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Abstract. The divergence constraint of the incompressible Navier–Stokes equations is revisited in the mixed
finite element framework. While many stable and convergent mixed elements have been developed throughout the
past four decades, most classical methods relax the divergence constraint and only enforce the condition discretely. As
a result, these methods introduce a pressure-dependent consistency error which can potentially pollute the computed
velocity. These methods are not robust in the sense that a contribution from the right-hand side, which influences
only the pressure in the continuous equations, impacts both velocity and pressure in the discrete equations. This
paper reviews the theory and practical implications of relaxing the divergence constraint. Several approaches for
improving the discrete mass balance or even for computing divergence-free solutions will be discussed: grad-div
stabilization, higher order mixed methods derived on the basis of an exact de Rham complex, H(div)-conforming
finite elements, and mixed methods with an appropriate reconstruction of the test functions. Numerical examples
illustrate both the potential effects of using non-robust discretizations and the improvements obtained by utilizing
pressure-robust discretizations.
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1. The Navier–Stokes and the Stokes equations, goals and contents of the review.
The Navier–Stokes equations are a fundamental model of incompressible Newtonian flows. They
are used to model flows in pipes and channels, flows around objects such as the wing of a plane,
and weather and climate, to name just a few. Developed in the mid 19th century, these equations
have garnered great interest from mathematicians, engineers, and scientists. In their simplest form,
and assuming constant fluid density, the equations are given in a domain Ω ⊂ Rd, d ∈ {2, 3}, and
a time interval (0, T ), T <∞, by

∂tu− ν∆u+ (u · ∇)u+∇p = f ,(1.1a)

∇ · u = 0,(1.1b)

where u denotes the velocity of the fluid, p denotes the pressure, and ν is the kinematic viscosity.
The nonlinear term u ·∇u = (u ·∇)u represents the inertial force, while the term with the Laplace

operator ∆u :=
∑d
i=1 ∂iiu encodes the viscous effects of the fluid. The given function f takes

into account external forces, e.g., gravity, buoyancy, and centrifugal forces, and the divergence
constraint ∇·u = 0 represents the incompressibility of the fluid, or equivalently in this setting, the
conservation of mass.

The fact that the Navier–Stokes equations are a constrained system of partial differential equa-
tions poses fundamental mathematical and numerical difficulties. A basic model for studying the
impact of the divergence constraint are the steady-state (scaled) Stokes equations, given by

−ν∆u+∇p = f ,(1.2a)

−∇ · u = g,(1.2b)

u|∂Ω = 0,(1.2c)

with the last equation representing no-slip boundary conditions. The divergence constraint −∇ ·
u = g originates, e.g., from transforming inhomogeneous Dirichlet boundary conditions to no-slip
boundary conditions. One notes immediately that the analysis of the Stokes equations is simpler
than for the Navier–Stokes equations, since the Stokes equations form a linear system and are not
time-dependent.

A main goal of this review is to highlight and elaborate a type of non-robustness of many
standard finite element methods for the Stokes and Navier–Stokes equations. This non-robustness
is connected to the discretization of the divergence constraint (and not to the nonlinearity nor
to dominating convection). The intended type of robustness is called pressure-robustness, which
means that some mixed methods are robust with respect to large and complicated pressures and
some are not. To avoid technicalities which do not concern the divergence constraint and its
discretization, the numerical analysis presented herein is limited to the Stokes equations. However,
it is directly relevant to more complex systems, and the fundamental ideas presented herein for
the Stokes equations are extendable. The numerical studies consider the Stokes and Navier–Stokes
equations, and also multiphysics systems.

1.1. Examples that demonstrate difficulties of standard methods. In the following,
three simple numerical examples are presented which illustrate the lack of pressure-robustness in
the numerical simulation of incompressible flow problems with standard finite element methods. All
simulations were performed on uniformly refined grids using classical pairs of mixed finite elements:
the mini element proposed in [4], the Taylor–Hood element from [42], and the non-conforming
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Crouzeix–Raviart element [26].
Example 1.1. No-flow problem for the Stokes equations. Consider the Stokes equations with

ν = 1 in Ω = (0, 1)2, no-slip boundary conditions and the right-hand side f = (0,Ra(1−y+3y2))T ,
where Ra > 0 is a parameter. One finds that u = 0, p = Ra(y3 − y2/2 + y − 7/12) is the solution
of this equation. Changing the parameter Ra in the right-hand side changes only the pressure. On
the other hand, applying standard mixed finite element methods, one can also see an influence of
this parameter on the discrete velocity, see Fig. 1.1. For both considered pairs of finite element
spaces, the Taylor–Hood space P2/P1 and the non-conforming Crouzeix–Raviart space, the discrete
velocity is far from being equal to zero, even for Ra = 1.
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Fig. 1.1. Example 1.1. Velocity errors in the no-flow problem for the Stokes equations.

The impact on the discrete velocity of a term which only influences the pressure in the contin-
uous case is one type of non-robustness which is studied here. By the construction of this example,
this lack of robustness cannot be due to dominating convection or to the nonlinearity of the prob-
lem. It is clarified in this review that this lack of robustness is connected with the discretization
of the divergence-free constraint in mixed finite element methods. Based on studying this issue
carefully, a remedy which removes this instability for the Crouzeix–Raviart pair of finite element
spaces was proposed in [50]. The underlying idea of this remedy is explained in Section 5.2 and the
result of its application is shown in Example 6.1.

Example 1.2. Stationary vortex. Consider the Navier–Stokes equations (1.1) with ν = 1 in
Ω = (−1, 1)2 with the prescribed solution

u =

(
−y
x

)
, p = Re

(
x2 + y2

2
− 1

3

)
, Re > 0,

where Re is the Reynolds number, and with Dirichlet boundary conditions. The flow field has the
form of a vortex and a direct calculation shows that f = 0. Clearly, ∂tu = 0 and ∆u = 0. Hence,
there is a balance of the nonlinear term of the Navier–Stokes equations and the pressure gradient.

In standard finite element error estimates, some norm of the solution appears on the right-
hand side. In this example, one could think that the velocity errors are uniformly bounded since
the velocity does not depend on Re. Instead, one observes in Fig. 1.2 that the errors are proportional
to Re, i.e., the velocity error has the same scaling as the pressure.

This example shows that there is a negative impact of the pressure onto the discrete velocity.
This influence is also a kind of non-pressure-robustness which by construction is not due to domi-

3



0 1 2 3 4 5 6 7
level

10-2

10-1

100

101

102

103

||∇
(u
∇u

h)
|| L

2 (
Ω
)

Crouzeix-Raviart

Re=1

Re=10

Re=100

Re=104

0 1 2 3 4 5 6 7
level

10-5

10-4

10-3

10-2

10-1

100

101

102

||∇
(u
∇u

h)
|| L

2 (
Ω
)

mini element

Re=1

Re=10

Re=100

Re=104

Fig. 1.2. Example 1.2. Velocity errors for the stationary vortex.

nating convection. A remedy in the case of the Crouzeix–Raviart finite element pair was proposed
in [50], see Section 5.2 for the basic idea and Example 6.1 for numerical results.

Example 1.3. Flow with Coriolis force. In some applications, such as meteorology, the Coriolis
force acting on the flow field is of the utmost importance. The Coriolis force is modeled with the
additional term 2w×u on the left-hand side of the moment balance of the Navier–Stokes equations
(1.1), where w is the vector of angular momentum.

Consider a flow field which is two-dimensional, i.e., u = (u1, u2, 0), w = y(0, 0, ω/2)T , ω ∈ R,
and assume that none of the functions of the problem depends on the third coordinate. Then
one obtains a two-dimensional model, similar to the Navier–Stokes equations. In this model, the
left-hand side of (1.1) contains the additional term ωy(−u2, u1)T . The y-dependence of the Coriolis
force models in meteorology a latitude-dependence in a so-called β-plane approximation [64]. Here,
a part of the Earth’s surface is approximated by a tangent plane and vertical velocities are neglected.

This problem is considered for the Navier–Stokes equations in Ω = (0, 10) × (0, 1) with ν = 1
and the prescribed solution

u =

(
1
0

)
, p = ω

(
−y

2

2
+

1

6

)
=⇒ f = 0,

and with Dirichlet boundary conditions. In meteorology, this situation would model a constant
ocean current from west to east. For this solution, the first three terms of the momentum balance
of the Navier–Stokes equations (1.1) vanish, while ∇p is balanced by the additional Coriolis force
2w × u.

Once again this is a problem where in the continuous setting the velocity does not depend on
the parameter ω, but the pressure does. The numerical results presented in Fig. 1.3 show that this
property is not inherited by standard pairs of mixed finite elements. The discrete velocity depends
on ω and the error scales linearly with this parameter, i.e., it scales the same way as the pressure.

