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RESOLUTION OF SYMPLECTIC CYCLIC ORBIFOLD SINGULARITIES

KLAUS NIEDERKRÜGER AND FEDERICA PASQUOTTO

Abstract. In this paper we present a method to obtain resolutions of symplectic orbifolds
arising as quotients of pre-symplectic semi-free S1–actions. This includes, in particular, all
orbifolds arising from symplectic reduction of Hamiltonian S1–manifolds at regular values, as
well as all isolated cyclic orbifold singularities.

As an application, we show that pre-quantisations of symplectic orbifolds are symplectically
fillable by a smooth manifold.

1. Introduction

Symplectic quotients are an important source of new symplectic manifolds: they appear as
symplectic reductions in the context of Hamiltonian actions and the associated moment maps.
More generally, reduced spaces corresponding to regular values of the moment map turn out to
be symplectic orbifolds, but one can still look for a closed smooth symplectic manifold which
is isomorphic to the orbifold outside a neighbourhood of the singular set: we call this object a
symplectic orbifold resolution.

Even in the case of a reduced space corresponding to a singular value of the moment map, where
singularities of a more complicated type can occur, Kirwan’s “partial desingularisation” method
[Kir85] can be applied to obtain a resolution which has only orbifold singularities.

A technique involving quotients and resolutions via blow-ups is used in [FM06] to construct an
example of an 8–dimensional non-formal simply connected symplectic manifold. Unfortunately,
the desingularisation method they develop works only for very special cyclic orbifold singularities.
With the construction described in this paper, we are able to find resolutions for all isolated
cyclic orbifold singularities, and also for reduced spaces obtained from symplectic reduction at the
regular level sets of a Hamiltonian function generating an S1–action. More precisely, we construct
resolutions for symplectic orbifolds which are the quotients of pre-symplectic semi-free S1–actions.

As a direct application, we are able to show that a Seifert manifold with a contact structure
that is S1–invariant and transverse to the fibres is symplectically fillable by a smooth manifold.

Acknowledgements. The first author is working at the Université Libre de Bruxelles, where he is
being funded by the Fonds National de la Recherche Scientifique (FNRS).

The second author is working at the Vrije Universiteit Amsterdam and is supported by VENI
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2007.

1.1. Isolated singularities in dimension four. We start our paper by discussing singularities
of the simplest form: we hope that this will provide the reader with some motivation and will
serve as the right introduction to the difficulties arising when considering more general examples.

In the four-dimensional case, we can give a very explicit description of the resolution of an
isolated orbifold singularity. In order to do so, we use weighted blow-ups of isolated symplectic
orbifold singularities, as defined in [God01].

Let x ∈
(
M (4), ω

)
be an isolated orbifold singularity with structure group Zp = {1, ξ, ξ2, . . . , ξp−1}.

The orbifold chart around x is Zp–equivariantly symplectomorphic to a neighbourhood of 0 in C
2

with Zp acting by

(z1, z2) 7→ (ξmz1, ξz2), 0 < m < p, gcd(m, p) = 1 .
1



2 K. NIEDERKRÜGER AND F. PASQUOTTO

If m and p were not coprime, the orbifold singularity would not be isolated. We can define an
S1–action on C2 by setting λ·(z1, z2) = (λmz1, λz2) for λ ∈ S1. The actions of Zp and S1 commute,
but the induced circle action on C2/Zp is not effective. Instead we have to go to the S1/Zp–action
obtained from the following exact sequence

0 −→ Zp −→ S
1 −→ Ŝ

1 −→ 0 ,

with the homomorphism of the circle given by λ 7→ λp. This defines now a symplectic Ŝ1–action
on C2/Zp by

µ · [z1, z2] = [λ · (z1, z2)] = [λmz1, λz2]

for µ ∈ Ŝ1 and a λ ∈ S1 such that λp = µ.
The weighted blow-up of C2/Zp at the origin can be represented as a symplectic cut with

respect to this Ŝ
1–action: Take the product manifold C

2/Zp × C with the symplectic form given

by (ω,−i dw ∧ dw̄) and the effective Ŝ1–action

µ ·
(
[z1, z2], w

)
=

(
µ · [z1, z2], µ

−1w
)

=
(
[λmz1, λz2], λ

−pw
)
, λp = µ .

The blow-up is the symplectic reduction of this space. The Hamiltonian function that corresponds
to this action is

H
(
[z1, z2], w

)
= m|z1|

2
+ |z2|

2
− p|w|

2
,

and the ε–level set H−1(ε) is diffeomorphic to the manifold S3/Zp × C. The last step consists in

taking the quotient H−1(ε)/Ŝ1 to obtain a symplectic orbifold that can be glued to C2/Zp after
removing a neighbourhood of the origin.

