf. [EL92] p. 209.
Let I ⊂ R

2 be an orientated2 C2–surface with locally finite perimeter. Then

∫

I

(∇× ζ)iνidH2 =

∮

∂∗I

ζ ilidH1 (57)

for all ζ ∈ C1
c (R

2,R3), where Hn stands for the n–dimensional Hausdorff measure, ∂∗I
denotes the reduced boundary of I, l := ν× νI and νI is the unique measure theoretic unit
outer normal on ∂I.
After a straightforward calculation we receive for the left hand side of (57)

∫

I

(∇× Φ)iνidH2 =

∫

I

εijk∇jΦ
k 1√

g
εirsτ r

1 τ
s
2dH2 =

∫

I

1√
g
(g2αϕ

α
;1 − g1αϕ

α
;2)dH2. (58)

The antisymmetric matrix

εαβ := εαβ :=

(

0 1
−1 0

)

(59)

fulfills the relations
εαβ = −εβα and εαγεγβ = −δα

β . (60)

This allows us to rewrite (58) in the form

∫

I

(∇× Φ)iνidH2 =

∫

I

−1√
g
εαβgαγϕ

γ
;β dH2 =

∫

I

ψα
;α dH2, (61)

2A surface I is called an orientated surface if for I a continuous unit normal field ν exists.
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where the newly introduced quantity is defined by

ψα =
−1√
g
εαβgβγϕ

γ. (62)

Next we express the integrand of the right hand side of (57) by ψα. We obtain

ζ ili = ϕατ i
αl

i = −√
ggαβεβγψ

γτ i
αl

i = ψγeγ with eγ = −√
gεδγg

αδτ i
αl

i. (63)

Using the representation li = mατ i
α we easily verify

li(eγτ i
γ) =

√
gεαβm

αmβ = 0. (64)

This implies that the unit surface vector n = eγτγ/
√
g lies in the tangential plane of I

perpendicular to ∂I. Moreover, n points out of the surface I.
Consequently, by inserting (61) and (63) into Stokes’ theorem (57), we obtain for surface
vectors the relation

∫

I

ψα
;αdH2 =

∫

∂∗I

ψαeαdH1. (65)

In particular, if we set Ψ = ψατα we receive
∫

I

ψα
;αdH2 =

∫

∂∗I

Ψini√gdH1. (66)

Hence we have proved the following version of Stokes’ theorem for surface vectors.

Theorem 1 Let I ⊂ R
2 be an orientated C2–surface with locally finite perimeter. Then

∫

I

ψα
;αdH2 =

∫

∂∗I

Ψini√gdH1 (67)

for all Ψ ∈ C1
c (R2,R3) of the form Ψ

∣

∣

D
= ψα(u1, u2)τα, where the same notations and

definitions are used as above.

Next, we would like to state the transport theorem for surface functions.

Theorem 2 Let It : [0, tf ]×D → R
3, 0 < tf <∞, be an evolving C2–surface with locally

finite perimeter. Then

d

dt

∫

It

F (t, u)dH2 =

∫

It

(∂F

∂t
+ (wα

τ ;α − 2kMwν)F
)

dH2 (68)

for all F ∈ C1
c ([0, tf ] × R

2,R3) with the representation F
∣

∣

D
= fα(t, u1, u2)τα.

In particular, for F ≡ 1

d

dt

∫

It

dH2 =

∫

∂∗It

wini√gdH1 −
∫

It

2kMwνdH2. (69)

Here, the previous notations and definitions are also taken.
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Sketch of the proof: We start with the identity

d

dt

∫

It

F (t, u)dH2 =

∫

D

(∂(F
√
g)

∂t

)

du1du2

and proceed by means of the product rule and the identity

∂
√
g

∂t
=

1

2
√
g
ggαβ ∂gαβ

∂t
.

For the time–derivative of the metric tensor we insert relation (56) and attain finally
formula (68).

If F ≡ 1 we may transform the term with the covariant derivative of (68) by Stokes’
theorem for surface vectors. There results

d

dt

∫

It

dH2 =

∫

∂∗It

wini√gdH1 −
∫

It

2kMwνdH2.

�
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Monographs in Mathematics, Vol. 80, Boston–Basel–Stuttgart, 240p., 1984.

[CH89] R. Courant, D. Hilbert, Methods of mathematical physics, Volume I, John Wiley
& Sons, Reprint of the 1st Engl. ed. 1953, 560p., 1989.

[LL97] L.D. Landau, E.M. Lifschitz, Textbook of theoretical physics, Volume I: Mechanics
(German), Vieweg, 14. edition, Frankfurt am Main, 231 p., 1997.
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