1.2. Goals of the review. A pressure-robust method in the sense studied in this review is
a method for which modifications of the continuous problem that only affect the pressure lead to
changes of the discrete solution that only affect the discrete pressure. Otherwise, the method is
said to be non-pressure-robust. In Examples 1.1 – 1.3 it was shown that for non-pressure-robust
methods there might be a large impact on the discrete velocity from modifications that only affect
the pressure in the continuous equations.
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Fig. 1.3. Example 1.3. Velocity errors for the flow with Coriolis force.

Two fundamental observations concerning the Stokes (1.2) and Navier–Stokes equations (1.1)
can be made immediately:

1. For solutions to exist, the divergence operator must possess a certain surjectivity property,
the fundamental inf-sup compatibility condition: There exists a constant β such that

inf
q∈L2

0(Ω)\{0}
sup

v∈H1
0 (Ω)d\{0}

(∇ · v, q)
‖∇v‖L2(Ω)‖q‖L2(Ω)

≥ β > 0.(1.3)

Otherwise, the constraint −∇ · u = g cannot hold.
2. A fundamental invariance property holds: changing the external force by a gradient field

changes only the pressure solution, and not the velocity; in symbols,

(1.4) f → f +∇ψ =⇒ (u, p)→ (u, p+ ψ),

since the additional force field ∇φ is balanced by the pressure gradient, and the no-slip
boundary conditions do not involve the pressure.

These issues not only affect the continuous equations but also their discretizations. In this review,
the effect of the second observation on finite element discretizations will be elaborated.

The significance of the first observation is well known, and forms a cornerstone of numerical
analysis for the Stokes and Navier–Stokes equations. It comprises the fundamental finding that
numerical schemes for approximating the Stokes and Navier–Stokes equations should satisfy a cer-
tain compatibility criterion between the discrete velocity and pressure spaces, in order to fulfill an
appropriate surjectivity of the discrete divergence operator: the so-called discrete inf-sup stability.
The need for discrete inf-sup stability results from the fact that the discrete velocity trial functions
are constrained. The great practical value of discrete inf-sup stability is due to the fact that it
provides a recipe for the construction of discretization schemes which lead to well posed problems,
and whose solutions have (asymptotically) optimal convergence rates.

The significance of the second observation for the discretization of the Navier–Stokes equations
has only recently begun to be realized [36]. As it is explained in detail in Section 4.2, the discrete
divergence constraint induces a discrete rotation operator via the velocity test functions, since
divergence-free vector test functions have a vector potential. Therefore, in every mixed finite
element discretization for the Stokes problem (1.2) a discrete vorticity equation is hidden. For
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discretization schemes satisfying (1.4) it holds exactly that ∇ × ∇ψ ≡ 0 for any differentiable ψ.
However, classical mixed methods, which satisfy the discrete inf-sup condition, satisfy ∇×∇ψ ≡ 0
only approximately, up to some order of accuracy. In addition, (1.4) can be explained using the
Helmholtz–Hodge projection, see Section 2, which is mathematically more rigorous.

The violation of (1.4) by a discretization might have severe consequences.
• As it is discussed in Section 3, the violation of (1.4) results in finite element error bounds

for the velocity which depend on the pressure. Thus, large pressures may lead to large
velocity errors, which has already been observed in Examples 1.1 – 1.3. Indeed, there
are important applications, e.g., natural convection problems, where the pressure is larger
than the velocity by orders of magnitude. In such situations, one cannot expect to compute
accurate velocity fields with classical mixed methods.
• In the case ∇·u = 0, one often expects in applications that the discrete computed velocity

field is also divergence-free. Otherwise, the conservation of mass is violated. A violation of
this conservation law is not tolerable in many applications.

It turns out that so-called divergence-free mixed methods, i.e., methods whose discrete velocity uh
is in a sufficiently strong sense divergence-free (or in the general case ∇ · uh = g in a sufficiently
strong sense), satisfy (1.4) and thus belong to the class of pressure-robust methods.

Another main goal is to review the construction of pressure-robust mixed methods that satisfy
simultaneously the discrete inf-sup stability and (1.4). In the last decade, tremendous progress has
been achieved in approaching this goal, though it seemingly was believed for more than thirty years
that it would be (practically) impossible to construct such schemes. Indeed, the first pressure-robust
mixed method on 3d tetrahedral grids was published only recently in 2005 [77]. Pressure-robust
mixed methods in 2d reach back to 1983 [72], although they were rarely used in practice. Nowadays,
three different approaches exist for the construction of pressure-robust mixed methods.

• The first approach, which is the most classical one, constructs divergence-free mixed Galerkin
schemes such that the discrete velocity is H1-conforming and divergence-free. Here, novel
ideas from the finite element exterior calculus have delivered a tremendous breakthrough,
see Section 4.3.

• The second approach is due to recent Discontinuous Galerkin (DG) methods. Here, novel
mixed schemes for (1.2) look for divergence-free, H(div)-conforming velocities, see Sec-
tion 4.4. This regularity suffices to assure (1.4). Due to the relaxation of the H1-conformity
of the velocity, the tangential velocity components are discretized in the DG framework.

• The third approach is very recent, and it is based on the observation that velocity trial and
velocity test functions play a different role in order to guarantee discrete inf-sup stability
and (1.4), see Section 5.2. Therefore, the resulting schemes are not of Galerkin type. For
(1.2) a variational crime in the right-hand side of the momentum balance is applied, in
order to replace discretely divergence-free velocity test functions by divergence-free ones.
In the case of the Navier–Stokes equations, the variational crime must be applied also to
the test function of the convective term and if a Coriolis force term is present, also to this
term.

In addition, an approach for improving the pressure-robustness of classical mixed methods, the
so-called grad-div stabilization, is presented in Section 5.1.

1.3. Outline of the review. An outline of this review paper is now given, and is immediately
followed by a list of notation used throughout the manuscript. To focus on the goals of the review
and to avoid technical details, this review will concentrate on the Stokes equations (1.2).

Section 2 recalls the variational formulation of the Stokes equations and presents the fundamen-
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tal associated results. The momentum balance is discussed in detail, as is the invariance property
that ‘changes to the irrotational part of the forcing only affect the pressure and do not alter the
velocity’. The standard mixed finite element method for Stokes is given in Section 3, along with
results for well-posedness under an inf-sup condition, and a general error estimate. It is discussed
here that common element choices only enforce the divergence constraint discretely, and how this
leads to pressure-dependent error estimates for the velocity.

Section 4 discusses pressure-robust mixed finite element methods for the Stokes equations. In
particular, it is shown here that for special element choices, the divergence constraint is enforced
exactly, and the velocity error does not depend on the pressure. Such methods are deemed pressure-
robust mixed methods herein, as this property does not hold in most commonly used elements.
Discrete invariance properties which are analogues of those found at the continuous level are also
discussed in this section, and it is shown that they hold for pressure-robust mixed methods. A
detailed description of the de Rham complex is then given, which is a tool to develop pressure-
robust mixed methods. The section is concluded with a discussion of (non-conforming) H(div)
mixed methods and how they can be used in a pressure-robust way.

The focus of Section 5 is on techniques that improve, or even fix, standard (non-pressure-robust)
mixed methods. The topics discussed are grad-div stabilization and appropriate modification of
test functions, which all serve the purpose of reducing or eliminating the pressure from the velocity
error. Moreover, a kind of post-processing approach is discussed that produces divergence-free
H(div)-conforming velocities from discretely divergence-free velocity fields. Such a post-processing
is related to the discussed modification of test functions, and is interesting for the discretization of
tracers described by convection-diffusion equations, see, e.g., [34]. Results and discussion for several
numerical studies presented are presented in Section 6. The aim of this section is to show the types
of problems where the methods discussed in this paper can make a significant improvement in
solution accuracy, as well as problems where they do not make a difference.

