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Abstract
This paper presents a novel method for the accurate functional approximation of possibly highly concentrated probability
densities. It is based on the combination of several modern techniques such as transport maps and low-rank approximations
via a nonintrusive tensor train reconstruction. The central idea is to carry out computations for statistical quantities of interest
such as moments based on a convenient representation of a reference density for which accurate numerical methods can
be employed. Since the transport from target to reference can usually not be determined exactly, one has to cope with a
perturbed reference density due to a numerically approximated transport map. By the introduction of a layered approximation
and appropriate coordinate transformations, the problem is split into a set of independent approximations in seperately
chosen orthonormal basis functions, combining the notions h- and p-refinement (i.e. “mesh size” and polynomial degree).
An efficient low-rank representation of the perturbed reference density is achieved via the Variational Monte Carlo method.
This nonintrusive regression technique reconstructs the map in the tensor train format. An a priori convergence analysis with
respect to the error terms introduced by the different (deterministic and statistical) approximations in the Hellinger distance
and the Kullback–Leibler divergence is derived. Important applications are presented and in particular the context of Bayesian
inverse problems is illuminated which is a main motivation for the developed approach. Several numerical examples illustrate
the efficacy with densities of different complexity and degrees of perturbation of the transport to the reference density. The
(superior) convergence is demonstrated in comparison to Monte Carlo and Markov Chain Monte Carlo methods.
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with random coefficients
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1 Overview

We derive a novel numerical method for the functional
representation of highly concentrated probability density
functions whose probability mass concentrates along low-
dimensional structures. Such situationsmay for instance arise
in computational Bayesian inference with highly informed
data. The difficult task of obtaining samples from the pos-
terior distribution is usually attacked with Markov Chain
Monte Carlo (MCMC) methods. Despite their popularity,
the convergence rate of these methods is ultimately lim-
ited by the underlying Monte Carlo sampling technique, see
e.g. Dodwell et al. (2019) for recent multilevel techniques
in this context. Moreover, practical issues e.g. regarding the
initial number of samples (burn-in) or a specific convergence
assessment arise, requiring profound experience.
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In this work, we propose a new approach based on func-
tion space representations with efficient surrogate models in
several instances. This is motivated by our previous work on
adaptive low-rank approximations of solutions of paramet-
ric random PDEs with Adaptive Stochastic Galerkin FEM
(ASGFEM, see e.g. Eigel et al. 2017, 2020) and in particu-
lar the sampling-free Bayesian inversion presented in Eigel
et al. (2018) where the setting of uniform random vari-
ables was examined. A generalization to the important case
of Gaussian random variables turns out to be non-trivial
from a computational point of view due to the difficulties
caused by the representation of highly concentrated densi-
ties in a compressing tensor format which is required to cope
with the high dimensionality of the problem. As a conse-
quence, we develop a discretization approach which takes
into account the potentially difficult to represent structure of
the probability density at hand by a combination of several
transformations and approximations that can be chosen adap-
tively to counteract the interplay of the employed numerical
approximations. With the computed functional representa-
tion of the density, the evaluation of moments and statistical
quantities of interest can be carried out efficiently and with
high accuracy. Additionally, we point out that the generated
surrgate can be used for the fast generation of samples from
the posterior distribution.

The central idea of the method is to construct a map
which transports the target density to some convenient refer-
ence density and to employ low-rank regression techniques
to obtain a functional representation, for which accurate
numerical methods are available. Transport maps for prob-
ability densities are a classical topic in mathematics. They
are under active research in particular in the area of optimal
transport (Villani 2008; Santambrogio 2015) and also have
become popular in current machine learning research (Tran
et al. 2019; Rezende and Mohamed 2015; Detommaso et al.
2019). Amain applicationwe have inmind is Bayesian inver-
sion where, given a prior density and some observations
of the forward model, a posterior density should be deter-
mined. In this context, the rescaling approaches in Schillings
and Schwab (2016) and Schillings et al. (2020) based on
the Laplace approximation can be considered as transport
maps of a certain (affine) form. More general transport
maps have been examined extensively in El Moselhy and
Marzouk (2012) and Parno and Marzouk (2018) and other
works of the research group. Obtaining a transport map is
in general realized by minimizing a certain loss functional,
e.g. theKullback–Leibler distance, between the target and the
push-forward of a reference density. This process has been
analyzed and improved using iterative maps (Brennan et al.
2020) or multi-scale approaches (Parno et al. 2016). How-
ever, the optimization, the loss functional and the chosen
model class for the transport map yield only an approxima-
tion to an exact transport. We hence suppose that, in general,

only an inexact transport is available. Considering the pull-
back of the target, this can be interpreted as starting from
a slightly or severly perturbed reference density. One then
has to cope with the degree of the perturbation in subsequent
approximation steps to enable an accurate explicit represen-
tation of this new reference density.

Finding a suitable approximation relies on concepts from
adaptive finite element methods (FEM). In addition to the
selection of (local) approximation spaces of a certain degree
(in the spirit of “p-refinement”), we introduce a spatial
decomposition of the density representation into layers (sim-
ilar to “h-refinement”) around some center of mass of the
considered density. This enables to exploit the (assumed)
decay behavior of the approximated density. Overall, this
“hp-refinement” allows to balance inaccuracies and hence to
compensate perturbations of the reference density by putting
more computational effort into the discretization part. Con-
sequently, one enjoys the freedom to decide whether more
effort should be invested into computing an exact transport
map or into a more elaborate discretization of the perturbed
reference density.

For eventual computations with the devised (possibly
high-dimensional) functional density representation, an effi-
cient representation format is required. In our context,
hierarchical tensors and in particular tensor trains (TT) prove
to be advantageous, cf. Bachmayr et al. (2016) and Oseledets
(2011). These low-rank formats enable to alleviate the curse
of dimensionality under suitable conditions and allow for
efficient evaluations of high-dimensional objects. For each
layer of the discretization we aim to obtain a low-rank tensor
representation of the respective perturbed reference density.
In certain ideal cases such as transporting to the standard
Gaussian density a rank-one representation is sufficient. A
discussion on the low-rank approximation of perturbations
of Gaussian densities is carried out in Rohrbach et al.
(2020). In more general cases, a low-rank representability
may be observed numerically. To allow for tensor meth-
ods to be applicable, the desired discretization layers have
to be tensor domains. Therefore, the underlying perturbed
reference density is transformed to an alternative coordi-
nate system which benefits the representation and enables
to exploit the regularity and decay behavior of the density.
To generate a tensor train representation (coupled with a
function basis which is then also called extended or func-
tional TT format Gorodetsky et al. 2015), the Variational
MonteCarlo (VMC)method (Eigel et al. 2019b) is employed.
It basically is a tensor regression approach based on func-
tion samples for which a convergence analysis is available.
Notably, depending on the chosen loss functional, it leads
to the best approximation in the respective model space.
It has previously been examined in the context of random
PDEs in Eigel et al. (2019b) as an alternative nonintrusive
numerical approach to Stochastic Galerkin FEM in the TT
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format (Eigel et al. 2017, 2020). The approximation of Eigel
et al. (2020) is used in one of the presented examples for
Bayesian inversion with the random Darcy equation with
lognormal coefficient. We note that surrogate models of the
forward model have been used in the context of MCMC
e.g. in Li and Marzouk (2014) and tensor representations
(obtained by cross approximation) were used in Dolgov et al.
(2020) to improve the efficiency of MCMC sampling.

The derivation of our method is supported by an a priori
convergence analysis with respect to the Hellinger distance
and the Kullback–Leibler divergence. In the analysis, differ-
ent error sources have to be considered, in particular a layer
truncation error depending on decay properties of the density,
a low-rank truncation error and model space approximations
are introduced. Moreover, the VMC error analysis (Eigel
et al. 2019b) comprising statistical estimation and numeri-
cal approximation errors is adjusted to be applicable to the
devised approach. While not usable for an a posteriori error
control in its current initial form, the derived analysis leads
the way to more elaborate results for this promising method
in future research.

With the constructed functional density surrogate, sampling-
free computations of statistical quantities of interest such as
moments or marginals become feasible by fast tensor con-
tractions.

While several assumptions have to be satisfied for this
method to work most efficiently, the approach is rather gen-
eral and can be further adapted to the problem at hand.
Moreover, it should be emphasized that by constructing a
functional representation, structural properties of the den-
sity at hand (in particular smoothness, sparsity, low-rank
approximability and decay behavior in different parameters)
can be exploited in a much more extensive way than what
is possible with sampling based methods such as MCMC,
leading to more accurate statistical computations and better
convergence rates.We note that the perturbed posterior surro-
gate can be used to efficiently generate samples by rejection
sampling or within an MCMC scheme. Since the perturbed
transport can be seen as a preconditioner, the sample gen-
eration can be based on the perturbed prior. These samples
can then be transported to the posterior by the determined
push-forward. As a prospective extension, the constructed
posterior density could directly be used in a Stochastic
Galerkin FEM based on the integral structure, closing the
loop of forward and inverse problem, resulting in the inferred
forward problem with model data determined by Bayesian
inversion from the observed data.

The structure of the paper is as follows. Section 2 is con-
cerned with the representation of probability densities and
introduces a relation between a target and a reference den-
sity. Such a transport map can be determined numerically
by approximation in a chosen class of functions and with an
assumed structure, leading to the concept of perturbed ref-

erence densities. To counteract the perturbation, a layered
truncated discretization is introduced. An efficient low-rank
representation of the mappings is described in Sect. 3 where
the tensor train format is discussed. In order to obtain this
nonintrusively, the Variational Monte Carlo (VMC) tensor
reconstruction is reviewed. A priori convergence results with
respect to theHellinger distance andKullback–Leibler diver-
gence are derived in Sect. 4. For practical purposes, the
proposed method is described in terms of an algorithm in
Sect. 5. Possible applications we have in mind are exam-
ined in Sect. 6. In particular, the setting of Bayesian inverse
problems is recalled.Moreover, the computation of moments
and marginals is scrutinized. Section 7 illustrates the perfor-
mance of the proposedmethod. In addition to an examination
of the numerical sensitivity of the accuracywith respect to the
perturbation of the transport maps, a typical model problem
from Uncertainty Quantification (UQ) is depicted, namely
the identification of a parametrization for the random Darcy
equation with lognormal coefficient given as solution of a
stochastic Galerkin FEM.

2 Density representation

The aim of this section is to introduce the central ideas of the
proposed approximation of densities. For this task, two estab-
lished concepts are reviewed, namely transport maps (El
Moselhy and Marzouk 2012; Marzouk et al. 2016), which
are closely related to the notion of optimal transport (Vil-
lani 2008; Santambrogio 2015), and hierarchical low-rank
tensor representations (Oseledets 2011; Hackbusch 2012;
Bachmayr et al. 2016). By the combination of these tech-
niques, assuming the access to a suitable transformation, the
developed approach yields a functional representation of the
density in a format which is suited for computations with
high-dimensional functions. In particular, it becomes feasible
to accurately handle highly concentrated posterior densities.
While transport maps on their own in principle enable the
generation of samples of some target distribution, the com-
bination with a functional low-rank representation allows for
integral quantities such as (centered) moments to become
computable cheaply. Given an approximate transport map,
the low-rank representation can be seen as a further approx-
imation step (compensating for the inaccuracy of the used
transport) to gain direct access to the target density.

Consider a targetmeasureπ withRadon-Nikodymderiva-
tivewith respect to theLebesguemeasureλdenoted as f with
support in Rd , d < ∞, i.e.

f (y) := dπ

dλ
(y), y ∈ Y := R

d . (1)
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In the following we assume that point evaluations of f
are available up to a multiplicative constant, motivated by
the framework of Bayesian posterior density representation
with unknown normalization constant. Furthermore, let π0

be some reference measure exhibiting a Radon-Nikodym
derivative with respect to to the Lebesgue measure denoted
as f0. This is motivated by the prior measure and density in
the context of Bayesian inference.

In the upcoming sections we relate π and π0 with the help
of a transport map T . If the exact T is replaced by some T̃ , in
Sect. 2.2we alternatively can describeπ with the help of a so-
called associated auxiliarymeasure π̃0 with auxiliary density
f̃0. As in the Bayesian context, we also may refer to it as a
perturbed prior measure with perturbed prior density. This
concept introduces a possible workload balancing between
an approximation of T and the associated perturbed prior.