There is only one singular point in H−1(ε)/Ŝ1, namely
(
[1, 0], 0

)
∈ S3/Zp × C, with stabiliser

Zm. By the slice theorem, a neighbourhood of this point admits an orbifold chart equivalent to
C2 with structure group Zm acting by η · (w1, w2) = (η−pw1, ηw2).

Now choose a1 ∈ Z such that 0 < a1m−p < m and set m1 = a1m−p and p1 = m: then the new
singularity can also be modelled by Zp1

acting by η · (z1, z2) = (ηm1z1, ηz2) with gcd(m1, p1) = 1,
because if b divides both p1 and m1 then it also divides m and p. We are thus in the initial type
of situation, but we have managed to reduce the order of the singularity.

If we blow up once more, we replace this by a new singularity, this time with structure group
Zm1

acting by ζ · (z1, z2) =
(
ζa2m1−p1z1, ζz2

)
. If we iterate this blow-up process, at each step

we replace the previous singularity by a new one with structure group Zpi
acting by (ξmiz1, z2),

where the pair (pi, mi) is recursively given by
(

pi

mi

)
=

(
0 1
−1 ai

) (
pi−1

mi−1

)
,

with each ai corresponding to the “roundup” of pi−1

mi−1

, that is, the least integer ≥ pi−1

mi−1

. The

sequence [a1, a2, . . . ] corresponds to the continued fraction of p
m , so in particular it is a finite

sequence (a description of resolutions in terms of continued fractions is contained, for example, in
Miles Reid’s lecture notes [Rei]). After sufficiently many blow-ups, in other words, we get a pair
of the form (pN , 1) and thus an orbifold chart which is in fact smooth. This is then the resolution
of our initial singularity.

Notice that we can think of each weighted blow-up as taking the connected sum with a suitable
orbifold. In dimension 4, if we define the weighted projective space to be

CP(a0, a1, a2) =
{
[z0 : z1 : z2] ∼ [λa0z0 : λa1z1 : λa2z2]

∣∣∣ (z0, z1, z2) ∈ C
3 − {0} and λ ∈ C

∗

}
,

the weighted blow-up of a singular point with structure group Zp acting by (z1, z2) 7→ (ξaz1, ξ
bz2)

can be described as taking the connected sum, around this point, with the orbifold CP(a, b, p) with
reversed orientation. We can use this description to represent the resolution of a four-dimensional
cyclic singularity as in Picture 1.1.

In higher dimension (≥ 6), the method just described is not suitable: even if we start with an
isolated singularity, after the first blow-up the singular set is not necessarily discrete any more.
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CP(1, m1, p1)

M ∼= C2/Zp

CP(1, m, p)

CP(1, 1, pN)

Figure 1. The resolution obtained via a sequence of blow-up can also be thought
of as the connected sum M#CP(1, m, p)#CP(1, m1, p1)# · · ·#CP(1, 1, pN).

Example 1. Consider an isolated orbifold singularity modelled on a neighbourhood of 0 in C3 with
Zp acting by

(z1, z2, z3) 7→ (ξm1z1, ξ
m2z2, ξz3), 0 < m1 < m2 < p, gcd(mi, p) = 1, i = 1, 2 .

We can blow up this singularity with the method used in the four-dimensional case, that is,
performing a symplectic cut with respect to a suitable circle action. If gcd(m1, m2) = d 6= 1,
though, after blowing up the singular set will be a two-dimensional suborbifold with stabiliser Zd

at generic points.

One could still hope to obtain a resolution of general cyclic orbifold singularities by using
weighted blow-ups along suborbifolds (cf. [MS99]), but for this we would need to find a suitable
circle action on the fibres of the normal orbibundle to singular strata. While this is not difficult
in charts, we were not able to define a global action.

In the rest of this paper we thus adopt a different desingularisation method, which has the
advantage of applying to a larger class of orbifold singularities than just cyclic isolated ones.

2. Symplectic orbifolds as quotients of semi-free actions

In this section, G will denote a compact connected Lie group, and g its Lie algebra. If G acts
on a manifold M , then the infinitesimal action is defined by the vector fields

XM (p) :=
d

dt

∣∣∣∣
t=0

exp(tX) ∗ p

for every X ∈ g and p ∈ M .

Definition. Let P be a (2n + k)–dimensional smooth manifold and assume that P admits a
G–action

G × P → P, (g, x) 7→ g ∗ x ,

such that all orbits are k–dimensional, and a closed G–invariant 2–form ωP , such that ωn
P 6= 0 and

the infinitesimal action of G spans the kernel of ωP . We call P a pre-symplectic G–manifold.