1.4. Nomenclature. Throughout this review, standard notations will be used for function
spaces.

a(·, ·) velocity-velocity bilinear form b(·, ·) velocity-pressure bilinear form
CF Fortin operator constant CP constant in Poincaré’s estimate
curl vector curl operator div divergence operator
grad gradient operator β continuous inf-sup constant
βh discrete inf-sup constant Ra Rayleigh number
Th triangulation of Ω Re Reynolds number
Eh set of edges of Th γ parameter in grad-div stabilization
T mesh cell of Th ν kinematic viscosity
e mesh cell of Eh f body force
g right-hand side of continuity

equation
h maximal value of hT for given mesh

hT diameter of T n outward unit normal to ∂Ω
nT outward unit normal to T P(·) Helmholtz–Hodge projector
p pressure ph finite element pressure
Pk space of globally continuous

scalar-valued piecewise polynomials
of degree not exceeding k

Pk space of globally continuous
vector-valued piecewise polynomials
of degree not exceeding k

u velocity uh finite element velocity
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Vh set of vertices of Th Wh non-conforming finite element
velocity space

X velocity space, H1
0 (Ω) Xh conforming finite element velocity

space
Xdiv subspace of X, containing the

weakly divergence-free functions
Xh,div space of discretely divergence-free

functions
Xh,div(g) manifold of functions with

divergence equal to g
Y pressure space, L2

0(Ω)

Yh finite element pressure space πF Fortin operator
π L2-projection to some space Ω domain
ω vorticity ∂Ω boundary of Ω
∇·h discrete divergence operator [|·|]τ jump across edges/faces in 2d/3d

2. Variational formulation, Helmholtz–Hodge decomposition and the momentum
balance. In this section, the variational formulation of the Stokes problem is introduced and
the Helmholtz projector is discussed and its significance is emphasized for the (Navier–)Stokes
momentum balance. The Helmholtz projector is of central importance for understanding the results
obtained with mixed finite element methods, yet is generally not emphasized in the numerical
analysis literature, or only in a posteriori error control [1, 21].

A weak solution to the incompressible Stokes equations (1.2) is defined as a pair (u, p) ∈
X × Y := H1

0 (Ω) ∩ L2
0(Ω) satisfying

a(u,v) + b(v, p) = (f ,v) ∀ v ∈X,(2.1a)

b(u, q) = (g, q) ∀ q ∈ Y,(2.1b)

where L2
0(Ω) is the space of square integrable functions with vanishing mean. The bilinear forms are

given by a(w,v) = ν(∇w,∇v) and b(v, q) = −(∇·v, q), and (·, ·) denotes the L2 inner product over
Ω. Note that vector-valued functions and vector-valued function spaces are denoted in boldface,
e.g., H1

0 (Ω) = (H1
0 (Ω))d.

To analyze (2.1), the following partial integration formula for the divergence is recalled which
allows the introduction of a distributional divergence and a weak divergence.

Lemma 2.1. For all ψ ∈ H1(Ω) and w ∈H1(Ω) there holds∫
Ω

ψ∇ ·w dx = −
∫

Ω

∇ψ ·w dx+

∫
∂Ω

ψw · n ds.

The surface integral is understood as a duality pairing between the spaces H
1
2 (∂Ω) and H−

1
2 (∂Ω).

Proof. For smooth functions ψ ∈ C∞(Ω) and w ∈ C∞(Ω), the proof is a direct consequence of
the vector calculus identity ∇ · (ψw) = ψ∇ ·w +∇ψ ·w and the divergence theorem (integration
by parts of the divergence term). Using the density of C∞(Ω) and C∞(Ω) in H1(Ω) and H1(Ω),
respectively, gives the statement of the lemma.

This lemma motivates the introduction of the notion of a distributional divergence.
Definition 2.2. For a vector field w ∈ L1(Ω) the mapping C∞0 (Ω)→ R given by

ψ 7→ −
∫

Ω

∇ψ ·w dx

is called the distributional divergence of w.
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The weak divergence is defined in the usual way of defining weak derivatives.
Definition 2.3. If for a vector field w ∈ Lp(Ω) with p ≥ 1 there exists a function ρ ∈ L1

loc(Ω)
such that the distributional divergence can be represented in the form

−
∫

Ω

∇ψ ·w dx =

∫
Ω

ψρ dx ∀ ψ ∈ C∞0 (Ω),

the function ρ is called the weak divergence of w, abbreviated as ρ := ∇ · w. In particular, for
divergence-free vector fields w there holds

(2.2)

∫
Ω

∇ψ ·w dx = 0 ∀ ψ ∈ C∞0 (Ω).

Remark 2.4. Loosely speaking, divergence-free vector fields are characterized by the fact that
they are orthogonal in the L2(Ω) scalar product to all gradient fields (with compact support). Clas-
sical mixed methods, whose construction is guided by the discrete inf-sup condition (3.2), usually
violate this essential property. Its violation might lead to the lack of pressure-robustness as demon-
strated in Examples 1.1 – 1.3.

Considering in the divergence constraint (2.1b) a test function q ∈ Y ∩ C∞0 (Ω), one obtains
with the divergence theorem ∫

Ω

∇q · u dx =

∫
Ω

qg dx.

Following Definition 2.3, −g is the weak divergence of u. This statement can be made more
precise. Since u satisfies no-slip boundary conditions, one finds by the divergence theorem that
0 =

∫
∂Ω
u · n ds =

∫
Ω
∇ · u dx. Combining this identity with u ∈ H1(Ω) implies that ∇ · u ∈ Y .

Hence one can choose q = ∇ · u− g in (2.1b), such that

(2.3) ‖∇ · u+ g‖L2(Ω) = 0.

Thus ∇ · u = −g in the sense of L2(Ω).
Definition 2.5. The Hilbert space of vector fields that possess a weak divergence is defined by

(2.4) H(div,Ω) := {w ∈ L2(Ω) : ∇ ·w ∈ L2(Ω)}.

Here, ∇ ·w is understood in the sense of Definition 2.3.
These definitions and lemmas allow to prove the Helmholtz–Hodge decomposition, a funda-

mental result for understanding the lack of pressure-robustness in classical mixed methods.
Lemma 2.6 (Helmholtz–Hodge decomposition). Let Ω be a connected domain. For every vector

field f ∈ L2(Ω)d, there exist a vector field f0 ∈H(div,Ω) and a scalar function φ ∈ H1(Ω)/R with
1. f = f0 +∇φ,
2. ∇ · f0 = 0,
3. (f0,∇φ) = 0.

The decomposition is unique.
Proof. The following Neumann problem is well-posed [37, pp. 40]: find φ ∈ H1(Ω)/R such that

(2.5) (∇φ,∇ψ) = (f ,∇ψ) ∀ ψ ∈ H1(Ω)/R.
9



Since f ∈ L2(Ω)d and φ ∈ H1(Ω), it follows that f0 := f −∇φ is in L2(Ω). The uniqueness of φ
implies also the uniqueness of f0. By construction, it holds

(2.6) (f0,∇ψ) = 0 ∀ ψ ∈ H1(Ω)/R.

Since C∞0 (Ω)/R ⊂ H1(Ω)/R, it follows that f0 is weakly divergence-free in the sense of Defini-
tion 2.3. In particular, ∇ · f0 = 0 ∈ L2(Ω) so that f0 ∈ H(div,Ω). Choosing ψ = φ in (2.6) gives
the third property stated in the lemma.

Definition 2.7 (Helmholtz–Hodge projector). The function f0 =: P(f) is called the Helmholtz–
Hodge projector of f .

Using the Helmholtz–Hodge projector, the following existence, uniqueness, and stability esti-
mates can be derived.

Lemma 2.8. Let f ∈ L2(Ω) and g ∈ Y . Then the Stokes problem (2.1) has a unique solution
for which the following stability estimates hold

‖∇u‖L2(Ω) ≤
CP
ν
‖P(f)‖L2(Ω) +

1

β
‖g‖L2(Ω),(2.7a)

‖p‖L2(Ω) ≤
CP
β
‖f‖L2(Ω) +

ν

β2
‖g‖L2(Ω),(2.7b)

where β is the inf-sup constant defined in (1.3).
Proof. Assume that there is a velocity solution u ∈X. Define the divergence-free subspace

Xdiv := {v ∈X : b(v, q) = 0 ∀ q ∈ Y }.

Then, u can be orthogonally decomposed u = u0 + u⊥ with respect to the scalar product a(·, ·)
with u0 ∈ Xdiv and u⊥ ∈ X⊥div. It will be shown that both parts of this decomposition exist and
are uniquely defined. Hence, u also exists and is unique.

Due to the continuous inf-sup condition, the divergence operator is bijective from X⊥div to Y .
Thus, there exists a unique w⊥ ∈ X⊥div with −∇ · w⊥ = g and ‖∇w⊥‖L2(Ω) ≤ 1

β ‖g‖L2(Ω). Since

∇ · u = ∇ · u⊥, condition (2.1b) enforces u⊥ = w⊥. Consequently u⊥ is uniquely given and

(2.8) ‖∇u⊥‖L2(Ω) ≤
1

β
‖g‖L2(Ω).

The divergence-free part u0 is determined by testing (2.1a) with an arbitrary divergence-free func-
tion v0 ∈Xdiv. One obtains, using on the left-hand side the a-orthogonality and on the right-hand
side the L2-orthogonality against Xdiv

(2.9) a(u,v0) + b(p,v0) = (f ,v0) ⇐⇒ a(u0,v0) = (P(f),v0).