2.1 Transport maps

The notion of density transport is classical and has become a
popular research area with optimal transport, see e.g. Villani
(2008) and Santambrogio (2015). From a practical point of
view, it has been employed to improve numerical approaches
for Bayesian inverse problems for instance in El Moselhy
and Marzouk (2012), Brennan et al. (2020) and Dolgov et al.
(2020). Similar approaches are discussed in terms of sam-
ple transport e.g. for Stein’s method (Liu and Wang 2016;
Detommaso et al. 2018) or multi-layer maps (Brennan et al.
2020). We review the properties required for our approach
in what follows. Note that since our target application is
Bayesian inversion, we usually use the terms “prior” and
“posterior” instead of the more general “reference” and “tar-
get” densities.

Let X := R
d and assume that there exists an exact trans-

port map T : X → Y , which is a diffeomorphism1 relating
π and π0 via

f0(x) = f (T (x))|JT (x)|, x ∈ X . (2)

This change of variables formula allows computations to be
carried out in terms of the measure π0, which is commonly
assumed to be of a simpler structure. In particular, for any
function Q : Y → R integrable with respect to π , it holds
that
∫

Y

Q(y)dπ(y) =
∫

X

Q(T (x)) f0(x)dλ(x). (3)

Note that the computation of the right-hand side in (3) may
still be a challenging task depending on the actual structure of

1 The requirements on T can be weakened, e.g. to local Lipschitz con-
tinuity.

Q ◦T . In “Appendix A” we list several examples of transport
maps with an exploitable structure.

2.2 Inexact transport and the perturbed prior

In general, the transport map T is unknown or difficult
to determine and hence has to be approximated by some
T̃ : X → Y , e.g. using a polynomial representation with
respect to π0 (ElMoselhy andMarzouk 2012) or with a com-
position of simplemaps in a reduced space such as inBrennan
et al. (2020). As a consequence of the approximation, it holds

∫

Y

Q(y)dπ(y) ≈
∫

X

Q(T̃ (x))dπ0(x), (4)

subject to the accuracy of the involved approximation of T .
The approximate transport T̃ relates a measure π̃0 with den-
sity f̃0 to the target measure π , whereas

f̃0(x) = f (T̃ (x))|JT̃ (x)|. (5)

We henceforth refer to (5) as the auxiliary reference or per-
turbed prior density. Using this construction, the moment
computation reads

∫

Y

Q(y)dπ(y) =
∫

X

Q(T̃ (x)) f̃0(x)dλ(x). (6)

If one would know f̃0, by (5) and (6) one would also have
access to the exact posterior.

Equation (6) is the starting point of the proposed method
by approximating f̃0 in another coordinate system which is
better adapted to the structure of the approximate (perturbed)
prior. For this, consider a (fixed) diffeomorphism

Φ : X̂ ⊂ R
d → X , x̂ �→ x = Φ(x̂) (7)

with Jacobian x̂ �→ |JΦ(x̂)| and define the transformed per-
turbed prior

f̂0 : X̂ �→ R+, x̂ �→ f̂0(x̂) := f̃0(Φ(x̂)). (8)

If (8) can be approximated accurately by some function f̂ h0
then
∫

Y

Q(y)dπ(y) ≈
∫

X̂

Q(T̃ (Φ(x̂))) f̂ h0 (x̂)|JΦ(x̂)|dλ(x̂) (9)

with accuracy determined only by the approximation quality
of f̂ h0 . Thus, (9) enables to shift the complexity of a transport
map approximation T̃ ≈ T to a functional approximation
f̂ h0 ≈ f̂0 in a new coordinate system X̂ and allows for a
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balancing of both effects. The construction of T̃ and a suitable
map in (7) may be used to obtain a convenient transformed
perturbed prior given in (8). An approximation thereof can
be significantly simpler compared to a possibly complicated
target density f or the computation of the exact transport
T . We give some example scenarios and more details on the
choice of Φ in “Appendix B”.

2.3 Layer based representation

To further refine and motivate the notion of an adapted coor-
dinate system, let L ∈ N and (X�)L�=1 be pairwise disjoint
domains in X such that

K :=
L⋃

�=1

X� (10)

is simply connected and compact and define XL+1 := X \K .
Then, for given L ∈ N we may decompose the perturbed
prior f̃0 as

f̃0(x) =
L+1∑
�=1

f̃ �
0 (x) with f̃ �

0 := χ� f̃0, (11)

where χ� denotes the indicator function on X�. Moreover,
for any tensor set X̂� := ×d

i=1 X̂
�
i and diffeomorphism

Φ� : X̂�→X�, 1 ≤ � ≤ L+1,wemay represent the localized
perturbed prior f̃ �

0 as a pull-back function

f̃ �
0 = f̂ �

0 ◦ Φ�−1
, (12)

where f̂ �
0 is a map defined on X̂� as in (8). This layer based

coordinate change enables a representation of the density
on bounded domains. Even though the remainder layer is
unbounded, we assume that K is sufficiently large to cover
all probabilitymass of f̃0 except for a negligible higher-order
error.

Up to this point, the choice of transformation Φ�, � =
1, . . . , L+1, is fairly general. However, for the further devel-
opment of the method we assume the following property.

Definition 1 (rank 1 stability) Let X , X̂ =×d
i=1 X̂i ⊂ R

d

be open and bounded sets. A diffeomorphismΦ : X̂ �→ X is
called rank 1 stable if Φ and the Jacobian |JΦ | have rank 1,
i.e. there exist univariate functions Φi : X̂i → X , hi : X̂ →
R, i = 1, . . . , d, such that for x̂ ∈ X̂

Φ(x̂) =
⊙d

i=1
Φi (x̂i ), |JΦ(x̂)| =

d∏
i=1

hi (x̂i ), (13)

where
⊙

denotes the Hadamard product of vectors.

Due to the notion of rank 1 stable transformations, the
map x̂ �→ T (Φ(x̂)) in (9) inherits the rank structure of T , see
Sect. 3. Furthermore, since the Jacobian x̂ �→ |JΦ(x̂)| is rank
1, we can construct tensorized orthonormal basis functions
whichmay be used to approximate the transformed perturbed
prior in (8).

Remark 1 The described concept can be extended to any rank
r ∈ N Jacobian of Φ, i.e.

|JΦ(x̂)| =
r∑

k=1

d∏
i=1

hi,k(x̂i ). (14)

Motivated by the right-hand side in (9), onemay use different
approximations of the perturbed transformed prior f̃0 ◦ Φ in
r distinct tensorized spaces, each associated to the rank 1

weight
d∏

i=1
hi,k .

2.4 Layer truncation

This paragraph is devoted to the treatment of the last (remain-
der or truncation) layer XL+1 introduced in (11) with the aim
to suggest some approximation choices.

If f̃0 is represented in the layer format (11), it is con-
venient to simply extend the function to zero after layer
L ∈ N. By this, the remaining (possibly small) probability
mass is neglected. Such a procedure is typically employed
in numerical applications and does not impose any computa-
tional issues since events on the outer truncated domain are
usually exponentially unlikely for a truncation value chosen
sufficiently large. Nevertheless, in order to present a rigor-
ous treatment, we require properties like absolute continuity,
which would be lost by using a cut-off function. Inspired
by Schillings et al. (2020) regarding the information limit of
unimodal posterior densities,2 we suggest aGaussian approx-
imation for the last layer L + 1 on the unbounded domain
XL+1, i.e. for some s.p.d. Σ ∈ R

d,d and μ ∈ R
d we define

the density

f̃ Trun0 (x) := CL

{
f̃ �
0 (x), x ∈ X�, � = 1, . . . , L,

fΣ,μ(x), x ∈ XL+1,
(15)

with CL = (C<
L + C>

L )−1, where

C<
L :=

∫

X\K
fΣ,μ(x) dλ(x), (16)

2 A result of Schillings et al. (2020) is that under suitable conditions
the posterior distribution converges to a Gaussian in the limit of zero
noise and infinite measurements.
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C>
L :=

L∑
�=1

∫

X�

f̃ �
0 (x) dλ(x), (17)

and fΣ,μ denotes the Gaussian probability density function
with mean μ and covariance matrix Σ .

Remark 2 Aparticular choice forμ andΣ would be themean
and covariance of the normalized version of f̃0|K

or the MAP and the corresponding square root of the Hes-
sian of f̃0.

Note that the constant C<
L in (16) may exhibit an ana-

lytic form whereas computing C>
L suffers from the curse of

dimensionality and is in general not available. To circumvent
this issue and render further use of the representation (15)
feasible, we now aim for an approximation model to ade-
quately represent the localized transformed perturbed prior
maps f̂ �

0 = f̃ �
0 ◦ Φ� from (12).

3 Approximationmodel

The computation of high-dimensional integrals and the effi-
cient construction of surrogates is a challenging task with
a multitude of approaches. Some of these techniques are
sparse grid methods (Chen and Schwab 2016; Garcke and
Griebel 2012), collocation (Ernst et al. 2019; Nobile et al.
2008; Foo and Karniadakis 2010) or modern sampling tech-
niques (Gilks et al. 1995; Rudolf and Sprungk 2017; Neal
2001).

A promising class of approximation model relies on
the concept of compression in terms of low-rank for-
mats (Grasedyck et al. 2013). Those can be seen as gen-
eralization of the singular value decomposition of functions
with high-dimensional input. We give a short introduction
of the low-rank format considered in Sect. 3.1 and present a
numerical scheme to construct such an approximation model
by the Variational Monte Carlo (VMC) method in Sect. 3.2.
In order to enhance readability, in the first two sections we
use the notation ĝ to underline the connection to the trans-
formed perturbed prior f̂0 and its localizations, which is part
of the total approximation model in Sect. 3.3.

3.1 Low-rank tensor train format

Let X̂ = ⊗d
i=1 X̂i⊂ R

d , X̂i , i ∈ [d] := {1, . . . , d},
and consider a map ĝ : X̂ → R. The function ĝ can be
represented in the TT format if there exists a rank vec-
tor r = (r1, . . . , rd−1) ∈ N

d−1 and univariate functions
ĝi [ki−1, ki ] : X̂i → R for ki ∈ [ri ], i ∈ [d], such that for all

x̂ ∈ X̂ and k0 = kd = 1 there holds

ĝ(x̂) =
r∑

k=1

d∏
i=1

ĝi [ki−1, ki ](x̂i ), k := (k1, . . . , kd−1).

(18)

In the forthcoming sections we consider weighted tensorized
Lebesgue spaces in which the perturbed prior segments are
defined. In particular, for a non-negative weight function
w : X̂ → R with w = ⊗d

i=1 wi , w ∈ L1(X̂ ), define

V(X̂ ) := L2(X̂ , w)

=
{
ĝ : X̂ → R | ‖ĝ‖2V :=

∫
X̂
ĝ(x̂)2w(x̂) dλ(x̂) < ∞

}
.

(19)

This space may be identified by its tensorization
L2(X̂ , w) = ⊗d

i=1 L
2(X̂i , wi ).

We assume that there exists a complete orthonormal basis
{Pi

k : k ∈ N} in L2(X̂i , wi ) for every i ∈ [d]which is known
a priori. For discretization purposes, we introduce the finite
dimensional subspaces

Vi,ni := span
{
Pi
1 , . . . , P

i
ni

} ⊆ L2(X̂i , wi ), (20)

for i = 1, . . . , d, and ni ∈ N. On these we formulate the
extended tensor train format in terms of the coefficient ten-
sors

Gi : [
ri−1

] × [ni ] × [ri ] → R,

(ki−1, j, ki ) �→ Gi [ki−1, j, ki ], i ∈ [d] ,
(21)

such that every univariate function ĝi ∈ Vi,ni can be written
as

ĝi [ki−1, ki ](x̂i ) =
ni∑
j=1

Gi [ki−1, j, ki ]Pi
j (x̂i ) for x̂ ∈ X̂i .