Let M be the quotient P/G and denote by π the orbit map. If Sx is a slice at the point x ∈ P ,
then by the slice theorem a neighbourhood of π(x) ∈ M is homeomorphic to Sx/ Stab(x). Since
Sx is transverse to kerωP (x), it follows that ωP (x) has maximal rank on Sx, which is thus a
Stab(x)–invariant symplectic vector space. The fixed point set of Stab(x) on Sx is a symplectic
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subspace, which then necessarily has codimension at least 2. If Stab(x) is a finite group, this
gives M locally the structure of a symplectic orbifold. If Stab(x) is not a discrete group, then
its action is far from being effective. The stabiliser Stab(y) for y ∈ Sx is a Lie subgroup of
Stab(x). Under our assumption that all orbits have the same dimension, though, we get that
dimStab(y) = dimStab(x) and this means that the identity components of Stab(y) and Stab(x)
are the same. Hence it follows that

H0 :=
⋂

y∈Sx

Stab(y)

contains the identity component of Stab(x), and we can still find a homeomorphism from a neigh-
bourhood of a point π(x) in the orbit space to the quotient of Sx by a finite group, namely
Stab(x)/H0. Finally, all these local structures are compatible and fit together to give a global
symplectic orbifold structure: one can argue as in [Wei77], where the case G = S1 is considered.

Theorem 1. The quotient of a pre-symplectic G–manifold by the given G–action is a symplectic

orbifold.

Example 2. The weighted projective space CP(a0, a1, . . . , an) is the 2n–dimensional orbifold
obtained as the quotient of S2n+1 by the S1–action

λ ∗ (z0, z1, . . . , zn) = (λa0z0, . . . , λ
anzn) .

It is in fact a symplectic orbifold with the structure induced by the canonical symplectic form on
Cn+1, namely ω0 = i

2

∑
dzj ∧ dz̄j .

2.1. Symplectic resolutions.

Definition. Let (M, ω) be a symplectic orbifold with singular set X . A symplectic ε–resolution

of M consists of a smooth symplectic manifold (M̃, ω̃) and a continuous map p : (M̃, ω̃) → (M, ω)
for which there is an orbifold tubular neighbourhood U of X of size ε, such that

p|fM−p−1(U)
: M̃ − p−1(U) → M − U

is a symplectic diffeomorphism.

In this paper we prove the following result.

Theorem 2. Let M be a symplectic orbifold arising as the quotient of a pre-symplectic S1–manifold

P by the given circle action. Then there exists a symplectic ε–resolution of M for any arbitrarily

small ε > 0.

2.2. Isolated cyclic orbifold singularities. Any isolated cyclic orbifold singularity can be rep-
resented as Cn/Zk with symplectic form ω = i

∑n
j=1 dzj ∧ dz̄j , where the generator ξ = e2πi/k of

Zk acts by

ξ · z = (e2πi/kz1, e
2πia2/kz2, . . . , e

2πian/kzn) ,

and a2, . . . , an ∈ N are all coprime with k.
To find a resolution of the singularity using Theorem 2, just note that Cn/Zk can be regarded

as the quotient of the pre-symplectic manifold S
1 × C

n by the S
1–action given by

eiϕ · (eiϑ, z1, . . . , zn) := (ei(kϕ+ϑ), eiϕz1, e
ia2ϕz2, . . . , e

ianϕzn) ,

with pre-symplectic 2–form ω + 1
k dϑ ∧

∑n
j=1 aj d|zj |

2
. Theorem 2 then immediately implies the

following generalisation of the desingularisation result obtained in dimension 4:

Corollary 3. Every symplectic orbifold with only isolated cyclic singularities admits a symplectic

resolution.
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2.3. The stratification of the singular set. Let P be a pre-symplectic S1–manifold and denote
by XP ⊂ P the singular set of the circle action, that is,

XP =
{
x ∈ P

∣∣ Stab(x) 6= {1}
}

.

For a given isotropy group Zk, let Pk denote the union of orbits whose isotropy group is Zk,
namely Pk = {x ∈ P | Stab(x) ∼= Zk}. Then XP is stratified by singular strata, i.e., connected
components of Pk for all k 6= 1. If π : P → M = X/S1 denotes the orbit map, X = π(XP ) is the
set of orbifold singularities of M and the stratification of XP descends to a stratification of X .

Our desingularisation method works by induction on the order of the stabilisers of the strata
Pk. Namely, we start with the stratum with largest stabiliser (minimal stratum), remove a small
neighbourhood of it and glue in a smooth manifold, in such a way that both the pre-symplectic
2–form and the S1–action extend to the manifold resulting from this surgery. The new singular
set will also carry a stratification, but the order of the stabiliser of the minimal stratum will be
strictly less than k. If we successively repeat this procedure sufficiently often, we will eventually
reduce this maximal stabiliser to the trivial group. In particular, the quotient will then be a
smooth symplectic manifold which, by construction, gives a resolution of the orbifold M .