Applying the Lax–Milgram theorem, it follows that u0 is uniquely defined due to the coercivity of
a(·, ·). The Cauchy–Schwarz inequality and Poincaré’s inequality for v0 = u0 yield

ν‖∇u0‖2L2(Ω) ≤ ‖P(f)‖L2(Ω)‖u0‖L2(Ω) ≤ CP ‖P(f)‖L2(Ω)‖∇u0‖L2(Ω).

Division by ‖∇u0‖L2(Ω), the decomposition of u and estimate (2.8) give (2.7a).

The pressure p is now obtained by testing (2.1a) with arbitrary functions v⊥ ∈X⊥div, yielding

(2.10) a(u,v⊥) + b(p,v⊥) = (f ,v⊥) ⇐⇒ (p,∇ · v⊥) = −(f ,v⊥) + a(u⊥,v⊥).
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Again, since ∇· : X⊥div → Y is a bijection, p is uniquely determined by (2.10). For proving the
stability estimate of the pressure, one chooses the unique vp ∈ X⊥div such that holds ∇ · vp = p
and ‖∇vp‖L2(Ω) ≤ 1

β ‖p‖L2(Ω). Inserting vp into (2.10), using the Cauchy–Schwarz and Poincaré

estimates, and (2.8) yields

‖p‖2L2(Ω) ≤ CP ‖f‖L2(Ω)‖∇vp‖L2(Ω) + ν‖∇u⊥‖L2(Ω)‖∇vp‖L2(Ω)

≤ CP
β
‖f‖L2(Ω)‖p‖L2(Ω) +

ν

β2
‖g‖L2(Ω)‖p‖L2(Ω),

which proves (2.7b).
The Helmholtz–Hodge projector allows to justify the fundamental invariance property (1.4) in

a mathematically rigorous way. First, the following corollary is proved:
Corollary 2.9. The Helmholtz projector P(∇φ) of a gradient field ∇φ with φ ∈ H1(Ω)/R

vanishes, i.e., P(∇φ) = 0.
Proof. Taking f = ∇φ, it follows from the first property given in Lemma 2.6 that f0 = 0 and

consequently P(f) = P(∇φ) = 0.
This corollary allows to conclude the fundamental invariance property (1.4) rigorously.
Lemma 2.10. Let f ∈ L2(Ω), then it holds for the Stokes problem (2.1) that changing the

right-hand side by f → f +∇ψ, with ψ ∈ H1(Ω)/R, leads to a change of the solution by (u, p)→
(u, p+ ψ).

Proof. Let the Stokes solutions for the forcings f and f+∇ψ be denoted by (u, p) and (uψ, pψ),
respectively. Both solutions are decomposed, u = u0 +u⊥ and uψ = u0

ψ +u⊥ψ with u0, u0
ψ ∈Xdiv

and u⊥, u⊥ψ ∈ X⊥div. Since (2.1b) is satisfied in both cases, it follows that b(u⊥ − u⊥ψ , q) = 0

for all q ∈ Y such that from the continuous inf-sup condition (1.3) it follows that u⊥ = u⊥ψ .

The divergence-free parts u0 and u0
ψ are determined by (2.9) and they are equal, since it holds

P(f + ∇ψ) = P(f) according to corollary 2.9. Using u⊥ = u⊥ψ , equation (2.10) for (u, p), and
integration by parts gives the following pressure equation for the forcing

(pψ,∇ · v⊥) = −(f +∇ψ,v⊥) + a(u⊥,v⊥) = (p+ ψ,∇ · v⊥) ∀ v⊥ ∈X⊥div.

Therefore, the fundamental invariance property (1.4) holds.

3. The lack of pressure-robustness for standard mixed methods. This section presents
the basic finite element formulation for the Stokes problem and the error analysis for the velocity
error ‖∇(u− uh)‖L2(Ω). In particular, it is pointed out why the pressure cannot be removed from
the a priori velocity error bound for standard mixed methods.

A finite element method poses the variational formulation (2.1) onto a pair of finite-dimensional
spaces consisting of piecewise polynomials. In particular, if Xh × Yh ⊂ X × Y denotes a pair of
conforming piecewise polynomial spaces with respect to a partition Th of Ω (parameterized by h),
then a Galerkin finite element method for the Stokes equations seeks (uh, ph) ∈Xh×Yh such that

a(uh,vh) + b(vh, ph) = (f ,vh) ∀ vh ∈Xh,(3.1a)

b(uh, qh) = (g, qh) ∀ qh ∈ Yh.(3.1b)

The discrete problem (3.1) is an example of a mixed finite element method in which two finite
element spaces are present in the formulation. In such methods, the finite element spaces Xh and
Yh must be compatible in order to guarantee the existence and uniqueness of a solution as well as
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convergence as the discretization parameter tends to zero. In the case of the Stokes (and Navier–
Stokes) equations, the compatibility requirement is a surjective property of the divergence operator.
In particular, a necessary condition for the existence and stability of a solution of problem (3.1) is
the discrete inf-sup condition

inf
qh∈Yh\{0}

sup
vh∈Xh\{0}

(∇ · vh, qh)

‖∇vh‖L2(Ω)‖qh‖L2(Ω)
≥ βh > 0.(3.2)

For stability and optimal order convergence, it is required that βh ≥ β0 > 0 as h→ 0+.
Setting vh = uh in (3.1a), qh = −ph in (3.1b), and adding the two equations gives

ν‖∇uh‖2L2(Ω) = (f ,uh)− (g, ph),

which implies that zero data f ≡ 0 and g = 0 yield a zero solution uh ≡ 0. Since the problem is
linear, uniqueness of the discrete velocity solution is guaranteed, independent of the choice of finite
element spaces. With uniqueness of the velocity established, the uniqueness of the pressure follows
immediately by assuming two solutions and inserting the corresponding finite element problems
into the discrete inf-sup condition (3.2). The existence of solutions follows from the uniqueness,
since the problem is linear and finite-dimensional.

The discrete divergence operator ∇·h : Xh → Yh is defined with the help of the L2-projection

(∇ ·h vh, qh) = (∇ · vh, qh) ∀ qh ∈ Yh.

Condition (3.2) implies that this operator is surjective from Xh onto Yh, with a bounded right-
inverse. Many finite element pairs have been developed that satisfy the discrete inf-sup condition
(3.2) with βh ≥ β0 > 0 as h → 0+. A popular example is the family of Taylor–Hood finite
element pairs Pk/Pk−1, k ≥ 2. In the mini element [4], it is Yh = P1 and the velocity space
consists of continuous linear functions that are enriched with local bubble functions to satisfy (3.2).
An enrichment of the velocity space with bubble functions for the same reason is also used for
the Bernardi–Raugel element [14], where the base polynomial spaces are P2 for the velocity and
discontinuous piecewise linears for the pressure. A first-order variant in the same paper is based on
piecewise constant pressures and P1 for the velocity enriched by normal-weighted face bubbles.

In the finite element problem, the divergence-free condition is enforced only by (3.1b). Note
that the pairs of spaces just mentioned satisfy ∇ ·hXh = Yh but lack the inclusion ∇ ·Xh 6⊂ Yh. If
∇ ·Xh 6⊂ Yh, it cannot be expected that ‖∇ · uh‖L2(Ω) = 0. In fact it is known that this quantity
can become quite large in simulations with common element choices such as the Taylor–Hood pair
P2/P1, see [22].

To derive finite element error estimates, under the assumptions that the discrete inf-sup con-
dition (3.2) holds for the pair Xh × Yh and that ∇ ·Xh 6⊂ Yh, consider the manifold

(3.3) Xh,div(g) := {vh ∈Xh : (∇ · vh, qh) = (g, qh) ∀ qh ∈ Yh} .

In the case g = 0, the abbreviation Xh,div = Xh,div(0) will be used, i.e., Xh,div is the space of
discretely divergence-free functions, which is the kernel of the discrete divergence operator. Note
that, because of ∇ ·Xh 6⊂ Yh, functions from Xh,div are generally not divergence-free in the sense
of L2(Ω) and hence it follows that Xh,div 6⊂ Xdiv. Since Xh,div ⊂ Xh ⊂ X, test functions from
Xh,div can be used as test functions in the continuous problem (2.1a) as well as in the finite element
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problem (3.1). Taking such test functions, qh = 0, and subtracting both equations gives the error
equation

(3.4) a(u− uh,vh) + b(vh, p− ph) = 0 ∀ vh ∈Xh,div.