(22)

Any function

ĝ ∈ VΛ :=
d⊗

i=1

Vi,ni ⊆ V(X̂ ) (23)

can be expressed in the full tensor format by a high dimen-
sional algebraic tensor G : Λ := ×d

i=1[ni ] → R and

tensorized functions Pα := ⊗d
i=1 Pαi for multiindices α =
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(α1, . . . , αd) ∈ Λ such that

ĝ(x̂) =
∑
α∈Λ

G[α1, . . . , αd ]
d∏

i=1

Pαi (x̂i ). (24)

In contrast to this, the format given by (18) and (22) admits a
linear structure in the dimension.More precisely, thememory
complexity of O(max{n1, . . . , nd}d) in (24) reduces to

O(max{r1, . . . , rd−1}2 · d · max{n1, . . . , nd}). (25)

This observation raises the question of expressibility for cer-
tain classes of functions and the existence of a representation
rank r where max{r1, . . . , rd−1} stays sufficiently small for
practical computations. This issue is e.g. addressed inSchnei-
der and Uschmajew (2014), Bachmayr et al. (2017) and
Griebel and Harbrecht (2013) under certain assumptions on
the regularity and in Espig et al. (2009), Oseledets (2011),
Ballani et al. (2013) and Eigel et al. (2019b) explicit (algo-
rithmic) constructions of the format are discussed even in
case that ĝ has no analytic representation.

For later reference we define the finite dimensional low-
rank manifold of rank r tensor trains by

Mr(X̂ ) := {ĝ ∈ V(X̂ ) | ĝ as in (18), ĝi as in (22)}. (26)

This is an embedded manifold in the finite full tensor space
VΛ from (23). We also require the concept of the algebraic
(full) tensor space

T :=
{
G : Nd → R

}
(27)

and the corresponding low-rank form for given r ∈ N
d−1

defined by

TTr :=
{
G : Λ → R | G[α] =

r∑
k=1

d∏
i=1

G[ki−1, αi , ki ]
}

.

(28)

In the following, a method is reviewed that can be used
to construct surrogates in the presented extended tensor train
format using only samples of the sought high-dimensional
function.

3.2 Tensor train regression byVariational Monte
Carlo

We review the sampling-based VMC method presented
inEigel et al. (2019b)which is employed here to construct TT
approximations of the transformed local perturbed priors f̂ �

0
as defined in (12). The approach generalizes the concept of

randomized tensor completion (Eigel et al. 2019a). Its anal-
ysis relies on the theory of statistical learning, leading to a
priori convergence results. It can also be seen as a generalized
tensor least squares technique. In principle, the algorithm for
the construction of the surrogate is interchangeable and e.g.
an alternative cross-interpolationmethod for probability den-
sities is presented in Dolgov et al. (2020).

For the VMC framework, consider the model class

M :=Mr(X̂ , c, c) ⊂ Mr(X̂ ) (29)

of truncated rank r ∈ R
d−1 tensor trains which is given by

Mr(X̂ , c, c) :=
{
ĝ ∈ Mr | c ≤ ĝ ≤ c a.e. in X̂

}

for 0 ≤ c < c ≤ ∞. The model class M is a finite subset
of the truncated nonlinear space V(X̂ , c, c) ⊆ V(X̂ ) defined
by

V(X̂ , c, c) := {ĝ ∈ L2(X̂ , w) | c ≤ ĝ ≤ c a.e. in X̂ }.
(30)

This space is equipped with the metric

dV(X̂ ,c,c)(ĝ1, ĝ2) := ‖ĝ1 − ĝ2‖V(X̂ )
.

Moreover, note that due to the orthonormality of {Pα}α∈Nd

in V(X̂ ), for every ĝ ∈ V(X̂ ) it holds

‖ĝ‖V = ‖G‖�2(T) with ĝ =
∑
α

G[α]Pα ∈ V(X̂ ). (31)

Additionally, we define a loss function ι : V(X̂ , c, c) ×
X̂ → R such that ι(·, x̂) is continuous for almost all x̂ ∈ X̂
and ι(ĝ, ·) is integrable with respect to the weight function
w of V(X̂ ) for every ĝ ∈ V(X̂ , c, c) and the cost functional
J : V(X̂ , c, c) → R given by

J (ĝ) :=
∫
X̂

ι(ĝ, x̂)w(x̂)dλ(x̂). (32)

Then, the objective of the method is to find a minimizer

ĝ∗ ∈ argminĝ∈V(X̂ ,c,c) J (ĝ). (33)

Due to the infinite dimensional setting, we confine the mini-
mization problem in (33) to our model classM. This yields
the minimization problem

find ĝ∗
M ∈ argminĝ∈MJ (ĝ). (34)
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Subsequently, instead ofJ a tractable empirical functional
is considered, namely

JN (ĝ) := 1

N

N∑
k=1

ι(ĝ, x̂ k), (35)

with independent samples {x̂ k}k≤N distributed according to
the measurewλwith a (possibly rescaled) weight functionw

with respect to the Lebesgue measure λ. The corresponding
empirical optimization problem reads

find ĝ∗
M,N ∈ argminĝ∈MJN (ĝ). (36)

In our application the loss functional relates to the Kullback–
Leibler divergence or the L2 error for a given function ĝ and
target f̂0. In order to emphasize this dependence, we may
write ι(ĝ, x̂; f̂0).

3.3 The total approximationmodel

We employ the VMC approach from Sect. 3.2 to build an
approximation of f̂ �

0 = f̃ �
0 ◦ Φ� in TT format for each layer

X̂� =×d
i=1 X̂

�
i . In particular, we choose X̂ = X̂� and w =

w� = |JΦ� |, for � = 1, . . . , L . For a given number N� ∈ N

of samples and bounds 0 ≤ c� < c� < ∞, we denote this

approximation as f̂ �,TT,N�

0 ∈ M� := M(X̂�, c�, c�). It is a
solution of

f̂ �,TT,N�

0 ∈ argminv∈M�

1

N�

N�∑
k=1

ι(v, x̂ k; f̂0), (37)

with samples {x̂ k}N�

k=1 drawn from the (possibly rescaled)
finite measure w�λ. Finally, for a given transport T̃ and
a choice of transformations Φ� : X̂� → X�, according
to (15) our approximate of the perturbed prior f̃0 denoted
by f̃ Trun,TT0 is defined by

f̃ Trun,TT0 (x) := CTT
L

{
f̃ �,TT
0 (x), x ∈ X�, � = 1, . . . , L,

fΣ,μ(x), x ∈ XL+1,

(38)

with f̃ �,TT
0 = f̂ �,TT,N�

0 ◦ (
Φ�

)−1
. Here, CTT

L := (C<
L +

C>,TT
L )−1 with C<

L from (16) and

C>,TT
L :=

L∑
�=1

∫

X�

f̃ �,TT
0 (x) dλ(x). (39)

We refer to Fig. 1 for a visual presentation of the involved
objects, approximations and transformations.

4 Error estimates

We now discuss the accuracy of the actual approximation of
the target density f given by

f̃ T T := f̃ Trun,TT0 ◦ T̃−1 ⊗ |JT̃−1 |. (40)

Since our approach is based on several components like
transport, truncation, low-rank compression and the VMC
method, these components are examined separately in the
upcoming sections. Our main result is stated in Sect. 4.5.

4.1 Transport invariant measures of discrepancy

In this sectionwe derive a relation property such that the error
of the approximation f̃ Trun,TT0 to the the perturbed prior trans-
fers directly to the discrepancy between f̃ TT and f . Note that
this property is canonical since passing to the image space
of some measurable function is fundamental in probability
theory. Ideally such a relation is an equivalence of the form

d
(
Y ; f , f̃ T T

)
= d

(
X; f̃0, f̃ Trun,TT0

)
. (41)

Prominent measures of discrepancy for two absolutely con-
tinuous Lebesgue probability density functions h1 and h2 on
some measurable space Z are the squared Hellinger distance

d2Hell(Z , h1, h2) := 1

2

∫

Z

(√
h1(z) − √

h2(z)
)2

dλ(z), (42)

and the Kullback–Leibler divergence

dKL(Z , h1, h2) :=
∫

Z

log

(
h1(z)

h2(z)

)
h1(z) dλ(z). (43)

For the Hellinger distance, the absolute continuity assump-
tion can be dropped from an analytical point of view. We
observe that both dHell and dKL satisfy (41).

Lemma 1 Let � ∈ {Hell,KL}. It then holds

d�(Y ; f , f̃ T T ) = d�(X; f̃0, f̃ Trun,TT0 ). (44)

Proof We only show (44) for � = KL since � = Hell follows
by similar arguments. By definition

dKL(Y ; f , f̃ TT) =
∫

Y

log

(
f (y)

f̃ TT(y)

)
f (y) dλ(y), (45)
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(localized approximation domain) (reference domain) (target domain)

X̂� ⊂ X̂ X� ⊂ X Y

Φ�

Φ�

Φ�

T

T̃

V
M
C

(S
ec
ti
on

3.
2)

f̂
�,TT,N�
0 from (37)

transformed perturbed prior
f̂�
0 from (8) and (12)

f0 ◦ Φ� prior density
f0 from (2)

perturbed prior density
f̃0 from (5)

f̃Trun,TT
0 from (38)

target density
f from (1)

approximated target density
f̃TT from (40)

Fig. 1 Overview of the presented method sketching the different involved transformations and approximations with references to the respective
equations

and the introduction of the transport map T̃ yields the
claim

∫

X

log

(
f ◦ T̃ (x)

f̃ TT ◦ T̃ (x)
· |JT̃ (x)|
|JT̃ (x)|

)
f̃0(x) dλ(x)

= dKL(X; f̃0, f̃ Trun,TT0 ). (46)

��

4.2 Truncation error

Since our approximation scheme relies on the truncation of
the density, we introduce a convenient type of decay on the
outer layer of the perturbed prior.

Definition 2 (outer polynomial exponential decay) A func-
tion f̃0 : X → R

+ has outer polynomial exponential decay
if there exists a simply connected compact set K ⊂ X with a
polynomial π+ which is positive on X \ K and some C > 0
such that

f̃0(x) ≤ C exp (−π+(x)), x ∈ X \ K . (47)

The error introduced by theGaussian extension is estimated
in the next lemma.

Lemma 2 (truncation error) For μ ∈ R
d and Σ ∈ R

d,d ,
let f̃0 have outer polynomial exponential decay with pos-
itive polynomial π̃+ and C̃ > 0 with K = BR(μ) for
some R > 0. Then, for CΣ = 1/2λmin(Σ

−1) there exists
a C = C(C̃,Σ, d,CΣ) > 0 such that

‖ f̃0 − f̃ Trun0 ‖L1(X\K ) �‖exp (−π̃+)‖L1(X\K )

+ Γ
(
d/2,CΣ R2

)

and

∣∣∣∣∣∣∣
∫

X\K
log

(
f̃0

fΣ,μ

)
f̃0 dx

∣∣∣∣∣∣∣
≤

∫

X\K

(
1

2
‖x‖2

Σ−1 + π̃+(x)

)
e−π̃+(x) dλ(x)

with the incomplete Gamma function Γ .

Proof The proof follows immediately from the definition of
f̃ Trun0 . ��
In the case that the perturbed prior is close to a Gaussian
standard normal distribution, it holds C ≈ 1.
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4.3 Low-rank compression error

In this section we discuss the error introduced by compress-
ing a full algebraic tensor into a tensor in low-rank tensor
train format. The higher order singular value decomposition
(HOSVD) (Oseledets and Tyrtyshnikov 2010) is based on
successive unfoldings of the full tensor into matrices, which
are orthogonalized and possibly truncated by a singular value
decomposition. This algorithm leads to the following result.

Lemma 3 (Theorem 2.2 Oseledets and Tyrtyshnikov 2010)
For any g ∈ VΛ and r ∈ R

d−1 there exists an extended
low-rank tensor train gr ∈ Mr such that

‖g − gr‖2V(X̂)
≤

d−1∑
i=1

σ 2
i , (48)

where σi is the distance of the i-th unfolding matrix of the
coefficient tensor of g in theHOSVD to its best rankri approx-
imation in the Frobenius norm.

Remark 3 Estimate (48) is rather unspecific as the σi cannot
be quantified a priori. In the special case ofGaussian densities
we refer to Rohrbach et al. (2020) for an examination of the
low-rank representation depending on the covariance struc-
ture. When the transport T̃ maps the considered density only
“closely” to a standard Gaussian, the results can be applied
immediately to our setting and more precise estimates are
possible.