After working out this desingularisation method for symplectic orbifolds, we were told by one of
the authors of [GGK99] that they, and others before them, had already used the same construction
in the smooth category.

3. Construction of the resolution

3.1. A local model for the action. Suppose P is a pre-symplectic S1–manifold. In a first step,
we will construct a model for the neighbourhood of the minimal stratum, which then allows us to
describe explicitely all the steps of the resolution. This section may seem overly detailed, but we
preferred to give the complete arguments, because we are dealing with pre-symplectic instead of
proper symplectic manifolds.

Choose first an auxiliary S1–invariant metric on P to split the tangent bundle into two invariant
subbundles

TP = kerωP ⊕ ΩP ,

where ΩP is the orthogonal complement of kerωP . Since ΩP is a symplectic subbundle, it admits
an S1–invariant almost complex structure J that is compatible with ωP |ΩP (see for example [MS98,
Section 5.5]). Now we replace the auxiliary metric used above by a new one, which coincides on
kerωP with the old one, is given on ΩP by g = ωP (J ·, ·), and is such that kerωP ⊥ ΩP .

Consider the stratification {Pk} of the singular set XP given by the isotropy groups. If k is
maximal, that is, there are no points in P of order larger than k, then Pk is a closed, S1–invariant
submanifold of P , of codimension at least 2. By restricting to one component, we may further
assume Pk to be connected. The restriction of the quotient map π : P → M to Pk gives it
the structure of an S

1–bundle (strictly speaking an S
1/Zk–bundle) over Sk, the set of orbifold

singularities of M of order k. A model of a neighbourhood of Pk is given by a neighbourhood of
the zero section in the total space of its normal bundle νk. The linearisation of the circle action
on P defines an S1–action on νk that is equivalent to the given one on P (in the sense that the
exponential map defines an equivariant diffeomorphism from a neighbourhood of the zero section
in νk to a neighbourhood of Pk in P ). Later it will be necessary to introduce a second circle action.
To avoid confusions, from now on we will call the action discussed above the β–action and we will
write it as λ ∗β v for λ ∈ S1 and v ∈ νk.

Let x ∈ Pk be a singular point in the minimal stratum. The stabiliser Stab(x) ∼= Zk acts by
isometric J–linear transformations on ΩP

x , hence the Zk–action is equivalent to

λ ∗β z = (λea1z1, . . . , λ
eanzn), λ ∈ Zk, z ∈ ΩP

x , ã1, . . . , ãn ∈ Z .

Without loss of generality we may assume that 0 = ã1 = · · · = ãm < ãm+1 ≤ · · · ≤ ãn < k for
some m. The first m directions span the space ΩP

x ∩ TxPk, and since the others are orthogonal,
they coincide with the fibre νk(x). In particular, it follows that νk is a J–complex bundle with a
fibrewise J–linear Zk–action.
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Denote by a1 < · · · < al the distinct exponents occurring in the normal form for the action: νk

splits thus into a direct sum of subbundles

νk = E1 ⊕ · · · ⊕ El ,

where Ei(x) denotes the eigenspace corresponding to the eigenvalue λai in the fibre at the point
x. This splitting is well defined for each component of Pk. This allows us to extend the Zk–action
to a second circle action by setting for any λ ∈ S1

λ ∗ϕ v := λa1v1 + · · · + λalvl ,

where v = v1 + · · · + vl is a splitting with respect to the eigenspaces defined above. This circle
action is fibrewise and J–linear, and commutes with the original β–action. Unfortunately it does
not need to respect the pre-symplectic form ωP . By averaging ωP over the ϕ–action, we obtain a
closed 2–form ω on νk that is invariant with respect to both the β– and the ϕ–action, and such
that the β–orbits still lie in the kernel of ω. There is a small neighbourhood of the zero section of
νk where we also have ωn 6= 0 and hence ω is a pre-symplectic form with respect to the β–action.
To prove this it suffices to show that ωP is ϕ–invariant on the zero section. In fact, at the zero
section Pk of νk, there is a well defined splitting of the tangent bundle Tνk|Pk

= TPk ⊕ νk and we
can write

Tνk|Pk
= TPk ⊕ E1 ⊕ · · · ⊕ El .

The Ej ’s are J–linear subspaces and orthogonal to each other, so that they are also symplectically
orthogonal. The linearised ϕ–action on a vector w + v1 + · · · + vl ∈ Tνk with w ∈ TxPk and
vj ∈ Ej(x) is given by

λ ∗ϕ (w + v1 + · · · + vl) = w + λa1v1 + · · · + λalvl

and using the orthogonality relations, it is easy to check that

ωP (λ ∗ϕ v, λ ∗ϕ v′) = ωP (v, v′) .

Hence ωP is ϕ–invariant on the zero section of νk and we do not change it there by averaging. It
follows that there is a small neighbourhood of the zero section, where ω will be pre-symplectic.