Because of the special choice of test function there holds b(vh, ph) = 0, and therefore the discrete
pressure can be removed from the error equation. However, since Xh,div 6⊂ Xdiv, the continuous
pressure does not vanish in general. At this point it is not possible to remove the dependency of
the velocity error on the pressure. The best that can be done is to add b(vh, qh) = 0 for arbitrary
qh ∈ Yh to the left-hand side of the error equation. Decomposing the error into

u− uh = (u− Ihu)− (uh − Ihu) =: η − φh

for arbitrary Ihu ∈ Xh,div, inserting this decomposition into (3.4), and taking as test function
vh = φh yields

ν‖∇φh‖2L2(Ω) = ν(∇η,∇φh)− (∇ · φh, p− qh) ∀ qh ∈ Yh.

The terms on the right-hand side are estimated by the Cauchy–Schwarz inequality and the estimate
‖∇·φh‖L2(Ω) ≤ ‖∇φh‖L2(Ω) (which holds with constant 1 for functions with homogeneous Dirichlet
boundary conditions). Dividing by ν‖∇φh‖L2(Ω) 6= 0 (the other case is trivial), one obtains

‖∇φh‖L2(Ω) ≤ ‖∇η‖L2(Ω) + ν−1‖p− qh‖L2(Ω) ∀ qh ∈ Yh.

Finally, one gets with the triangle inequality

(3.5) ‖∇(u− uh)‖L2(Ω) ≤ 2 inf
Ihu∈Xh,div

‖∇(u− Ihu)‖L2(Ω) + ν−1 inf
qh∈Yh

‖p− qh‖L2(Ω).

The error estimate (3.5) shows that the bound for the velocity error ‖∇(u−uh)‖L2(Ω) depends
on the best approximation error of the pressure which is scaled with the inverse of the viscosity.
This term becomes large if ν is small or if the best approximation error is large. Estimating the best
approximation error with some interpolation error, one obtains a bound which contains the norm
of the pressure in some Sobolev space. Examples 1.1 – 1.3 already show that the bound obtained
in this way is sharp in the sense that large norms of the pressure dominate the velocity error and
the error scales the same way as the pressure does.

Remark 3.1. It is useful to summarize the different meanings of a function being ‘divergence-
free’ introduced so far. In the strong form the the Navier–Stokes equations (1.1) classical derivatives
are used and u is pointwise divergence-free. The property of a vector field to be weakly divergence-
free is given in (2.2). For functions v ∈ X, this property is equivalent to ‖∇ · v‖L2(Ω) = 0, see
(2.3) for g = 0. Finally, (conforming) discretely divergence-free vector fields are defined in (3.3).
Clearly, a pointwise divergence-free field is weakly and discretely divergence-free. Also, a weakly
divergence-free field from X is discretely divergence-free. However, a discretely divergence-free field
is usually neither pointwise nor weakly divergence-free.

Remark 3.2. Since discretely divergence-free vector fields are generally not weakly divergence-
free, the question of the error in the divergence arises. From ‖∇·(u−uh)‖L2(Ω) ≤ ‖∇(u−uh)‖L2(Ω)

one gets that this error is bounded with the same order as the error of the gradient of the velocity.
In particular for g = 0, this estimate means ‖∇ · uh‖L2(Ω) ≤ ‖∇(u− uh)‖L2(Ω). In numerical

simulations one finds that both sides of this estimate possess in fact generally the same order of
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convergence. Thus, large errors ‖∇(u − uh)‖L2(Ω) usually induce a bad (local) conservation of
mass.

Remark 3.3. Consider the case g = 0. Then, one gets with the divergence theorem that

(3.6) 0 =

∫
∂Ω

uh · n ds =

∫
Ω

∇ · uh dx,

such that mass is conserved in this global sense.

If discontinuous pressure spaces Yh ⊂ Y are used, one has even a more local mass conservation.
Since the piecewise constant functions are usually a subspace of a discontinuous pressure finite
element space, one obtains from (2.1b)

(3.7) 0 =
∑
T∈Th

∫
T

(∇ · uh)qh dx =
∑
T∈Th

qh

∫
T

∇ · uh dx

for all qh ∈ P0. Considering an arbitrary mesh cell T1 and another arbitrary mesh cell T2 6= T1.
Then one can choose

qh =


1 in T1,

−|T1|
|T2|

in T2,

0 else.

With this choice, qh ∈ Yh. One gets with (3.7)∫
T2

∇ · uh dx =
|T2|
|T1|

∫
T1

∇ · uh dx ∀ T2 ∈ Th.

It follows that ∫
Ω

∇ · uh dx =
∑
T∈Th

∫
T

∇ · uh dx =
∑
T∈Th

|T |
|T1|

∫
T1

∇ · uh dx

=
1

|T1|

∫
T1

∇ · uh dx
∑
T∈Th

|T | = |Ω|
|T1|

∫
T1

∇ · uh dx.(3.8)

From (3.6) one concludes that the last factor on the right-hand side of (3.8) vanishes. Since T1

was chosen to be arbitrary, one obtains the local mass conservation

(3.9)

∫
T

∇ · uh dx = 0 ∀ T ∈ Th.

Note that the local mass conservation (3.9) does not necessarily imply that the error ‖∇·uh‖L2(Ω)

is smaller in comparison with methods which use a continuous space Yh.

4. Pressure-robustness of weakly divergence-free mixed finite element methods.
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4.1. Stability and accuracy of pressure-robust mixed methods for the Stokes equa-
tions. In this section, mixed finite element error estimates for the discrete incompressible Stokes
equations (3.1) are derived for inf-sup stable conforming element pairs Xh ⊂ X, Yh ⊂ Y that
satisfy ∇ ·Xh ⊂ Yh. It will be shown that the condition ∇ ·Xh ⊂ Yh ensures pressure-robustness
in the sense that the discrete velocity error does not depend on the pressure. Due to this condition
it holds Xh,div ⊂ Xdiv. The inf-sup stability of the element pair (Xh, Yh) ensures the existence
of a so-called Fortin operator πF : X → Xh such that for all v ∈ X and for all qh ∈ Yh holds
(∇ · v, qh) = (∇ · πF (v), qh) with ‖∇πF (v)‖L2(Ω) ≤ CF ‖∇v‖L2(Ω), see [32].

Remark 4.1. Standard reasoning shows that the discrete inf-sup stability is indeed equivalent
to the existence of a Fortin interpolator. However, the same standard reasoning can only show that
the stability constant of the Fortin interpolator satisfies CF ≤ 1/βh, which is usually too pessimistic
[52, 75]. Note that the discrete inf-sup constant is in inverse proportion to the aspect ratio of the
domain [23, 27, 28]. Likewise, classical mixed finite element error estimates, which involve the
inverse of the discrete inf-sup constant, are very pessimistic on domains with large aspect ratio like
channel domains – which occur often in computational practice. Estimates containing the stability
constant CF are much sharper [75], and will be preferred in the following.

In perfect analogy to the continuous case, one obtains for the discrete solution of (3.1) the
following results.

Lemma 4.2. Let the finite element spaces Xh ⊂ X and Y ⊂ Yh satisfy the discrete inf-sup
stability (3.2) and let ∇ ·Xh ⊂ Yh. Then, for f ∈ L2(Ω) and g ∈ Y , the Stokes problem (3.1) has
a unique discrete solution, for which the following stability estimates hold

‖∇uh‖L2(Ω) ≤
CP
ν
‖P(f)‖L2(Ω) +

1

βh
‖g‖L2(Ω),(4.1a)

‖ph‖L2(Ω) ≤
CP
βh
‖f‖L2(Ω) +

ν

β2
h

‖g‖L2(Ω).(4.1b)

Proof. The proof is line by line the same as in Lemma 2.8, i.e., replace X by Xh, change the
words continuous inf-sup condition (with stability constant β) by discrete inf-sup condition (with
stability constant βh), and note that Xh,div ⊂Xdiv holds. The discrete space X⊥h,div is defined by
a-orthogonality in the space X.

Lemma 4.3. Let the finite element spaces Xh ⊂ X and Y ⊂ Yh fulfill the discrete inf-sup
stability (3.2) and ∇ ·Xh ⊂ Yh. Then, it holds for all w ∈X with w ∈Xdiv(g)

(4.2) inf
wh∈Xh,div(g)

‖∇(w −wh)‖L2(Ω) ≤ (1 + CF ) inf
vh∈Xh

‖∇(w − vh)‖L2(Ω).

Proof. Let vh ∈Xh be arbitrary and define zh := πF (w − vh) ∈Xh. Due to the properties of
the Fortin interpolant one has ‖∇zh‖L2(Ω) ≤ CF ‖∇(w−vh)‖L2(Ω) and (∇·zh, qh) = (∇·(w−vh), qh)
for all qh ∈ Yh. Then, it is wh := zh + vh ∈Xh,div(g) since

(∇ ·wh, qh) = (∇ · zh, qh) + (∇ · vh, qh) = (∇ · (w − vh), qh) + (∇ · vh, qh)

= −(g, qh) ∀ qh ∈ Yh.