4.4 VMC error analyis

To examine the VMC convergence in our setting, we recall
the analysis of Eigel et al. (2019b) in a slightly more general
manner. Analogously to Sect. 3.1, we use the notation X̂ and
w as a placeholder for any layer X̂� and weight w� for � =
1, . . . , L . Here we assume that L2(X̂ , w) is continuously
embedded in L1(X̂ , w).

Recall the cost functional J from (32) defined by a loss
function ι depending on the transformed perturbed prior f̂0 as
in Sect. 3.3. As a first step we show compatibility conditions
of two specific types of loss functions corresponding to the
Kullback–Leibler divergence and the L2-norm.

Lemma 4 (KL loss compatibility) Let f̂0 ∈ V(X̂ , 0, c∗) for
c∗ < ∞ and 0 < c < c < ∞. Then

V(X̂ , c, c) � ĝ �→ ι(ĝ, x̂) = ι(ĝ, x̂, f̂0)

:= − log(ĝ(x̂)) f̂0(x̂) (49)

is uniformly bounded and Lipschitz continuous on the model
class M = Mr(X̂ , c, c) if Pα ∈ L∞(X̂ ) for every α ∈
Λ. Furthermore, J is globally Lipschitz continuous on the
metric space (V(X̂ , c, c), dV(X̂ ,c,c)).

Proof The loss ι is bounded on Mr(X̂ , c, c) since 0 < c <

c < ∞. Let ĝ1, ĝ2 ∈ V(X̂ , c, c). Then

|ι(ĝ1, x̂) − ι(ĝ2, x̂)| ≤ 1

c
sup
x̂∈X̂

{ f̂0(x̂)}
︸ ︷︷ ︸

:=C∗<∞

|ĝ1(x̂) − ĝ2(x̂)|. (50)

The global Lipschitz continuity ofJ follows by using (50)
and

|J (ĝ1) − J (ĝ2)| ≤ C∗‖ĝ1 − ĝ2‖L1(X̂ ,w)

≤ CC∗dV(X̂ ,c,c)(ĝ1, ĝ2), (51)

with a constant C related to the embedding of L2(X̂ , w)

into L1(X̂ , w). If ĝ1, ĝ2 are inMr(X̂ , c, c) with coefficient
tensors G1 and G2 ∈ TTr then by Parseval’s identity and
the finite dimensionality of Mr(X̂ , c, c) there exists c =
c
(
supα∈Λ ‖Pα‖L∞(X̂)

)
> 0 such that

|ĝ1(x) − ĝ2(x)| ≤ c‖G1 − G2‖�2(T) = c‖ĝ1 − ĝ2‖V
= c dV(X̂ ,c,c)(ĝ1, ĝ2),

(52)

which yields the Lipschitz continuity onMr(X̂ , c, c). ��
Lemma 5 (L2-loss compatibility) Let f̂0 ∈ V(X̂ , 0, c∗) for
c∗ < ∞ and let 0 ≤ c < c < ∞. Then

V(X̂ , c, c) � ĝ �→ ι(ĝ, x̂) = ι(ĝ, x̂, f̂0) := |ĝ(x̂) − f̂0(x̂)|2
(53)

is uniformly bounded and Lipschitz continuous on
Mr(X̂ , c, c) provided Pα ∈ L∞(X̂ ) for every α ∈ Λ.

Proof Let ĝ1, ĝ2 ∈ V(X̂ , c, c). Then

|ι(ĝ1, x̂) − ι(ĝ2, x̂)| ≤ |ĝ1(x̂) − ĝ2(x̂)| · |ĝ2(x̂) + ĝ2(x̂)|
+ 2|ĝ1(x̂) − ĝ2(x̂)| f̂0(x̂). (54)

Due to c < ∞, the Lipschitz property follows as in the proof
of Lemma 4 if ĝ1, ĝ2 ∈ Mr(X̂ , c, c). ��

Let ĝM and ĝM,N be as in (34) and (36). The analysis
examines different error components with respect to f̂0 ∈
V(X̂ , 0, c∗) for some 0 < c∗ < ∞ defined by

E :=
∣∣∣J ( f̂0) − J

(
ĝ∗
M,N

)∣∣∣ , (55)

Eapp :=
∣∣∣J ( f̂0) − J

(
ĝ∗
M

)∣∣∣ , (56)

Egen :=
∣∣∣J (

ĝ∗
M

) − J
(
ĝ∗
M,N

)∣∣∣ , (57)
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denoting the VMC, approximation and generalization error,
respectively. By a simple splitting, the VMC error can be
bounded by the approximation and the generalization error,3

namely

E ≤ Eapp + Egen. (58)

Due to the globalLipschitz property onV(X̂ , c, c)with c > 0
in the setting of (49) or c ≥ 0 as in (53), the approximation
error can be bounded by the best approximation in M. In
particular there exists C > 0 such that

Eapp ≤ C inf
v∈M

‖h∗ − v‖2V(X̂ )
. (59)

We note that such a bound by the best approximation in
Mwith respect to the V(X̂ )-normmay not be required when
using the Kullback–Leibler divergence if one is interested
directly in the best approximation in this divergence. Then
the assumption c > 0 can be relaxed in the construction
of V(X̂ , c, c) since no global Lipschitz continuity of J in
Lemma 4 is necessary. Thus the more natural subspace of
V(X̂ , 0, c) of absolutely continuous functions with respect
to f̂0 may be considered instead.

It remains to bound the statistical generalization error
Egen. For this the notion of covering numbers is required.
Let (Ω,F ,P) be an abstract probability space.

Definition 3 (covering number) Let ε > 0. The covering
number ν(M, ε) denotes the minimal number of open balls
of radius ε with respect to the metric dV(X̂ ,c,c) needed to
cover M.

Lemma 6 Let ι be defined as in (49) or (53). Then there exist
C1,C2 > 0 only depending on the uniform bound and the
Lipschitz constant of M given in Lemmas 4 and 5, respec-
tively, such that for ε > 0 and N ∈ N denoting the number
of samples in the empirical cost functional in (35) it holds

P[Egen > ε] ≤ 2ν(M,C−1
2 ε)δ(1/4ε, N ), (60)

with δ(ε, N ) ≤ 2 exp(−2ε2N/C2
1 ).

Proof The claim follows immediately fromLemmas 4 and 5,
respectively, and (Thm. 4.12, Cor. 4.19 Eigel et al. 2019b).

��
Remark 4 (choice of c, c and X̂ ) Due to the layer based rep-
resentation in (11) and (15) on each layer X̂� = Φ−1(X�)

we have the freedom to choose c separately. In particular,
assuming that the perturbed prior f̃0 decays per layer, we
can choose c according to the decay and with this control the
constant in (50).

3 Neglecting an intractable optimization error.

4.5 A priori estimate

In this section we state our main convergence result.

Assumption 1 For a target density f : Y → R+ and a trans-
port map T̃ : X → Y , there exists a simply connected
compact domain K such that f̃0 = ( f ◦ T )⊗ |JT | ∈ L2(K )

has outer polynomial exponential decay with polynomial π+
on X \ K . Consider the symmetric positive definite matrix
Σ ∈ R

d,d and μ ∈ R
d as the covariance and mean for the

outer approximation fΣ,μ. Furthermore, let K = ⋃L
�=1 X

�

where X� is the image of a rank-1 stable diffeomorphism
Φ� : X̂� → X� such that there exists 0 < c∗

� < ∞ with

f̂ �
0 (x̂) ≤ c∗

� for x̂ ∈ X̂� for � = 1, . . . , L .

We can now formulate the main theorem of this section
regarding the convergence of the developed approximation
with respect to the Hellinger distance and the KL divergence.

Theorem 1 (A priori convergence) Let Assumption 1 hold
and let a sequence of sample sizes (N �)L�=1 ⊂ N be given.
For every � = 1, . . . , L, consider bounds 0 < c� < c� < ∞
and let f̃ TT be defined as in (40). Then there exist con-
stants C,CΣ,C�,C�

ι > 0, � = 1, . . . , L, such that for
� ∈ {KL,Hell} and pHell = 2 and pKL = 1

d
p�

� (Y , f , f̃ TT) ≤ C

(
L∑

�=1

(
E�
best + E�

sing + E�
gen

)
+ E�

trun

)
.

(61)

Here, E�
best denotes the error of the best approximation

ĝ�,∗
Λ to f̂ �

0 in the full truncated space V�
Λ(c�, c�) = V�

Λ ∩
V(X̂�, c�, c�) given by

E�
best := ‖ f̂ �

0 − ĝ�,∗
Λ ‖V(X̂�)

= inf
ĝ�∈V�

Λ(c�,c�)

‖ f̂ �
0 − ĝ�‖V(X̂�)

,

E�
sing is the low-rank approximation error of the algebraic

tensor G : Λ → R associated to ĝ�,∗
Λ and the truncation

error E#
trun is given by

(
EHell
trun

)2 := ‖exp (−π+)‖L1(X\K ) + Γ
(
d/2,CΣ R2

)
,

EKL
trun :=

∫

X\K

(
1

2
‖x‖2

Σ−1 + π̃+(x)

)
e−π̃+(x) dλ(x).

Furthermore, for any (ε�)L�=1 ⊂ R+ the generalization
errors E�

gen can be bounded in probability by

P(E�
gen > ε�) ≤ 2ν(M�,C�ε�)δ�(1/4ε�, N �),

with ν denoting the covering number from Definition 3 and
δ�(ε, N ) ≤ 2 exp(−2ε2N/C�

ι ).
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Proof We first prove (61) for � = Hell. Note that |√a −√
b| ≤ √|a − b| for a, b ≥ 0 and with Lemma 1 it holds

d2Hell(Y ; f , f̃ TT) = d2Hell(X; f̃0, f̃ Trun,TT0 )

≤ 1/2‖ f̃0 − f̃ Trun,TT0 ‖L1(K )

+ 1/2‖ f̃0 − f̃ Trun,TT0 ‖L1(X\K ).

Since K = ∪L
�=1X

� and X� are bounded, there exist con-
stants C(X�) > 0, � = 1, . . . , L , such that

‖ f̃0 − f̃ Trun,TT0 ‖L1(K ) =
L∑

�=1

‖ f̃0 − f̃ Trun,TT0 ‖L1(X�)

≤
L∑

�=1

C(X�)‖ f̃0 − f̃ Trun,TT0 ‖L2(X�).

Moreover, by construction

‖ f̃0 − f̃ Trun,TT0 ‖L2(X�) = ‖ f̂ �
0 − f̂ �,TT,N�

0 ‖V(X̂�)
. (62)

The claim follows by application of Lemmas 2, 3 and 6
together with (58).

To show (61) for � = KL, note that by Lemma 1 and the
construction (38) it holds

dKL(Y ; f , f̃ TT) =
L∑

�=1

∫
X�

log
f̃0

f̃ �,TT
0

f̃0dλ(x)

+
∫
X\K

log
f̃0

fΣ,μ

f̃0dλ(x). (63)

Using Lemma 2 we can bound the integral over X \K by the
truncation error Etrun. Employing the loss function and cost
functional of Lemma 4 yields

∫
X�

log
f̃0

f̃ �,TT
0

f̃0dλ(x) ≤ E�
app + E�

gen. (64)

The claim follows by application of Lemmas 3 and 6
together with (58). ��

4.6 Polynomial approximation in weighted L2 spaces

In order to make the error bound (61) in Theorem 1 more
explicit with respect to Ebest, we consider the case of a smooth
density function with analytic extension. The analysis fol-
lows the presentation in Babuška et al. (2010) and leads to
exponential convergence rates by an iterative interpolation
argument based on univariate best approximation bounds by
interpolation. An analogous analysis for more general regu-
larity classes is possible but not in the scope of this article.

Let X̂ = ⊗d
i=1 X̂i ⊂ R

d be bounded and w = ⊗d
i=1wi ∈

L∞(X̂ ) a non-negative weight such that C(X̂ ) ⊂ V :=
L2(X̂ , w) = ⊗d

i=1 L
2(X̂i , wi ).

For a Hilbert space H , a bounded set I ⊂ R and a func-
tion f ∈ C(I ; H) ⊂ L2(I , w; H) with weight w : I → R,
let In : C(I ; H) → L2(I , w; H) denote the continuous
Lagrange interpolation operator.