The proposition below shows that a neighbourhood of Pk can be represented by a neighbourhood
of the zero section in νk with β–action and pre-symplectic form ω, and an auxiliary action ϕ.

Proposition 4. There exist neighbourhoods U1, U2 of Pk in νk and a β–equivariant diffeomorphism

Ψ : U1 → U2 such that

Ψ∗ω = ωP .

Proof. The restrictions of ω and ωP coincide along the zero section of νk. In particular, if we
denote by i0 : Pk →֒ νk the inclusion of Pk as the zero section of νk, we have

i∗0(ω − ωP ) = 0 .

This implies that there exists a 1–form α on νk such that ω − ωP = dα and moreover α van-
ishes on Txνk for every x ∈ Pk (see for example [CdS01, Theorem 6.8] or [MS98, Lemma 3.14]).
Furthermore, we may assume α to be β–invariant, because if it were not, we could replace it by

α′ =

∫

S1

(λ∗α) dλ ,

which still satisfies

dα′ =

∫

S1

(
λ∗dα

)
dλ =

∫

S1

λ∗(ω − ωP ) dλ = ω − ωP

and α′ = 0 on points of Pk. Notice that from the β–invariance, we also obtain that iXβ
α = const,

but since iXβ
α = 0 on the zero section, if follows that Xβ lies everywhere in the kernel of α.

Now define the 1–parameter family of pre-symplectic 2–forms

ωs := s ω + (1 − s)ωp .
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Assume there exists a time-dependent vector field Xs such that ω =
(
ΦXs

s

)∗
ωs, where ΦXs

s denotes
the flow of Xs. Then we have

0 =
d

ds

(
ΦXs

s

)∗
ωs =

(
ΦXs

s

)∗ (
LXs

ωs +
d

ds
ωs

)

which is equivalent to LXs
ωs + dα = 0, or

d
(
iXs

ωs + α
)

= 0 .

In order to show that ω and ωP are β–equivariantly isomorphic, we need to find Xs satisfying the
last equation, integrating to a time–1 flow in a neighbourhood of Pk and commuting with Xβ .

Let Xs be the unique vector field determined by{
g(Xβ, Xs) = 0 ⇔ Xs ∈ ΩP = (kerωP )⊥(
iXs

ωs + α
)∣∣

ΩP = 0

It is easy to see that iXβ

(
iXs

ωs + α
)

= 0, so it follows that iXs
ωs + α = 0. To see that Xs

commutes with Xβ , compute

0 = LXβ

(
iXs

ωs + α
)

= iLXβ
Xs

ωs

and

0 = LXβ

(
g(Xs, Xβ)

)
= g(Xβ,LXβ

Xs) .

Combining this with the fact that ωs is nondegenerate on ΩP we get that LXβ
Xs = 0.

Finally notice that, since α vanishes at all points of the zero section of νk, Xs also does and
hence its flow is defined in a neighbourhood of this section up to time one. �

Proposition 5. There exists a neighbourhood U of Pk in νk and a non negative Morse-Bott

function µϕ : U → R such that

• iXϕ
ω = dµϕ

• µϕ vanishes only on the zero section of νk, and it is strictly increasing in radial fibre

direction.

Proof. Since ω is ϕ–invariant, one has that diXϕ
ω = LXϕ

ω = 0. For the time being, let U be
any tubular neighbourhood of Pk, where ω is defined. The closed 1–form iXϕ

ω represents a class

in H1(U) which vanishes if we pull it back to the zero section Pk: Given that H1(U) ∼= H1(Pk),
it follows that iXϕ

ω is exact on U , i.e., there exists a function µϕ such that iXϕ
ω = dµϕ. The

function µϕ is uniquely defined up to an additive constant (which we may choose such that µϕ ≡ 0
on Pk) and is β–invariant.

Recall that a function f : M → R is called Morse-Bott if Crit(f) is a submanifold of M and
Tx Crit(f) = kerHessx(f) for all x ∈ Crit(f), where Hessx(f) : TxM → TxM denotes the Hessian
of f at the point x.

In the case we are considering Crit(µϕ) = Pk: in fact, if v = (x, 0) ∈ Pk, Xϕ(v) = 0, and hence
dµϕ = iXϕ

ω = 0. Conversely, assume dµϕ = 0 i.e. Xϕ ∈ kerω = 〈Xβ〉. But Xβ is transverse to
the fibre of νk, whereas Xϕ always lies in the fibre, so Xϕ ∈ 〈Xβ〉 can only occur on Pk, where one
has Xϕ = 0. It is easy to show that if v ∈ Pk, the inclusion Tv Crit(µϕ) ≤ kerHessv(µϕ) holds.