Finally, the triangle inequality gives

‖∇(w −wh)‖L2(Ω) ≤ ‖∇(w − vh)‖L2(Ω) + ‖∇zh‖L2(Ω) ≤ (1 + CF )‖∇(w − vh)‖L2(Ω).
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Lemma 4.4. Let the finite element spaces Xh ⊂ X and Y ⊂ Yh satisfy the discrete inf-sup
stability (3.2) with ∇ ·Xh ⊂ Yh, and let πYh

p ∈ Yh be the L2-projection of p defined by

(p− πYh
p, qh) = 0 ∀ qh ∈ Yh.

Then, for the unique discrete solution (uh, ph) of (3.1), there hold the following a-priori error
estimates

‖∇(u− uh)‖L2(Ω) ≤ 2 inf
wh∈Xh,div(g)

‖∇(u−wh)‖L2(Ω)(4.4a)

≤ 2(1 + CF ) inf
wh∈Xh

‖∇(u−wh)‖L2(Ω),

‖πYh
p− ph‖L2(Ω) ≤

ν

βh
‖∇(u− uh)‖L2(Ω),(4.4b)

‖p− ph‖L2(Ω) ≤ ‖p− πYh
p‖L2(Ω) +

ν

βh
‖∇(u− uh)‖L2(Ω).(4.4c)

Proof. For an arbitrary wh ∈ Xh,div(g) it holds v0
h := uh −wh ∈ Xh,div. Using the Galerkin

orthogonality and the Cauchy–Schwarz inequality yields

ν‖∇v0
h‖2L2(Ω) = a(v0

h,v
0
h) = a(uh −wh,v0

h) = a(u−wh,v0
h)

≤ ν‖∇(u−wh)‖L2(Ω)‖∇v0
h‖L2(Ω) =⇒ ‖∇v0

h‖L2(Ω) ≤ ‖∇(u−wh)‖L2(Ω).

Now, the triangle inequality gives

‖∇(u− uh)‖L2(Ω) ≤ ‖∇(u−wh)‖L2(Ω) + ‖∇v0
h‖L2(Ω) ≤ 2‖∇(u−wh)‖L2(Ω),

which proves the first inequality of (4.4a), since wh ∈Xh,div(g) was chosen arbitrarily. The second
inequality is a direct consequence of Lemma 4.3.

The proof for (4.4b) exploits the assumption ∇ ·Xh ⊂ Yh. Hence, one obtains for all vh ∈Xh

(4.5) (πYh
p− ph,∇ · vh) = (πYh

p− ph, qh) = (p− ph, qh) = ν(∇(u− uh),∇vh),

where the last step uses the definitions of the continuous and discrete Stokes problem (2.1) and (3.1),
respectively. Using the discrete inf-sup condition (3.2), (4.5), and the Cauchy–Schwarz inequality
yields

‖πYh
p− ph‖L2(Ω) ≤

1

βh
sup

vh∈Xh\{0}

(πYh
p− ph,∇ · vh)

‖∇vh‖L2(Ω)

≤ 1

βh
sup

vh∈Xh\{0}

ν‖∇(u− uh)‖L2(Ω)‖∇vh‖L2(Ω)

‖∇vh‖L2(Ω)
=

ν

βh
‖∇(u− uh)‖L2(Ω).

Statement (4.4c) follows with the triangle inequality.
Remark 4.5. The error estimates in Lemma 4.4 show that the discrete velocity converges with

an asymptotically optimal order to the continuous velocity (in case of sufficiently regular velocity),
and that the velocity error is pressure-independent. This remarkable feature distinguishes pressure-
robust mixed methods from classical mixed methods. Interestingly, something similar can be observed
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for the discrete pressure. According to (4.4c), the discrete pressure is the best approximation of the
continuous pressure in L2(Ω) up to an additive error that is only velocity-dependent. This property
has been rarely emphasized so far in the context of mixed finite element methods for the (Navier–)
Stokes equations. Moreover, the inverse of the discrete inf-sup constant βh enters only the pressure
estimates. In addition, it occurs only in the part of the error bound which is scaled by ν and
therefore this term is usually small. In the velocity estimates, the constant CF for an appropriate
Fortin interpolant replaces the classical constant 1/βh.

The error estimates show that for pressure-robust mixed methods there holds an invariance
principle, similar to the continuous problem, see Lemma 2.10.

Lemma 4.6. Let the finite element spaces Xh ⊂ X and Y ⊂ Yh fulfill the discrete inf-sup
stability (3.2) and ∇ ·Xh ⊂ Yh. Then, for the unique discrete solution (uh, ph) of (3.1) holds the
following discrete fundamental invariance property: changing the right-hand side f → f +∇ψ with
f ∈ L2(Ω)d and ψ ∈ H1(Ω)/R leads to a change of the discrete solution in the form (uh, ph) →
(uh, ph + πYh

ψ).
Proof. The continuous and discrete solution operators (f , g) → (u, p) and (f , g) → (uh, ph)

are linear. Hence, it suffices to study (2.1) and (3.1) for the right-hand side (∇ψ, 0). The solutions
of these special continuous and discrete problems are also denoted by (u, p) and (uh, ph). Due
to Corollary 2.9 it holds P(∇ψ) ≡ 0, and the stability estimates from the Lemmata 2.8 and 4.2
yield u ≡ 0 and uh ≡ 0. Moreover, the continuous fundamental invariance property from Lemma
2.10 gives (u, p) = (0, ψ). Since ‖∇(u − uh)‖L2(Ω) = 0, estimate (4.4b) allows to conclude that
(uh, ph) = (0, πYh

ψ), and the discrete fundamental invariance property is proven.
Altogether, it has been shown in this section that pressure-robust mixed methods possess a

number of attractive properties.

4.2. The formal and the discrete vorticity equation. It has been shown that testing
with a divergence-free test function in the continuous setting (2.9) or testing with a discretely
divergence-free function in the discrete setting (3.4) allows one to derive elliptic problems that de-
termine the velocity solution. Next, it will be argued that these elliptic problems indeed represent a
formal vorticity equation and a discrete vorticity equation which characterize the difference between
classical mixed methods and pressure-robust mixed methods.

The formal vorticity equation in the continuous setting. Here, the case d = 3 will be
discussed; the two-dimensional case follows similar arguments. For an arbitrary divergence-free
vector field v ∈Xdiv ∩C∞0 (Ω), there exists a vector potential ξ ∈ C∞0 (Ω) with v = ∇× ξ. Testing
the momentum balance of (1.2) with v, assuming that (u, p) ∈H3(Ω)∩H1(Ω) and ∇×f ∈ L2(Ω),
and applying integration by parts yields

(−ν∆u,∇× ξ) + (∇p,∇× ξ) = (f ,∇× ξ) ⇐⇒ (−ν∆ω, ξ) = (∇× f , ξ),

where the notation ω := ∇×u for the vorticity is used and the identity ∇× (∇p) ≡ 0 was applied.
This equation shows that the vorticity satisfies formally, i.e., assuming sufficient regularity, the
diffusion equation

(4.6) − ν∆ω = ∇× f .

Note that the formal vorticity equation is derived from the strong form that corresponds to the
weak velocity equation

(4.7) a(u,v) = (f ,v) = (P(f),v) ∀ v ∈Xdiv,
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which defines u (together with the statement −∇ ·u = g) uniquely. This formal vorticity equation
reflects perfectly the fundamental invariance property (1.4), since for the two forcings f and f+∇φ
the same vorticity equation arises due to

∇× (f +∇φ) = ∇× f .

Therefore, the velocity u and its vorticity ω do not change, and the additional forcing ∇φ only
affects the pressure. In fact, the appearance of the Helmholtz projector P(f) in (4.7) corresponds to
the dependence of the formal vorticity equation (4.6) on ∇× f (and not on f). It should be noted
that similar formal vorticity equations can also be derived for the time-dependent Navier–Stokes
equations by testing with divergence-free vector fields.

Remark 4.7. The L2-orthogonality of gradient fields and divergence-free vector fields with
compact support is equivalent to the vector calculus statements ‘gradient fields are irrotational’ and
‘curl fields are divergence-free’. Indeed, for v = ∇ × ξ ∈ Xdiv ∩ C∞0 (Ω), an integration by parts
shows

0 =

∫
Ω

∇φ · v dx =

∫
Ω

∇φ · ∇ × ξ dx =

∫
Ω

(∇×∇φ︸ ︷︷ ︸
≡0

) · ξ dx = −
∫

Ω

φ(∇ · (∇× ξ)︸ ︷︷ ︸
=0

) dx.