Assume that f ∈ C(I ; H) admits an analytic exten-
sion in the region of the complex plane Σ(I ; τ) := {z ∈
C| dist(z, I ) ≤ τ } for some τ > 0. Then, referring
to Babuška et al. (2010),

‖ f − In f ‖L2(I ,w;H) � σ(n, τ ) max
z∈Σ(I ;τ)

‖ f (z)‖H , (65)

with σ(n, τ ) := 2(ρ − 1)−1 exp (−n log(ρ)) and ρ :=
2τ/|I | + √

1 + 4τ 2/|I |2 > 1. Using an iterative argument
over d dimensions, a convergence rate for the interpola-
tion of f ∈ C(X̂ ;R) ⊂ L2(X̂ , w;R) can be derived
from the 1-dimensional convergence. More specifically, let
IΛ : C(X̂ ) �→ L2(X̂ , w) denote the continuous interpola-
tion operator IΛ := I1

n1 ◦ I2:d
n2:nd written as composition of

a 1-dimensional and a d − 1-dimensional interpolation with
continuous

I1
n1 : C(X̂1) → L2

(
d×

i=2

X̂i ,⊗d
i=2wi

)

and

I2,...,d
n2,...,nd : C

(
d×

i=2

X̂i

)
→ H

with H = L2(×d
i=2 X̂i ,⊗d

i=2wi ). Then, for f ∈ C(X̂ ) and
some C > 0 it follows

‖ f − IΛ f ‖ ≤ ‖ f − I1
n1 f ‖ + ‖I1

n1( f − I2,...,d
n2,...,nd f )‖

� ‖ f − I1
n1 f ‖

+ sup
x̂1∈X̂1

‖ f (x1) − I2,...,d
n2,...,nd f (x1)‖H .

The second term of the last bound is a d − 1-dimensional
interpolation and can hence be bounded uniformly over x̂1 by
a similar iterative argument. We summarize the convergence
result for E�

best in the spirit of (Theorem 4.1 Babuška et al.
2010).

Lemma 7 Let f̂0 ∈ C(X̂�) ⊂ L2(X̂�, w) admit an analytic
extension in the region

Σ(X̂�, (τ �
i )di=1) =

d×
i=1

Σ(X̂�
i , τ

�
i )
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for some τ �
i > 0, � = 1, . . . , L, i = 1, . . . , d. Then, with σ

from (65),

inf
v∈VΛ

‖ f̂0 − v‖L2(X̂�,w)
�

d∑
i=1

σ(ni , τi ).

In case that c ≤ f̂0(x̂), ĝ∗(x̂) ≤ c is satisfied for ĝ∗ :=
argminĝ∈VΛ

‖ f −ĝ‖L2(X̂�,w)
, the decay rate carries over onto

the space V�
Λ(c�, c�). If only c ≤ f̂0(x̂) ≤ c holds, the image

of ĝ∗ can be restricted to [c, c], see e.g. Cohen andMigliorati
(2017). This approximation in fact admits a smaller error than
ĝ∗.

Remark 5 The interpolation argument on polynomial dis-
crete spaces could be expanded to other orthonormal systems
such as trigonometric polynomial, admitting well-known
Lebesgue constants as in Da Fies and Vianello (2013).

Remark 6 Explicit best approximation bounds for appropri-
ate smooth weights w as in the case of spherical coordinates
can be obtained using partial integration techniques as
in Mead and Delves (1973). There, the regularity class of f̂0
uses high-order weighted Sobolev spaces based on deriva-
tives of w as in the case of classical polynomials.

5 Algorithm

Since a variety of techniques is employed in the proposed
density discretization, this section provides an exemplary
algorithmicworkflow to illustrate the required steps in practi-
cal applications (see alsoFig. 7 for a sketchof the components
of themethod). The generalmethod to obtain a representation
of the density (1) by its auxiliary reference (5) is summarized
in Algorithm 1. Based on this, the computation of possi-
ble quantities of interest such as moments (6) or marginals
are considered in Sects. 6.2.1 and 6.2.2, respectively. In the
following we briefly describe the involved algorithmic pro-
cedures.
Computing the transformation Obtaining a suitable trans-
portmap is a current research topic and examined e.g. inPapa-
makarios et al. (2021), Parno andMarzouk (2018), Tran et al.
(2019) and Marzouk et al. (2016). In Sect. 2.1, two naive
options are introduced. In the numerical applications, we
employ an affine transport and also illustrate the capabilities
of a quadratic transport in a two-dimensional example. For
the affine linear transport we utilize a semi-Newton optimizer
to obtain the maximum value of f and an approximation
of the Hessian at the optimal value, see Sect. A.1. For the
construction of a quadratic transport we rely on the library
TransportMaps (Baptista et al. 2015-2018). The task to
provide the (possibly inexact) transport map is summarized

in the function

T̃ ← ComputeTransport[ f ]. (66)

In the following paragraphs we assume Φ� to be the mul-
tivariate polar transformation as in “Appendix B.1”, defined
on the corresponding hyperspherical shells X̂�. We refer to
X̂�
1 as the radial dimension and X̂�

i as the angular dimen-
sions for 1 < i ≤ d. The computations on each shell
X̂�, � = 1, . . . , L , are fully decoupled and suitable for par-
allelization. Note that the proposed method is easily adapted
to other transformations Φ�.
Generating an orthonormal basis To obtain suitable finite
dimensional subspaces, one has to introduce spanning sets
that allow for an efficient computation of e.g.moments (3)
and the optimization of the functional (32). Given a fixed
dimension vector n� ∈ N

d for the current X̂�, � = 1, . . . , L ,
and introducing the weight w� given by the jacobian of the
chosen transformation Φ�, the function

P� = {P�
i }di=1 ← GenerateONB[X̂�, n�, w�, τGS] (67)

can be split into three distinct algorithmic parts as follows.

– 1st coordinate x̂1: The computation of an orthonormal
polynomial basis {P�

1,α}α with respect to the weight

w�
1(x̂1) = x̂d−1

1 in the radial dimension by a stabilized
Gram-Schmidt method. This is numerically unstable
since the involved summations cause cancellation. As a
remedy, we define arbitrary precision polynomials with
a significant digit length τmant to represent polynomial
coefficients. By this, point evaluations of the orthonor-
mal polynomials and computations of integrals of the
form

∫
X̂�
1

x̂m1 P�
1,α(x̂1)x̂

d−1
1 dλ(x̂1), m ∈ N, (68)

e.g. required for computing moments with polynomial
transport, can be realized with high precision. The length
τmant is set to 100 in the numerical examples and the addi-
tional run-time is negligible as the respective calculations
can be precomputed.

– 2nd coordinate x̂2: Since X̂�
2 = [0, 2π ] and to preserve

periodicity, we employ trigonometric polynomials given
by

P�
2, j (x̂2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
2π

, j = 1

sin( j
2 x̂2)√
π

, j even

cos( j−1
2 x̂2)√
π

, j > 1 odd.

(69)
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Note that here the weight function is constant, i.e.
w�
2(x̂2) ≡ 1, and the defined trigonometric polynomials

are orthonormal in L2(X̂�
2).

– coordinate x̂3, . . . , x̂d : On the remaining angular dimen-
sions i = 3, . . . , d, we employ the usual Gram-Schmidt
orthogonalization algorithm on [0, π ] with weight func-
tion w�

i (x̂i ) = sini (x̂i ), based on polynomials.

Fortunately, the basis for dimensions 1 < i ≤ d coincides
on every layer � = 1, . . . , L . It hence can be computed just
once and passed to the individual process handling the cur-
rent layer. Only the basis in the radial dimension needs to
be adjusted to X̂�. The parameter τGS collects all tolerance
parameters for the applied numerical quadrature and the sig-
nificant digit length τmant.
Generation of Samples We utilize Monte Carlo samples
to approximate the L2 integral for the empirical minimiza-
tion formulation (37). To generate such samples on X̂�, we
employ the inverse transform sampling based on the inverse
cumulative distribution function of the normalized version
of the weight function ω�. The generation process of N ∈ N

samples is denoted as the function

S� :=
{(

x̂ s, f̂ �
0 (x̂ s)

)}N

s=1

↑ GenerateSamples[ f̂ �
0 , X̂�, w�, N ]. (70)

Reconstruction of a Tensor Train surrogate The VMC ten-
sor reconstruction of Sect. 3 is summarized in the function

{
F̂�,TT
0,i

}d
i=1

← ReconstructTT[S�,P�, r�, τRecon]. (71)

The tensor components F̂�,TT
0,i are associated with the corre-

sponding basis P�
i to form a rank r� extended tensor train

as defined in (18) and (22). The additional parameter τRecon
collects all parameters that determine the VMC algorithm.

The method basically involves the optimization of a loss
functional over the set of tensor trains with rank (at most)
r�. In the presented numerical computations we consider
a mean-squared loss and the respective empirical approx-
imation based on a current sample set S�. The tensor
optimization—based on a rank adaptive, alternating direc-
tion fitting (ADF) algorithm—is implemented in the xerus
library (Huber and Wolf 2014-2017) and wrapped in the
ALEA framework (Eigel et al.). Additionally, the machine
learning framework PyTorch (Paszke et al. 2017) can be
utilized in ALEA to minimize the empirical cost functional
from (35) by a wide range of state-of-the-art stochastic
optimizers. The latter enable stochastic gradient methods
to compute the tensor coefficients as known from machine
learning applications. With this setting in mind, the actual
meaning of the parameter τRecon depends on the chosen opti-
mizer. In this article we focus on the ADF implementation

and initialize e.g. the starting rank, the number of iteration of
the ADF and a target residual norm.

6 Applications

In the preceding sections the creation of surrogate models
of quite generic probability density functions are developed.
Based on this, in the following we focus on actual appli-
cations where such a representation is beneficial. We start
with the framework of Bayesian inverse problems with target
density (1) corresponding to the Lebesgue posterior density.
Subsequently, we cover the computation of moments and
marginals.

6.1 Bayesian inversion

This section is devoted to a brief review of the Bayesian
paradigm. We assume that the reader is familiar with the
concept of statistical inverse problems and hence focus on
the general formalism and highlight the notation with the
setup of Sect. 2 in mind. We closely follow the presentation
in Eigel et al. (2018) and refer to Stuart (2010), Dashti and
Stuart (2016) and Kaipio and Somersalo (2006) for a com-
prehensive overview.

Let Y and Y denote separable Hilbert spaces
equippedwith inner products 〈·, ·〉H for H ∈ {Y ,Y}.Assume
there exists a parameter to observation map G : Y → Y
such that for some given observation δ ∈ Y the relation
δ = G(y) + η holds for some y ∈ Y and noise η ∈ Y . For
instance in the Darcy model we take y as parameter deter-
mining the permeability of some porous medium and let G
describe the observation of water pressure at some location
in the domain. By taking η as a random variable with law
N (0,C0) for some symmetric positive definite covariance
operator C0 on Y , the inference of y which explains the
observation δ becomes a statistical inverse problem. Conse-
quently, the quantities y and δ become random variables over
a probability space (Ω,F ,P)with values inY andY , respec-
tively. In Stuart (2010) mild conditions on the parameter to
observation map are derived to show a continuous version
of Bayes formula which yields the existence and uniqueness
of the Radon-Nikodym derivative of the (posterior) measure
πδ of the conditional random variable y|δ with respect to a
prior measure π0 of y. More precisely, by assuming η to be
Gaussian and independent with respect to y, both measures
π0 and πδ on Y are related by the Bayesian potential

Ψ (y, δ) := 1

2
〈C−1

0 (δ − G(y)), δ − G(y)〉Y . (72)

The posterior density is given by

dπδ(y) = Z−1 exp (−Ψ (y, δ)) dπ0(y). (73)

123



Statistics and Computing (2022) 32 :27 Page 15 of 27 27

Algorithm 1 Tensor train surrogate creation of perturbed prior

Input: Lebesgue target density f : Rd → R+ (1)

tensor spaces
{
X̂�

}L

�=1
, with X̂� =×d

i=1
X̂�
i (12)

coordinate transformations Φ� : X̂� → X� ⊂ R
d (13)

with rank-1 Jacobians w� := |JΦ� | : X̂� → R

basis dimensions (n1, . . . , nL ), n� ∈ N
d for � = 1, . . . , L (22)

sample size N� ∈ N, � = 1, . . . , L for level-wise reconstruction
tensor train ranks (r1, . . . , rL ), r� ∈ N

d−1, for � = 1, . . . , L (18)
Gram-Schmidt tolerance parameter τGS
tensor reconstruction parameter τRecon