To see that equality holds one needs to show that dimkerHessv(µϕ) ≤ dim Pk or, equivalently,
that rankHessv µϕ is at least equal to the rank of νk. Restricting ω, ϕ and µϕ to one fibre
of νk we are in a proper symplectic situation and we may conclude that µϕ|νk(x) is Morse (see

[MS98, Section 5.5]), hence in particular it has full rank. Introducing bundle coordinates on U and
computing the matrix of second derivatives of µϕ, which represent the Hessian in these coordinates,
we see that it always contains a non singular block, corresponding to the above restriction of µϕ

to one fibre, having rank equal to the rank of νk. This proves that µϕ is Morse-Bott, and it only
remains to show that it is positive outside Pk.

Let ∂r be the radial vector field on νk given by

∂r(v) =
d

dt

∣∣∣∣
t=1

t · v
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for v ∈ νk. We will show that µϕ strictly increases in radial direction, more precisely that
L∂r

µϕ ≥ 0 in U (possibly after shrinking U) with equality only at the zero section. By definition
of µϕ, one has i∂r

dµϕ = ω(Xϕ, ∂r), so it will suffice to show that there exists a neighbourhood of
Pk where ω(Xϕ, ∂r) ≥ 0.

With π denoting the bundle projection νk → Pk, the vertical bundle V (νk) of νk can be identified
with the pull-back

π∗νk =
{
(v, w) ∈ νk × νk

∣∣ π(v) = π(w)
}

.

The identification of π∗(νk) and V (νk) goes as follows

π∗(νk) → V (νk), (v, w) 7→
d

dt

∣∣∣∣
t=0

(v + tw) .

Let v ∈ νk, and write it as v = v1 + · · ·+ vl with respect to the splitting νk = E1 ⊕ · · · ⊕El. Then
the vectors Xϕ and ∂r are given by

Xϕ(v) = (v, a1Jv1 + · · · + alJvl) and ∂r(v) = (v, v)

as elements of V (νk) ∼= π∗(νk). We introduce on the vertical bundle a complex structure

J ′ : V (νk) → V (νk)

(v, w) 7→ (v, Jw)

where J is the complex structure on νk. With the 2–form defined by

ω′
(
(v, w1), (v, w2)

)
:= ωP (w1, w2) for all w1, w2 ∈ Tπ(v)P ,

the bundle (π∗νk, ω′, J ′) is Hermitian. Now assume v = (x, 0) lies in the zero section. Then

ω
(
(v,

∑
aiJwi), (v, w1 + · · · + wl)

)
= ω′

(
(v,

∑
aiJwi), (v, w1 + · · · + wl)

)

=

l∑

j=1

aj ω′
(
J ′(v, wj), (v, wj)

)
> 0

if w 6= 0, since the eigenspaces Ej ’s are ωP –orthogonal. By continuity this also holds for all v in a
neighbourhood of the zero section and all w 6= 0. Hence in particular ω(Xϕ, ∂r) > 0 on U−Pk. �

Our aim is to describe a procedure to replace a neighbourhood of (one component of) Pk by
a smooth manifold in a suitable way, namely so that we can extend both the S

1–action and the
closed 2–form ω to the manifold resulting from this surgery.

3.2. Surgery along the minimal stratum. As in the previous section, consider the minimal
singular stratum Pk, denote by νk its normal bundle in P and take now the product νk × C. It
admits a first circle action, which is just the extension of the original S1–action β by the trivial
action on the C–factor, namely, for v ∈ νk(x), w ∈ C

λ ∗β (v, w) := (λ ∗β v, w) ,

and we can define a second circle action on νk × C by setting

λ ∗ϕ (v, w) = (λ ∗ϕ v, λ−kw) =
(
(λa1v1 + · · · + λalvl), λ

−kw
)

,

where v = v1 + · · · + vl is the splitting with respect to the eigenspaces defined above. These two
actions commute and therefore we can combine them and define a new S1–action

λ ∗τ (v, w) := λ ∗ϕ

(
λ−1 ∗β (v, w)

)
.

This τ–action is not effective, because the ϕ– and the β–action coincide for elements in Zk. Hence
consider the short exact sequence

0 → Zk → S
1 → Ŝ

1 → 0 ,

with the homomorphism of the circle given by λ 7→ λk, and let Ŝ1 act on νk × C by σ ∗τ̂ (v, w) =
λ ∗τ (v, w) for some λ ∈ S

1 such that λk = σ. This new action, which we denote by τ̂ , is not
only effective but even free and the quotient (νk × C)/τ̂ is a smooth manifold. It still carries an
S1–action induced by the ϕ–action on νk ×C, and this is well defined because ϕ commutes with τ̂ .
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We define a 2–form Ω = (ω,−i dw∧dw̄) on νk×C, which is invariant with respect to the τ̂–action.
By construction, the infinitesimal generator of this action can be written as Xτ̂ = −Xβ + Xϕ.
The “Hamiltonian” for the ϕ–action, given by

Hϕ = µϕ(v) − k|w|
2

,

satisfies
iXτ̂

Ω = −iXβ
Ω + iXϕ

Ω = dHϕ .