In classical mixed methods the L2-orthogonality between gradient fields and discretely divergence-
free test functions is relaxed. This property is equivalent to a relaxation of ‘gradient fields are
irrotational’.

Remark 4.8. The importance of the two operators divergence and curl for characterizing vector
fields will be illustrated further with the following theorem from [8]: For a simply-connected bounded
region Ω ⊂ R3 with a surface ∂Ω consisting of a union of a finite number of disjoint closed C2

surfaces, there is a uniquely defined vector field v ∈ L2(Ω)d, which fulfills

∇ · v = g in Ω, ∇× v = ω in Ω, v · n = 0 in ∂Ω,

for given g ∈ L2
0(Ω) and ω ∈ C1(Ω)3 with ∇ · ω = 0. The main message of this theorem is

that information on the divergence and the curl of a vector field, together with some boundary data,
determines the vector field completely. This result emphasizes the significance of the formal vorticity
equation, since divergence and boundary data are always prescribed for the Navier–Stokes equations
and only the curl of the velocity field is unknown.

Discrete vorticity equations for classical and pressure-robust mixed methods. In
(conforming) mixed finite element methods for the Stokes equations, the discrete velocity solution
is determined by

a(uh,vh) = (f ,vh)

for all vh ∈ Xh,div. Introducing a discrete Helmholtz projector Ph : L2(Ω)d → Xh,div, defined as
the L2-projection onto Xh,div, this formulation can be written as

(4.8) a(uh,vh) = (Ph(f),vh)

for all vh ∈Xh,div. Similarly to the continuous setting, cf. Remark 4.7, where (4.7) is understood as
a formal weak vorticity equation, testing with a (discretely) divergence-free vector field is considered
as a weak application of a curl operator, which yields the discrete vorticity equation (4.8).
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In the case of pressure-robust methods with Xh,div ⊂ Xdiv there obviously holds Ph(∇φ) = 0
for all φ ∈ H1(Ω), and the discrete vorticity equation

(4.9) a(uh,vh) = −ν(∆u,vh)

for all vh ∈Xh,div is pressure-independent.
In contrast, in the case of classical mixed methods with Xh,div 6⊂ Xdiv, one has for all vh ∈

Xh,div

(4.10) a(uh,vh) = (Ph(f),vh) = −ν(∆u,vh) + (Ph(∇p),vh),

and one obtains with the definition of Ph, integration by parts, (πYh
p,∇ · vh) = 0, and the approx-

imation estimate for the L2-projection (assuming that p is sufficiently regular)

|(Ph(∇p),vh)| = |(∇p,vh)| = |(p,∇ · vh)| = |(p− πYh
p,∇ · vh)| ≤ Chk|p|Hk(Ω)‖∇ · vh‖L2(Ω).

Compared with (4.9), equation (4.10) contains the additional term (Ph(∇p),vh) with vh ∈Xh,div.
It is this term that distinguishes pressure-robust mixed methods from classical mixed methods. It
can be understood as a pressure-dependent consistency error of the discrete vorticity equation of
classical mixed methods. Of course, this consistency error vanishes with optimal order, whenever p
is regular enough. However, it can be arbitrarily large, depending on the given flow problem.

Remark 4.9. Testing a vector field w with a smooth compactly supported divergence-free vector
field v = ∇× ξ ∈ Xdiv equals the application of a distributional curl operator C∞0 (Ω) → R to the
vector field w

(w,v) = (w,∇× ξ).

This distributional curl operator vanishes for all w = ∇φ.
Similarly, one can define a discrete distributional curl operator C∞0 (Ω)→ R by

(w,Ph(∇× ξ)).

Then, the discrete distributional curl of pressure-robust mixed methods vanishes for all w = ∇φ,
while for the discrete distributional curl operator of classical mixed methods there holds

|(∇φ,Ph(∇× ξ))| ≤ O(hk)|φ|Hk(Ω).

Remark 4.10. In Lemma 4.6 it was shown that pressure-robust mixed methods satisfy a
fundamental invariance property, which is in perfect analogy to the continuous result from Lemma
2.10. However, for classical mixed methods there also holds a (much weaker) discrete fundamental
invariance property, which is equivalent to the statement that the discrete curl operator of classical
mixed methods fulfills ∇h×∇φ ≡ O(hk)|φ|Hk(Ω): changing f → f +∇ψh by some discrete ψh ∈ Yh
implies that (uh, ph) → (uh, ph + ψh). For discontinuous pressure spaces Yh, the expression ∇ψh
is to be understood as a discrete distributional gradient vh → −(ψh,∇ · vh).

4.3. A tool to develop divergence-free elements: the de Rham Complex. During the
past 30 years, the construction of de Rham sub-complexes consisting of finite element spaces has
been an invaluable tool to develop stable finite element pairs for problems in porous media flow,
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electromagnetics, and linear elasticity [5, 6, 19, 56]. The key idea of this program is to mimic the
algebraic and topological properties found at the continuous level to obtain mixed finite element
spaces with enhanced stability properties and that preserve physical quantities of interest. The
culmination of these ideas and tools is the finite element exterior calculus framework [5, 6], where
canonical finite element spaces are developed in arbitrary dimensions for the Hodge Laplacian.
However, only recently have these tools and ideas been applied to the Navier–Stokes problem to
obtain divergence-free finite element pairs.

To explain the main ideas, it is first recalled that the two-dimensional de Rham complex with
minimal L2 smoothness is given by the sequence of mappings

R −−→ H1(Ω)
curl
−−→ H(div,Ω)

div
−−→ L2(Ω) −−→ 0,(4.11)

where curl := (∂/∂x2,−∂/∂x1)t denotes the vector curl operator. If the domain Ω is simply
connected, then this complex is exact, that is, the range of each operator is the kernel of the
succeeding one [37]. In particular, the exactness of the complex implies that (i) if z ∈ H1(Ω) is
curl-free, then z is constant; (ii) if v ∈H(div,Ω) is solenoidal, then v = curl z for some z ∈ H1(Ω);
and (iii) the mapping H(div,Ω)→ L2(Ω) is a surjection.

A finite element sub-complex of (4.11) consists of finite element spaces Υh ⊂ H1(Ω), Wh ⊂
H(div,Ω) and Qh ⊂ L2(Ω) satisfying the relations

R −−→ Υh

curl
−−→ Wh

div
−−→ Qh −−→ 0.(4.12)

It is well-known that standard conforming finite element element spaces form a discrete complex
of (4.11) [6, 56]. For example, one may take Υh to be the Lagrange finite element space, Wh

to be either the Raviart–Thomas or Brezzi–Douglas–Marini finite element spaces, and Qh to be
the space of discontinuous piecewise polynomials [17, 66]. Similar to the continuous setting, the
sub-complex (4.12) is exact provided the domain is simply connected; as a result, the finite ele-
ment pairs Υh ×Wh and Wh × Qh form stable finite element pairs with respect to the curl and
divergence operator, respectively. For example, the exactness property of the sub-complex im-
plies that div : Wh → Qh is a surjection, and simple arguments show that this surjection has a
bounded right-inverse independent of h. From this result, one easily deduces the inf-sup condition:
supw∈Wh

(divw, q)/‖w‖H(div;Ω) ≥ β‖q‖L2(Ω), ∀ q ∈ Qh.
While the complex (4.11) and its discrete counterpart are useful in the study of several problems,

it is not suitable for the Stokes problem due to the minimal smoothness of the Hilbert spaces.
Instead, a smooth de Rham complex (or Stokes complex) has been proposed [31, 40, 55]:

R −−→ H2(Ω)
curl
−−→ H1(Ω)

div
−−→ L2(Ω) −−→ 0.(4.13)

Again, this complex is exact provided Ω is simply connected [37]. In particular all divergence-free
H1(Ω) functions satisfy the relation v = curl z for some z ∈ H2(Ω), where z is often referred to
as the stream-function if v models an incompressible fluid. Moreover, the mapping div : H1(Ω)→
L2(Ω) is a surjection, implying the continuous inf-sup condition (1.3).

Similar to the previous setting, one can obtain stable finite element pairs by considering sub-
complexes of (4.13) consisting of finite element spaces:

R −−→ Σh
curl
−−→ Xh

div
−−→ Yh −−→ 0,(4.14)

20



where Σh ⊂ H2(Ω), Xh ⊂ H1(Ω) and Yh ⊂ L2(Ω). If the discrete complex (4.14) is exact, then
the finite element pair Xh× Yh satisfies the discrete inf-sup condition provided this mapping has a
bounded right-inverse. The mappings in (4.14) then imply that divXh = Wh, and thus, the finite
element pair yields divergence-free approximations. A useful feature of this methodology is that
the complex (4.14) provides a guiding tool to develop the pair Xh × Yh satisfying these properties,
in particular, the H2(Ω)-conforming relatives that dictates the local and global properties of these
spaces. As far as we are aware, every divergence-free finite element pair has a H2 relative satisfying
(4.14).