Output: Level-wise low-rank approximation of perturbed prior

Diffeomorphism T̃ ← ComputeTransport[ f ]
for � = 1, . . . , L , (in parallel) do

• Set transformed perturbed prior f̂ �
0 (x̂) :=

(
f ◦ T̃ ⊗ |JT̃ |

)
◦ Φ�(x̂), x̂ ∈ X̂�

• Build one-dimensional ONB P�
i of Vi,n�

i
⊆ L2(X̂�

i , w
�
i ) for i = 1, . . . , d

P� = {P�
i }di=1 ← GenerateONB[X̂�, n�, w�, τGS]

• Generate samples with respect to the weight w�

S� :=
{(

x̂ s , f̂ �
0 (x̂ s)

)}N

s=1
← GenerateSamples[ f̂ �

0 , X̂�, w�, N ]

• Reconstruct TT surrogate f̃ �,TT
0 : X̂� → R

{
F̃�,TT
0,i

}d
i=1

← ReconstructTT[S�,P�, r�, τRecon]

• Equip tensor components with basis

f̂ �,TT
0 (x̂) := ∑r�

k
∏d

i=1 f̂ �,TT
0,i [ki−1, ki ](x̂i )

where f̂ �,TT
0,i [ki−1, ki ](x̂i ) := ∑n�

j
j=1 F̂

�,TT
0,i [ki−1, μi , ki ]P�

i, j (x̂i )
end for

return
{
f̃�
}L

l=1

We assume it exists and denote the normalization constant
Z := Eπ0

[
exp (−Ψ (y, δ))

]
. Note that we interchangeably

write y as an element of Y and the corresponding random
variable with values in Y .

This simplified version of a Bayesian inverse problem can
be cast into the framework of this manuscript by using the
notation f for the posterior density (73) and f0 = dπ0 for
the prior density.

6.2 Statistical quantities of interest

Acommon task is the efficient computationof the expectation
of some quantity of interest (QoI) Q : Y → R,

E [Q] =
∫
Y
Q(y) f (y)dλ(y). (74)

We discuss the special case of moment computations in
Sect. 6.2.1 and the basis representations of marginals in

Sect. 6.2.2. In those cases the structure of Q allows for direct
computations of the integrals via tensor contractions. For
more involved choices of the QoI, we suggest a universal
sampling approach by repeated evaluation of the low-rank
surrogate.More precisely, by application of the integral trans-
formation we can approximate

E [Q] ≈
L∑

�=1

∫
X̂�

Q◦T̃ ◦Φ�(x̂) f̂ �,TT
0 (x̂)|JΦ�(x̂)|dλ(x̂) (75)

and replace the integrals over X̂� by Monte Carlo estimates
with samples according to the (normalized) weight |JΦ� |.
Those samples can be obtained by uniform sampling on the
tensor spaces X̂� and the inverse transform approach as men-
tioned in the paragraph Generating Samples of Sect. 5.
Alternatively, efficient MCMC sampling by marginalization
can be employed (Weare 2007).
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6.2.1 Moment computation

In this section we discuss the computation of moments for
the presented layer-based format with low-rank tensor train
approximations. In particular, we are interested in an efficient
generation of the moment map

α �→
∫

Y

yα f (y)dλ(y), α = (αk)k ∈ N
d
0 . (76)

Given some transport T̃ : X → Y with an associated per-
turbed prior f̃0 = ( f ◦ T̃ )⊗|JT̃ |, an integral transformation
yields

∫

Y

yα f (y)dλ(y) =
∫

X

T̃ (x)α f̃0(x)dλ(x). (77)

We fix 1 ≤ � ≤ L and assume tensor spaces X̂�, X� such that
a layer-based splitting can be employed to obtain integrals
over X� of the form

∫

Y

yα f (y)dλ(y) =
L∑

�=1

∫

X�

T̃ (x)α f̃0(x)dx . (78)

Note that we neglect the remaining unbounded layer XL+1

since for moderate |α| and vol(
⋃L

�=1 X
�) sufficiently large,

the contribution to the considered moment does not have
a significant influence on the overall approximation. Addi-
tionally, a rank-1 stable diffeomorphism Φ� : X̂� �→ X� is
assumed forwhich there exist univariate functionsΦ�

, j : X̂�
j →

X� with Φ�
, j = (Φ�

i, j )
d
i=1 and h j : X̂�

j → R for every
j = 1, . . . , d, such that

Φ�(x̂) =
d∏
j=1

Φ�
, j (x̂ j ) and |JΦ� |(x̂) =

d∏
j=1

h j (x̂ j ). (79)

Moments under affine transport Let

H = [hki ]dk,i=1 = [h1, h2, . . . , hd ] ∈ R
d,d

be a symmetric positive definite matrix and M = (Mi )
d
i=1 ∈

R
d such that the considered transport map takes the form

T̃ (·) = H · +M . (80)

With the multinomial coefficient for j ∈ N, β ∈ N
d
0 for

j = |β| given by

(
j
β

)
:= j !

β1! · . . . · βd ! ,

the computation of moments corresponds to the multinomial
theorem as seen in the next lemma.

Lemma 8 Let k ∈ N with 1 ≤ k ≤ d and αk ∈ N0. It holds

[HΦ�(x̂) + M)]αkk =
αk∑
jk=0

∑
|βk |= jk

CH
k [ jk, αk,βk]

×
d∏
j=1

Φ
βk
j (x̂ j ), (81)

where the high-dimensional coefficient CH
k is given by

CH
k [ jk, αk,βk] :=

(
αk

jk

)
cαk− jk
k

(
jk
βk

)
h

βk
k , (82)

with ck :=
d∑

i=1
hki Mi and

Φ
βk
j := [Φ�

1, j (x̂ j ), . . . , Φ
�
d, j (x̂ j )]βk . (83)

Proof Note that

[HΦ�(x̂) + M)]αkk =
αk∑
jk=0

(
αk

jk

)
cαk− jk
k

×
⎛
⎝ d∑

i=1

hki

d∏
j=1

Φ�
i j (x̂ j )

⎞
⎠

jk

.

The statement follows by the multinomial theorem since

⎛
⎝ d∑

i=1

hki

d∏
j=1

Φ�
i j (x̂ j )

⎞
⎠

jk

=
∑

|βk |= jk

(
jk
βk

)(
d∏

i=1

h
(βk )i
ki

)

×
⎛
⎝ d∏

j=1

d∏
i=1

Φ�
i j (x̂ j )

(βk )i

⎞
⎠ .

Generalizing Lemma 8 to multiindices α ∈ N
d
0 yields

[HΦ�(x̂) + M)]α =
α∑
j=0

∑
(|βk |)k= j

(
d∏

k=1

CH
k [ jk, αk,βk]

)

×
d∏
j=1

Φ

d∑
k=1

βk

j (x̂ j ), (84)

where
∑

(|βk |)k= j
:= ∑

|β1|= j1

. . .
∑

|βd |= jd

is used.

Exploiting the layer-wiseTT representationof f̂� from (38)
and using the rank-1 stable map (79), the high-dimensional
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integral over X� simplifies to

∫

X�

T̃ (x)α f̃0(x)dλ(x)

=
α∑
j=0

∑
(|βk |)k= j

(
d∏

k=1

CH
k [ jk, αk,βk]

)

×
r�∑
k=0

d∏
i=1

∫

X̂i

⎡
⎢⎣ f̂�,i [ki−1, ki ] ⊗ Φ

d∑
k=1

βk

i ⊗ hi

⎤
⎥⎦(x̂i ) dx̂i .

(85)

Note that the right-hand side is composed via decoupled one
dimensional integrals only. We point out that while the struc-
ture is simplified, the definition of Φ j in (83) a priori results
in several integrals (indexed by

∑d
k=1 βk). These integrals,

whose number depends on the cardinality of α, have to be
computed. In several cases this simplifies further, e.g.when
Φ� transforms the spherical coordinate system to Cartesian
coordinates.
Moment computation using spherical coordinates In the
special case that Φ� is the multivariate polar transformation
of “Appendix B.1”, the number of distinct computation of
integrals from (85) reduces significantly. Recall that x̂1 = ρ,
x̂2:d = θ = (θ0, . . . , θd−2) and let βk

i := (βk)i be the i-th
entry of βk . We find that

Φ

d∑
k=1

βk

1 (ρ) = ρ| j |, (86)

Φ

d∑
k=1

βk

2 (θ0) = cos

(
d∑

k=1
βk
1

)

(θ0) sin

(
d∑

k=1
βk
2

)

(θ0), (87)

Φ

d∑
k=1

βk

i+2 (θi ) = sin

(
i∑

l=1

d∑
k=1

βk
l

)

(θi ) cos

(
d∑

k=1
βk
i+1

)

(θi ). (88)

for 1 ≤ i ≤ d − 2.
The exponential complexity due to the indexing by∑d
k=1 βk reduces to linear complexity in |α|. More precisely,

the amount of exponents in (86) - (88) is linear in the dimen-
sions since the sums only depend on |α|, leading toO(|α|d)

different integrals that may be precomputed for each tuple
(ki−1, ki ). This exponential complexity in the rank vanishes
in the presence of an approximation basis associated with
each coordinate dimension as defined in Sect. 3.

6.2.2 Computation of marginals

In probability theory and statistics, marginal distributions
and especiallymarginal probability density functions provide
insights into an underlying joint density by means of lower
dimensional functions that can be visualized. The computa-

tion of marginal densities is a frequent problem encountered
e.g. in parameter estimation and when using sampling tech-
niques since histograms and corner plots provide easy access
to (in general high-dimensional) integral quantities.

In contrast to the Markov Chain Monte Carlo algorithm,
the previously presented method of a layer based surro-
gate for the Lebesgue density function f : Y = R

d → R

allows for a functional representation and approximation of
marginal densities without additional evaluations of f .

For y ∈ Y and i = 1, . . . , d, define

y−i = (y1, . . . , yi−1, yi+1, . . . yd)

as the marginalized variable where the i-th component is left
out and f (y−i , yi ) := f (y). Then, for given i = 1, . . . , d,
the i-th marginal density reads

d fi (yi ) :=
∫
Rd−1

f (y−i , yi )dλ(y−i ). (89)

Computing this high-dimensional integral by quadrature or
sampling is usually infeasible and the transportmap approach
as given by (3) fails since themap T : X → Y cannot be used
directly in (89). Alternatively, we can represent d fi : R → R

in a given orthonormal basis {ϕ j }Nϕ

j=1 and consider

d fi (yi ) =
Nϕ∑
j=1

β jϕ j (yi ), (90)

where β j , j = 1, . . . , Nϕ denotes the L2(R) projection coef-
ficient

β j :=
∫
R

ϕ j (yi )d fi (yi )dλ(yi ). (91)

With this, the marginalization can be carried out similarly to
the computations in Sect. 6.2.1 by replacing f with f̃ T T .

A convenient basis is given by monomials since (91) then
simplifies to

β j =
∫
Rd

y j
i f (y)dλ(y). (92)

This is the moment corresponding to the multiindex α =
(αk)

d
k=1 ∈ N

d with αk = δk, j . Alternatively, indicator func-
tions may be considered in the spirit of histograms.

6.3 Stochastic Galerkin finite element method

Consider the case when the target density f : Y → R+ with
Y = R

d should be used in a stochastic Galerkin Finite Ele-
ment method (SGFEM, see e.g. Eigel et al. 2017, 2020).
Note that f and its approximation f̃ TT in general is not of
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product type. If there exists c > 0 and a norm ‖ · ‖Y on Y
such that ∫

Y

ec‖y‖Y f̃ TT(y)dλ(y) < ∞

then there exists a complete orthonormal basis of polyno-
mials (Dunkl and Xu 2014). The moment computation from
Sect. 6.2.1 can then be used to obtain the polynomials numer-
ically based on a Gram-Schmidt orthonormalization process.
This approach is out of the scope of the present work and will
be discussed elsewhere.