It follows that if we restrict to a regular level set of Hϕ, we have iXτ̂
Ω = 0. In other words, on

such a level set the generator of the τ̂–action is contained in the kernel of the 2–form. Hence the
quotient Pε := H−1

ϕ (ε)/τ̂ (ε a regular value), with the structure induced by Ω and ϕ, is a smooth

pre-symplectic S1–manifold.
Notice that H−1

ϕ (ε) can be written as the disjoint union of two τ̂–invariant manifolds (cf. [Ler95]):

H−1
ϕ (ε) =

{
(v, w)

∣∣∣∣ µϕ(v) > ε, |w|
2

=
µϕ(v) − ε

k

}
⊔

{
(v, 0)

∣∣ µϕ(v) = ε
}

.

Choose δ > 0 such that µ−1
ϕ (δ) is contained in U , the neighbourhood of Pk constructed in Proposi-

tion 5. Notice that µ−1
ϕ (δ) has the structure of a sphere bundle over Pk. For 0 < ε < δ, denote by

νk(ε) the subset of νk given by {µϕ(v) < ε}, by νk(ε, δ) the interior of the difference νk(δ)− νk(ε),
and consider the map

Φ : νk(ε, δ) → Pε , v 7→

[
v,

√
µϕ(v) − ε

k

]
.

This is a diffeomorphism (onto its image), equivariant with respect to the β–action on νk and
the ϕ–action on Pε. Its inverse can be constructed as follows: given [v, w] with w 6= 0, we first
represent the same class by an element (v′, w′) such that w′ is a real positive number, and then
define

Φ−1([v, w]) := v′ .

Moreover, since Φ factors through a map νk(ε, δ) → H−1(ε) which is the identity in the first
component and a real function in the second one, we have

Φ∗(ω,−i dw ∧ dw̄) = ω ,

hence Φ gives in fact an equivariant pre-symplectic identification of νk(ε, δ) with its image under
Φ. More precisely we have

Φ(νk(ε, δ)) =
{
[v, w] ∈ Pε

∣∣ ε < µϕ(v) < δ
}

.

We can now remove a tubular ε–neighbourhood of Pk in νk and glue in the smooth manifold

V (δ) :=

{
(v, w)

∣∣∣∣ ε ≤ µϕ(v) < δ, |w|
2

=
µϕ(v) − ε

k

}/
τ̂

along the open “collar” νk(ε, δ), using the map Φ. In this way we define the new manifold

P̃ =
(
P − νk(ε)

)
∪Φ V (δ) .

Since Φ is equivariant, the β–action on P − νk(ε) and the ϕ–action on V (δ) fit together to give

a circle action β̃ on P̃ , which by construction coincides with β outside a δ–neighbourhood of Pk.

Moreover, Φ identifies the given closed 2–forms on the two sides of the gluing, so P̃ also admits a
closed 2–form ω̃ with the property that ω̃ = ωP on P − νk(δ). With the action β̃ and the 2–form

ω̃ just defined, P̃ is a pre-symplectic manifold.

We denote by M̃ the orbit space P̃ /S1 of the β̃–action. We need to analyse the singular points

of the β̃–action on the “patch” V (δ). They satisfy the relation λ ∗ϕ [v, w] = [v, w] for some λ ∈ S1

and this in turn means that there exist κ ∈ Ŝ1 and σ ∈ S1, σk = κ such that

λ ∗ϕ (v, w) = κ ∗τ̂ (v, w) = σ ∗ϕ σ−1 ∗β (v, w) .

In particular, λ ∗ϕ v = σ ∗ϕ σ−1 ∗β v. Since ϕ acts fibrewise, whereas β only leaves fibres invariant
for elements in Zk, it follows that the above identity can only hold if σ ∈ Zk. Hence κ = 1 and
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singular points are characterised by λ∗ϕ (v, w) = (v, w). Since v is never zero on V (δ), the isotropy
groups are cyclic of order a1, . . . , al or certain divisors of these values, hence strictly smaller than k.

In other words, the order of the worst singularities on M̃ is lower than on M .

Moreover, there exists a map f : M̃ → M , which is a symplectic orbifold isomorphism outside
an arbitrarily small neighbourhood of Pk (and in fact coincides with the identity map outside a

slightly larger neighbourhood). We shall describe how to define f . On (P − νk(δ))/β it is simply
the identity. In order to define it on V (δ)/ϕ a little more work is required. First of all, denote
by Sε the quotient

{
(v, 0) ∈ H−1

ϕ (ε)
∣∣ µϕ(v) = ε

}
/τ̂ . Then the inverse of the gluing map Φ gives

us a diffeomorphism Φ−1 : V (δ) − Sε → νk(ε, δ). Since Φ is equivariant with respect to the ϕ–
and β–actions, this descends to a symplectic orbifold isomorphism

(
V (δ) − Sε

)
/ϕ → ν(ε, δ)/β.