6.4 Samples from the posterior

In case one is interested to draw samples from f , we pro-
pose using standard sample generation schemes like rejection
sampling or MCMC on the approximated perturbed prior
f̃ TT0 . Such a scheme can be implemented efficiently based on
the presented surrogate since fast point evaluations are pos-
sible. Once samples are obtained from f̃ TT0 , mapping them
through T̃ yields samples from f̃ TT. Note that we cannot
draw samples in the reference space X̂ and map them via the
transformations {Φ�} to obtain samples from f̃ TT0 since the
transformation is not a transport.

7 Numerical validation and applications

This section is devoted to a numerical validation of the pro-
posed Algorithm 1 using various types of transformations T
while applying the scheme to practical problems. We focus
on three example settings. The first consists of an artificial
Gaussian posterior density which could be translated to a
linear forward model and Gaussian prior assumptions in the
Bayesian setting. Second, we study the approximation under
inexact transport and conclude as a third setting with an
actual Bayesian inversion application governed by the log-
normal Darcy flow problem. All considered examples satisfy
Assumption 1 and are in fact analytic. This is obvious for the
Gaussian and the transformed Gaussian in Sects. 7.1 and 7.2.
In the log-normal case we refer to Babuška et al. (2007) and
Hoang and Schwab (2014).

Remark 7 Whendealingwith probability density functions, a
key requirement for a valid approximation is non-negativity.
Some comments are in order since this property cannot be
guaranteed when applying usual concepts to obtain tensor
train approximiations. Nevertheless, we would like to point
out that we did not experience any numerical difficulties
when computing the presented experiments and the follow-
ing two approaches have not been implemented.

Note that the chosen function space of bounded functions
V(X̂ , c, c) and the model class

M = Mr(X̂ , c, c) ⊂ V(X̂ , c, c) implies the non-negativity
of our approximation in (38). Numerically, those spaces
are not immediately accessible in the context of tensor
regression. We mention two possible methods that can be
implemented to handle the numerical optimization in M:

– Constrained optimization: The boundedness in themodel
class can be translated into constraints on the tensor com-
ponents of the tensor train model.

– Square root trick: One can obtain a tensor train approx-

imation
√
ĝ of

√
f̂0, as e.g. applied in Cui and Dol-

gov (2021). Subsequently squaring the result yields the
desired non-negative tensor train approximation ĝ of f̂0.
However, taking the square of an extended tensor train
increases the rank and the number of basis elements in
the representation. Therefore, careful adjustments have
to be made to ensure that the analysis of Sect. 4 is still
valid. Due to the upper bound of f̂0 in Assumption 1 and
the fact that for any ĝ ∈ M it holds for some C > 0 that

‖ f̂0 − ĝ‖2V(X̂)
≤ C‖

√
f̂0 −

√
ĝ‖2V(X̂)

.

Then, the error analysis can be carried out as presented
with adapted model classes that take care of the increas-
ing rank.

7.1 Validation experiment 1: Gaussian density

In this experimentwe confirm the theoretical results of Sect. 4
and verify the numerical algorithm. Even though the exam-
ined approximation of aGaussian density is not a challenging
task for the proposed algorithm, it can be seen as the most
fundamental illustration, revealing the possible rank-1 struc-
ture of the perturbed prior under optimal transport.

We consider the posterior density determined by a Gaus-
sian density with covariance matrix Σ ∈ R

d,d and mean
μ ∈ R

d given by

dπ

dλ
(x) = f (x) = C exp

(
−1

2
‖x − μ‖2

Σ−1

)
, (93)

where C = (2π)−d/2 detΣ−1/2 is the normalizing factor of
the multivariate Gaussian. We set the covariance operator
such that the Gaussian density belongs to uncorrelated ran-
dom variables, i.e. Σ exhibits a diagonal structure, and it
holds for some 0 < σ � 1 thatΣ = σ 2 I . This Gaussian set-
ting has several benefits when used as validation. On the one
hand, we have explicit access to the quantities that are usually
of interest in Bayesian inference like the mean, covariance,
normalization constant andmarginals. On the other hand, the
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optimal transport to a standard normal density

f0(x) = (2π)−d/2 exp

(
−1

2
‖x‖2

)
(94)

is given by an affine linear function, defined via mean μ and
covariance Σ as proposed in Remark 2. We subsequently
employ the multivariate polar transformation from Exam-
ple B.1 and expect a rank-1 structure in the reconstruction of
the local approximations of the (perturbed) prior.

The remainder of this section considers different choices
ofσ ∈ R and d ∈ N and highlights the stability of ourmethod
under decreasing variance (i.e.with higher density concen-
tration) and increasing dimension. The approximations are
compared with their exact counterparts. More specifically,
the error of the normalization constant is observed, namely

errZ := |1 − Zh |, (95)

and the relative error of the mean and covariance in the
Euclidean and Frobenius norms | · |2 and | · |F,

errμ := |μ − μh |2|μ|−1
2 , errΣ := |Σ − Σh |F|Σ |−1

F . (96)

Additionally the convergence in terms of the Kullback–
Leibler divergence (43) and the Hellinger distance (42) are
analyzed. Computing the Kullback–Leibler divergence is
accomplished by Monte Carlo samples (xi )

NKL
i=1 of the poste-

rior (i.e. in this case the multivariate Gaussian posterior) to
compute the empirical approximation

dKL(π, πh) =
∫
Rd

log

(
f (x)

fh(x)

)
f (x)dλ(x)

≈ 1

NKL

NKL∑
i=1

log

(
f (xi )

fh(xi )

)
. (97)

The index h generically denotes the employed approxima-
tion (38). A similar computation can be carried out for the
Hellinger distance such that

d2Hell(π, πh) ≈ 1

2NHell

NHell∑
i=1

(√
fh(xi )

f (xi )
− 1

)2

.

In the numerical experiments, the convergence of these error
measures is depicted with respect to the number of calls to
the forward model (i.e. the Gaussian posterior density), the
discretization of the radial component ρ ∈ [0,∞) in the
polar coordinate system and the number of samples on each
layer X�, � = 1, . . . , L , for fixed L ∈ N.

In Table 1 errZ is depicted for different choices of σ and d.
The experiment comprises radial discretizations 0 = ρ0 <

ρ1 < . . . < ρL = 10 with L = 19 equidistantly chosen

layers and 1000 samples of f0 on each resulting subdomain
X�. The generated basis (67) contains polynomials of max-
imal degree 7 in ρ�, � = 0, . . . , L , and constant functions
in every angular direction. The choice of constant functions
relies on the assumption that the perturbed prior that has
to be approximated corresponds to the polar transformation
of (94), which is a function in ρ only. Additional numerical
test show that even much fewer samples and a larger basis
lead to the assumed rank-1 structure. It can be observed that
the approximation quality of Z is invariant under the choice
ofσ and fairly robustwith the dimension d, which is expected
since the transformation is exact and the function to recon-
struct is a rank-1 object.

In Fig. 2 we show the convergence behavior of the devel-
oped method in terms of the number of calls of the posterior
density f . Here, the presented low-rank surrogate is con-
structed on an increasing number of layers. Taking 100
samples on each layer starting from only one, i.e. from L = 1
up to L = 50 on [0, 10], the VMC tensor reconstruction is
carried out. This increase in the number of layers translates
directly to an increase in posterior calls. Figure 2 (left) shows
the convergence in terms of the Kullback–Leibler divergence
and the Hellinger distance. In accordance with Theorem 1,
the Kullback–Leibler divergence converges faster. For the
computation, NKL = NHell = 1000 samples of the posterior
f are drawn and we show the mean and 90% quantile of 30
repeated evaluations, where each run includes the recom-
putation of the VMC approximation. For a quantitiative
comparison in terms of posterior statistics, in Fig. 2 (right)we
show the relative error errΣ for the presented algorithm (TT,
blue), a reference Monte Carlo sampling using samples from
the posterior f (MC, green) and a Hamiltonian Monte Carlo
sampler (HMC, red) as it comes out of the boxwith Matlab.
HMC is a sensible choice as a reference method since the
tuning phase of HMC involves the computation of the MAP
and Hessian to improve the exploration phase of the sam-
ple chains, which is in some sense similar to employed affine
linear transport in our algorithm. TheHMC tuning phase usu-
ally tookmore than 1000 posterior evaluations, which are not
counted in Fig. 2. As a result, we observe fast convergence
of our method which takes advantage of the regularity of f
in comparison to the sampling techniques, which are inher-
ently limited by the 1/

√
N Monte Carlo convergence. HMC

performs as well as MC, which comes from the fact that the
estimated MAP and Hessian push the sampler into the pos-
terior region. To emphasize the stability of the results, we
repeated the VMC approximation 30 times and again show
the mean and 90% quantile. For the sampling methods, we
repeated HMC and MC 1000 times each and show the mean
of the relative covariance approximation only. Concerning
the stagnation of errΣ we suspect a precision problem in
the computation, which is confirmed by the small variance.

123



27 Page 20 of 27 Statistics and Computing (2022) 32 :27

Table 1 Numerical approximation of Z in the Gaussian example

Dimension σ 2 = 10−2 σ 2 = 10−4 σ 2 = 10−6 σ 2 = 10−8

2 5.24 · 10−11 1.09 · 10−10 2.8 · 10−11 9.3 · 10−11

4 2.21 · 10−10 4.57 · 10−10 5.48 · 10−10 3.4 · 10−10

6 5.01 · 10−11 9.5 · 10−11 7.49 · 10−11 6.19 · 10−10

8 1.48 · 10−11 8.21 · 10−10 2.99 · 10−10 2.1 · 10−10

10 2.91 · 10−9 9.61 · 10−10 4.43 · 10−11 2.46 · 10−9

Error of the normalization constant computed via a TT surrogate to Z = 1

Fig. 2 Gaussian density example with d = 10, mean μ = 1 and noise
level σ = 10−7. Tensor reconstructions are repeated with 30 random
sample sets to show quantile range from 5–95% (pastel) to the mean
(bold). Hellinger distance and Kullback–Leibler divergence are shown

(left). In (right) the relative covariance error errΣ is shown for the tensor
reconstruction algorithm (blue) for a plain MC sampling of the poste-
rior (green) and a tuned Hamiltonian MC sampler (red). (Color figure
online)

Nevertheless, an approximation of around four magnitudes
smaller than MC and HMC for the covariance is achieved.

7.2 Validation experiment 2: Perturbation of exact
transport

In the following experiment we consider a so-called “banana
example” as posterior density, see e.g. Marzouk et al. (2016).
Let f0 be the density of a standard normal Gaussian measure
and let TΣ be the affine transport ofN (0, I ) to the Gaussian
measure N (0,Σ). Furthermore, set

T2(x) =
(

x1
x2 − (x21 + 1)

)
. (98)

The exact transport T from N (0, I ) to the curved and con-
centrated banana distribution with density f is then given by

T (x) = T2 ◦ TΣ(x), Σ =
(

1 0.9
0.9 1

)
. (99)

Note that the employed density can be transformed into a
Gaussian using a quadratic transport function. For this exper-
iment, we employ transport maps T̃ of varying accuracy for
the pull-back of the posterior density to a standard Gaussian.
In particular,weuse an approximation T̃1 (obtainedwithBap-
tista et al. 2015-2018) of the optimal affine transport T1 and
the quadratic transport T to build an approximation T̃ given
as convex combination

T̃ (x) = (1 − t) T̃1(x) + t T (x), t ∈ [0, 1]. (100)

For t = 1, the transport map is optimal since it generates the
desired reference density. For 0 ≤ t < 1, a perturbed prior
density is obtained with perturbation strength determined by
t . The impact of the perturbed transport is visualized in Fig. 3.

It can be observed that the transformed perturbed prior
is not of rank-1 when the transformation is inexact. Fur-
thermore, the difference between the target prior and the
perturbed prior is imminent, which implies that e.g. a Laplace
approximation to the considered banana density would
neglect possible important features of the distribution.
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Fig. 3 Illustration of the effect of different transports in (100) for t = 0, 0.25, 0.5, 1. (top to bottom)

In Fig. 4 we illustrate the impact of an inexact transport on
the approximation results in terms of errμ and errΣ . For the
considered target density, mean and covariance are known
analytically and hence no reference sampling has to be car-
ried out. We additionally employ an MCMC sampling to
show the improvement due to the additional low-rank recon-
struction. For the optimal transport map, one observes that
the surrogate reconstruction reduces to the approximation
of a rank-1 Gaussian density, which can be done efficiently
with few evaluations of f . If the transport is only linear and
inaccurate, results comparable to MCMC are achieved. For
a (somewhat) more accurate transport, the low-rank recon-
struction leads to (already) drastically improved estimates.