Let h : [0,∞) → [0,∞) be a smooth monotone real function, which satisfies the following three
conditions:

(i) h(t) = 0 for all t ≤ ε;
(ii) h is strictly increasing on (ε, δ);
(iii) h(t) = 1 for all t ≥ δ.

If v ∈ νk(ε, δ), define

S̃ : νk(ε, δ) → νk(δ) − Pk , v 7→ h ◦ µϕ(v) · v .

The map S̃ is β–equivariant so it descends to a well-defined map

S : νk(ε, δ)/β → (νk(δ) − Pk)/β .

The composition of Φ−1 with the “stretching” map S yields a map

f : (V (δ) − Sε)/ϕ → (νk(δ) − Pk)/β .

Because of the boundary conditions on h, the map f glues on the outer side with the identity map
on (P −νk(δ))/β, on the other side with the map Sε/ϕ → Pk/β, which sends the ϕ–orbit of [v, 0] to
the β–orbit of π(v) (π being the projection of νk to its zero section). To see that f is continuous
in a neighbourhood of Sε/ϕ, one has to show that for any sequence [vk, wk]/ϕ ⊂ V (δ)/ϕ that
converges to some element [v, 0]/ϕ, it follows that f

(
[vk, wk]/ϕ

)
converges to f

(
[v, 0]/ϕ

)
. We

can find representatives (v′k, w′
k) ∈ H−1(ε) for the sequence that converge to (v′, 0), and hence

f
(
[v′k, w′

k]/ϕ
)

=
(
h ◦ µϕ(v′k) · v′k

)
/β converges to π(v′)/β = π(v)/β.

4. Generalised Boothby-Wang fibrations are fillable

Definition. A Boothby-Wang fibration is a closed contact manifold (P, α) with a free S1–
action which is given by the flow of the Reeb field XReeb. A generalised Boothby-Wang

fibration is a closed contact manifold (P, α), where the Reeb field induces a semi-free S1–action.

Remark 1. A Boothby-Wang fibration (P, α) defines an S1–principal bundle over the manifold
B = P/S1 with connection 1–form α. The curvature form ω is the unique 2–form on B that
satisfies π∗ω = dα. The base manifold (B, ω) is a symplectic manifold and ω represents an
integral cohomology class.

Conversely, for any symplectic manifold (B, ω) with integral symplectic form, one can construct
a Boothby-Wang fibration (P, α) over it, the so-called pre-quantisation. This is the inverse of
the previous construction.

Remark 2. A generalised Boothby-Wang fibration can be considered as the pre-quantisation of
the symplectic orbifold (P/S1, ω), and all the statements made in Remark 1 can be translated to
this setting.

Proposition 6. A generalised Boothby-Wang fibration (P, α) has a natural convex filling by a

symplectic orbifold.
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Proof. These computations were obtained with the help of H. Geiges. Consider the (complex)
“line bundle” L associated to P , i.e. the bundle obtained from P × C by identifying (p, z) with
(e−iϕ ∗ p, eiϕ z) for every eiϕ ∈ S1. The manifold P embeds naturally via

P →֒ L, p 7→ [p, 1] .

The two forms
1

2

(
|z|

2
α + xdy − y dx

)
and

1

2
dα

on P ×C induce well-defined forms on L. By adding the differential of the first form to the second
one, we obtain a pre-symplectic form

ω :=
1

2
d(|z|

2
) ∧ α + dx ∧ dy +

1 + |z|
2

2
dα ,

because 2n ωn = n (1+|z|2)n−1 (dα)n−1∧
(
d|z|2 ∧ α + 2dx ∧ dy

)
has only a one-dimensional kernel

on P × C that is generated by −ZP + x∂y − y ∂x. It follows that (P × C, ω) is a pre-symplectic
S

1–manifold, and hence L is a symplectic orbifold where all orbifold singularities sit along the zero
section.

Finally, the following field

X :=
1 + r2

2r
∂r =

1 + x2 + y2

2 (x2 + y2)
(x∂x + y ∂y)

is a Liouville vector field for the manifold (P, α), and (L, ω) is hence a convex filling of P . �

All the orbifold singularities lie in the interior of L. By passing to a symplectic resolution of L
whose existence is guaranteed by Theorem 2, we can obtain a smooth symplectic filling.

Corollary 7. Generalised Boothby-Wang fibrations are symplectically fillable by a smooth mani-

fold.
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