7.3 Bayesian inversion with log-normal Darcy model

Random partial differential equations (PDEs), i.e. PDEs with
correlated random data, play an important role in the popu-
lar field of Uncertainty Quantification (UQ). A prominent
benchmark example is the (stationary) ground water flow
model, also called the Darcy problem, as e.g. examined
in Eigel et al. (2014, 2017, 2020). This linear second order
PDE model on some domain D ⊂ R

d , d = 1, 2, 3 is deter-
mined by a forcing term g ∈ L2(D) and the random quantity
a(y) ∈ L∞(D), which for almost every y ∈ Y models a con-

ductivity or permeability coefficient. The physical system is
described by

− div (a(y)∇q(y)) = g in D, q(y)|∂D = 0, (101)

and the solution q(y) ∈ V := H1
0 (D) corresponds to the

system response. Pointwise solvability of (101) for almost
every y ∈ Y is guaranteed by a Lax–Milgram argument. For
details we refer to Schwab and Gittelson (2011).

For the applications in this article, we employ a truncated
log-normal coefficient field

a(y) = exp

(
d∑

k=1

ak yk

)
, (102)

for some fixed (ak)dk=1 with ak ∈ L2(D) denoting planar
Fourier cosinemodes and the image of some randomvariable
with law N (0, I ) denoted by y = (yk)dk=1 ∈ Y . A detailed
description and an adaptive Galerkin approach to solve this
problem can be found in Eigel et al. (2020).

For the inverse problem, the observation operator is mod-
eled by 144 equidistantly distributed observations in D =
[0, 1]2 of the solution q(y∗) ∈ H1

0 (D) for some y∗ ∈ Y =
R
d , which is drawn from a standard normal distribution.

Additionally, the observations are perturbed by a centered
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Fig. 4 Convex combination of affine and quadratic transport for the
banana posterior. Affine linear map (t = 0 top left), transport with
t = 0.25 (top right), t = 0.5 (bottom left) and exact quadratic map
(t = 1, bottom right). Error quantities errμ and errΣ for the employed

tensor train surrogate and aMCMC approximation in terms of the num-
ber of calls to the posterior function. The surrogate is reconstructed from
100 samples per layer, yielding a tensor with radial basis up to polyno-
mial degree 9 and Fourier modes up to degree 20

Gaussian noise with covariance σ I with σ = 10−7. We con-
sider the Bayesian posterior density (73) and set

f (y) = Z−1dπδ(y)dπ0(y) (103)

as the target density of the measure π on Y according to (1).
This target density is now approximated by the developed
algorithm.

To obtain the desired relative error quantities as above, we
employ reference computations that involve adaptive quadra-
ture for the two dimensional example in Fig. 5 and Markov
Chain Monte Carlo integration with 106 steps of the chain
and a burn-in time of 1000 samples for the experiment in
Fig. 6. We point out that the MCMC chains are started in an
area defined by the numerically obtainedMAP point used for
the employed transport map. This is in some sense similar
to the HMC algorithm considered in the previous example.
For the reconstruction algorithm, an affine linear transport is
estimated by Hessian information of the log-likelihood and
on every layer we employ 100 samples. As above, this corre-
sponds to taking initially one layer resulting in 100 posterior
calls. We increase the number of layers up to L = 25. The
respective relative errors are displayed in Fig. 6.

The stagnation of the graphs in Fig. 5 is on the one hand
governed by the observation noise and on the other hand
explicable by a non-optimal reference solution since the
TT approximation yields results equivalent to an adaptive
quadrature when taking L = 5 layers of refinement and thus
a total of 500 samples.

The improvement of the mean and covariance estimate by
the low-rank approach can already be observed for a low sam-
ple number. We note that the Monte Carlo estimate does not
allow for an adequate computation of the empirical covari-
ance, which therefore is left out of the comparison.

8 Conclusion

Wepropose a novel approach to approximate probability den-
sities with high accuracy, combining the notion of transport
maps and low-rank functional representations of auxiliary
(perturbed) reference densities. Based on a suitable class of
transformations, an approximation with respect to a finite
tensorized basis can be carried out in extended hierarchi-
cal tensor formats. This yields a compressed representation
for an efficient computation of statistical quantities of inter-
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Fig. 5 Comparison of the computed reference and the low-rank sur-
rogate of (1) normalization constant (errZ ), and (2) mean (errμ). For
the Darcy setting with d = 2 we observe 144 nodes in the physi-
cal domain. The measurements are perturbed by Gaussian noise with
deviation η = 1e − 7. We employ an adaptive quadrature in the two
dimensional space to obtain the reference quantities. The stagnation of
the graphs are due to non-optimal reference solutions. More precisely,
the TT approximation yields equivalent results to adaptive quadrature
when taking 5 nodes of refinement

est (e.g.moments or marginals) in a sampling free manner.
In this work, the multivariate polar transformation is used
as a particular rank-1 stable transformation. The method
requires point evaluations of the perturbed reference density
(up to a multiplicative constant). The approach can hence be
applied to not normalized posterior densities in the context
of Bayesian inversion. An a priori convergence analysis is
examined andwe illustrate the performance of themethod via
an inverse problem with a log-normal Darcy forward model.
A comparison with classical MCMC illustrates the superior
convergence in terms of the moment accuracy relative to the
number of posterior evaluations. Future research will be con-
cerned with

– application: usage of the approximated densities for sub-
sequent computations e.g.with SGFEM,

– analysis: Given a function f̃0 it has to be examined which
rank-1 stable transformations Φ lead to a low-rank func-
tion f̃0 ◦ Φ.
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the forward problem. The referencemean is computedwith 106 MCMC
samples. Additionally, the KL divergence is shown, which is computed
using empirical integration
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A Typical transport maps

A.1 Affine transport

In Schillings and Schwab (2016) and Schillings et al. (2020)
the authors employ an affine linear preconditioning for accel-
eration of MCMC or sparse-grid integration in the context
of highly informative and concentrated Bayesian posterior
densities, using a s.p.d. matrix H ∈ R

d,d and M ∈ R
d . In

the mentioned articles, up to a multiplicative constant, H
corresponds to the inverse square root of the Hessian at the
MAP (maximum a posteriori probability) M , i.e. the loca-
tion of the local optimum of an Laplace approximation of
the posterior density. This rather simple construction, under
the assumption of an unimodal density, leads to stable numer-
ical algorithms for the computation of quantities of interest as
the posterior mass concentrates. When considering the push-
forward of a reference density f0 to a target density f this
concept coincides with an affine transport

y = T (x) = Hx + M, x ∈ X .

In the transport setting H and M may be computed for
instance via some minimization of the Kullback–Leibler
divergence as in El Moselhy and Marzouk (2012). Note that
H andM do not necessarily have to be the inverse square root
of the Hessian or the MAP. Figure 7 illustrates the concept
of an affine transport.

A.2 Quadratic transport

A more general class of polynomial transport exhibits the
form

T (x) = 1

2
x : A : x + Hx + M, x ∈ X , (104)

with A = (Ai jk)
d
i, j,k=1 ∈ R

d,d,d , H ∈ R
d,d , M ∈ R

d and

(x : A : x)k = ∑d
i, j=1 xi Ai jk x j . Such a quadratic transport

may be used for simple nonlinear transformations as depicted
in Fig. 8.

A.3 More general transport maps

The parametrization of transport maps can be chosen quite
liberally as long as certain criteria are satisfied, which are
either directly imposed in the ansatz space T of the maps or
added as constraints during optimization. In particular, the
approximate transport map has to be invertible, which can be
ensured by requiring a positive Jacobian. A commonly used
measure for transport optimization is the Kullback–Leibler

divergence4 leading to the optimization problem

min
T∈T

dKL(Y ; Tπ0, π) s.t. detJT > 0 π -a.e. (105)

Several suggestions regarding simplifications and special
choices of function spaces T such as smooth triangular maps
based on higher-order polynomials or radial basis functions
can for instance be found in the review article (El Moselhy
and Marzouk 2012). An interesting idea is to subdivide the
task into the iterative computation of simple correction maps
which are then composed as proposed in Brennan et al.
(2020). We again emphasize that while an accurate trans-
port map is desirable, any approximation of such a map can
in principle be used with the proposed method. In fact one
can decide whether it is beneficial to spend more effort on
the approximation of the perturbed density or on a better
representation of the transport.

B Coordinate transformations and example
scenarios

Balancing the complexity of a transport map T̃ and the
approximation of the perturbed transformed prior can be
challenging but allows for some flexibility. Especially the
change of variables induced by a sensible choice of the
transformation Φ (7) can lead to simplified structures. In
the following we list some scenarios in which a coordinate
transform leads to advantageous represntations.

B.1 Gaussian perturbed prior density

Let f0 be defined on Rd and T̃ maps f to f̃0 which, in some
sense, is close to a standard Gaussian density. In this case, Φ
from (7)may be chosen as the d-dimensional spherical trans-
formation. This shifts the exponential decay of f̃0 to the one
dimensional radial parameter. The accuracy of an approxima-
tion can then be improved easily by additional h-refinements,
as described in Sect. 2.3. For the d-dimensional spherical
coordinate system, a simple layer layout is given in terms of
hyperspherical shells. In particular, for � = 1, . . . , L + 1 <

∞, with 0 = ρ1 < ρ2 < . . . < ρL+1 < ρL+2 = ∞, let

X̂� := [ρ�, ρ�+1] × [0, 2π ] ×
d−2×
i=2

[0, π ],

X� := Bρ�+1(0) \ Bρ�
(0) ⊂ X ,

i.e. X̂� and X� denote the corresponding adopted (trans-
formed) and the original parameter space, respectively. Then,

4 Although inmachine learningWasserstein or Sinkhorn distances have
become very popular when so-called normalizing flows are computed.
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Fig. 7 Illustration of affine transport: translation, rotation and rescaling

Fig. 8 Illustration of quadratic
transport: affine properties and
bending

T (x)

f0f

for x̂ = (ρ, θ0, θ) ∈ X̂ , θ = (θ1, . . . , θd−2), the d-
dimensional spherical transformation Φ� : X̂� → X� reads

Φ�(x̂) = ρ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ0 sin θ1 sin θ2 · · · sin θd−3 sin θd−2

sin θ0 sin θ1 sin θ2 · · · sin θd−3 sin θd−2

cos θ1 sin θ2 · · · sin θd−3 sin θd−2

cos θ2 · · · sin θd−3 sin θd−2
...

cos θd−3 sin θd−2

cos θd−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Moreover, the Jacobian is given by

detJΦ�(ρ, θ0, θ) = ρd−1
d−2∏
i=1

sini θi .

The structure of the transformation and its jacobian leads to
the following result.

Proposition 1 The multivariate spherical coordinate trans-
formation is rank-1 stable.

B.2 Mixed bounded and unbounded domains

Let Î :=×n
i=1[âi , b̂i ] and I :=×n

i=1[ai , bi ] with −∞ <

âi < b̂i < ∞,−∞ < ai < bi < ∞ for i = 1, . . . , n and let
a diffeomorphism Φ1 : Î → I with I = Φ1( Î ) of the form

Φ1(x̂1) = [Φ1
1 (x̂

1
1), . . . , Φ

1
n (x̂

1
n)]T . (106)

In applications, Φ1
i : [âi , b̂i ] → [ai , bi ] might be chosen as

a “blow up function” as illustrated in Fig. 9 or as identity.
Then the generalized hypercylindrical transformation

Φ : Î × R
d → I × R

d is given as

Φ(x̂1, x̂2) = [Φ1(x̂1),Φ2(x̂2)],

where Φ2 : Rd → R
d denotes the d-dimensional spherical

transformation from“AppendixB.1”. This construction leads
to the following proposition.

Proposition 2 The generalized hypercylindrical coordinate
transformation is rank-1 stable.
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Fig. 9 Illustration of one-dimensional blow-up of a local feature
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