As an example for the derivation of divergence-free pairs from H2-conforming finite element
spaces, the Hsieh–Clough–Tocher (HCT) finite element will be considered. To describe this space,
let Th denote a shape regular, conforming simplicial triangulation of Ω ⊂ R2. For a simplex T ∈ Th,

let {K(T )
r }3r=1 denote the three sub-triangles obtained by performing a barycenter refinement on

T , and set Mh := {K(T )
r : T ∈ Th}. The HCT space ΣHCTh is defined as the space of globally

H2 piecewise cubic polynomials with respect to the (refined) mesh Mh. Denoting by Vh and Eh
the set of vertices and edges in the original mesh Th, one can show that any function z ∈ ΣHCTh

is uniquely determined by the constraint z|T ∈ H2(T ) for all T ∈ Th, and the values z(a), ∇z(a),
and

∫
e
∂z
∂ne

ds over all a ∈ Vh and e ∈ Eh (cf. [24] and Figure 4.1, row 1). Here, ∂z
∂ne

:= ∇z · ne
and ne denotes the outward unit normal of the edge e. It follows that the dimension of this space
is dim ΣHCTh = 3|Vh|+ |Eh|, where |S| denotes the cardinality of a set S.

The definition of the HCT space and its properties naturally lead to finite element spaces
satisfying (4.14). In particular, since differentiation lowers polynomial degree and global continuity
by 1, one may take XHCT

h to be the space of globally H1 piecewise quadratic, vector-valued
polynomials with respect to Mh, and take Y HCTh to be the space of (discontinuous) piecewise linear
polynomials with respect to Mh. The inclusions curl ΣHCTh ⊂ XHCT

h and divXHCT
h ⊂ Y HCTh are

immediate, and thus these spaces satisfy (4.14).

To verify that the finite element spaces ΣHCTh , XHCT
h and Y HCTh inherit the exactness prop-

erty, one first observes that if v ∈ XHCT
h ⊂ H1(Ω) is divergence-free, then v = curl z =

(∂z/∂x2,−∂z/∂x1)t for some z ∈ H2(Ω) due to the exactness property of the complex (4.13).
Using the definitions of the curl operator and of XHCT

h , one deduces that both ∂z/∂x1 and ∂z/∂x2

are piecewise quadratic polynomials, and therefore z is a piecewise cubic polynomial. Moreover,
the condition curl z ∈ H1(Ω) implies that z ∈ H2(Ω), and therefore z ∈ ΣHCTh .

Thus, to verify the exactness of the sub-complex (4.14) and to show that Xh × Yh forms a
stable finite element pair for the Stokes problem, it suffices to show that divXHCT

h → Y HCTh is
a surjection with a bounded right-inverse. This surjection property can be achieved by a simple
counting argument. Indeed, since divXHCT

h ⊆ WHCT
h , it suffices to show that the dimension of

divXHCT
h and Y HCTh are the same. Since the finite element space Y HCTh consists of piecewise linear

polynomials with respect to Mh, and since the dimension of the space of linear polynomials in two
dimensions is three, one has dimY HCTh = 3|Mh| = 9|Th|. Moreover, any function v ∈ XHCT

h is
uniquely determined by its values at the vertices of Mh and its mean over all edges in Mh [24].
Since the number of vertices in the refined mesh Mh is |Vh|+ |Th|, and the number of edges in Mh

is |Eh|+ 3|Th|, one has dimXHCT
h = 2

(
|Vh|+ |Eh|+ 4|Th|

)
. Therefore by the rank-nullity theorem
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and Euler’s formula |Vh|+ |Th| − |Eh| = 1 one obtains

dim
(
divXHCT

h

)
= dimXHCT

h − dim curlΣHCTh = dimXHCT
h − dim ΣHCTh + 1

= 2(|Vh|+ |Eh|+ 4|Th|)− (3|Vh|+ |Eh|) + (|Vh|+ |Th| − |Eh|) = 9|Th|
= dimY HCTh .

Thus, the sub-complex with the finite element spaces ΣHCTh , XHCT
h , and Y HCTh is exact. More-

over, using a macro-element technique [7], one can show that the surjection divXh → Yh has a
bounded right-inverse independent of h, and therefore the discrete inf-sup condition (3.2) is uni-
formly satisfied. For the Stokes equations, one obtains the Scott–Vogelius pair of spaces P2/P

disc
1 =

V HCT
h /WHCT

h [7, 68] on a barycenter-refined mesh.
The given example is not limited to the Hsieh–Clough–Tocher element; one may start with

any H2(Ω)-conforming finite element space to derive a stable divergence-free finite element pair for
the Stokes problem. Examples of H2(Ω) spaces include the Morgan–Scott element [57], the Argyris
element [24], the rational Zienkiewicz element [24], and the Bogner–Fox–Schmit rectangular element
[24]. These H2(Ω) finite element spaces were used to derive stable divergence-free finite element
pairs in [31, 40, 69]; these finite element spaces and their H2-conforming relative are summarized
in Figure 4.1.

While the development of divergence-free, two-dimensional Stokes elements has reached a stage
of maturity, the three-dimensional case is considerably more challenging, and several issues remain
to be resolved. To explain the added difficulties, as before the de Rham complex with minimal L2

smoothness is stated:

R−−→H1(Ω)
grad

−−→ H(curl ; Ω)
curl
−−→H(div; Ω)

div
−−→ L2(Ω) −−→ 0,(4.15)

where H(curl ; Ω) denotes the space of square-integrable vector-valued functions whose curl is
in L2(Ω). Similar to the two-dimensional case, classical families of finite element spaces form a
sub-complex of (4.15) that inherit the cohomology of the sequence.

Based on the complex (4.15) one may construct complexes with enhanced smoothness that are
suitable for the Stokes problem. However, due to the additional space and differential operator
in the three-dimensional case, different Stokes complexes may be considered. For example, the
complex

R−−→H2(Ω)
grad

−−→ H1(curl ; Ω)
curl
−−→H1(Ω)

div
−−→ L2(Ω) −−→ 0,(4.16)

with H1(curl ; Ω) = {v ∈H1(Ω); curlv ∈H1(Ω)} was proposed in [59, 70] to develop conforming
and non-conforming divergence-free elements. Due to the high regularity of the spaces, the poly-
nomial order becomes exceedingly high. For example, the lowest degree H2-conforming piecewise
polynomial space is nine; as a result, the lowest order velocity space based on this construction
is six [59], which may limit the practical use of these elements. On the other hand, one could
consider the quintic composite elements (also known as macro elements) documented in [46] as
the H2-conforming finite element space. This element is most likely related to the Scott–Vogelius
pair P3/P

disc
2 on barycenter refined triangulations studied in [77]. However, the corresponding

H1(curl ; Ω)) conforming element completing the sequence (4.16) is missing in the literature.
Alternatively, the complex

R−−→H1(Ω)
grad

−−→ Φ
curl
−−→H1(Ω)

div
−−→ L2(Ω) −−→ 0,(4.17)
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Hsieh-Clough-Tocher [7]

Argyris [3, 31]

Argyris [3, 31]

Zienkiewicz [24, 40]

Bogner-Fox-Schmit [18, 60, 9]

Bogner-Fox-Schmit [60]

Fig. 4.1. H2-conforming finite element space Σh (left), velocity space Xh (middle), and pressure space Yh
(right) satisfying the exact complex (4.14). Small and large circles denote first and second derivative degrees of
freedom (d.o.f.s), respectively, solid points denote function d.o.f.s, arrows denote directional derivative d.o.f.s, and
lines without arrows denote normal derivative d.o.f.s.

with Φ := {v ∈ L2(Ω) : curlv ∈ H1(Ω)} was recently proposed in [30] to derive stable pairs in
an isogeometric framework. On the other hand, as far as we are aware, there does not exist finite
element spaces conforming to the complex (4.17).

Constructions of divergence-free finite elements obtained in different ways can be found, e.g.,
in [78, 79].

4.4. H(div)-conforming finite element methods. Recently, to bypass the difficulty of
constructing conforming, inf-sup stable, and divergence-free spaces, finite element methods for the
Stokes problem that use strictly H(div,Ω)-conforming bases have been proposed [25, 39, 45, 55,
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70, 73, 74, 76]. Before presenting these schemes, a criterion to ensure that a finite element space is
a subspace of H(div,Ω) is reviewed.

As before, Th denotes a shape-regular triangulation of Ω. Let Eh be the set of (open) edges
(d = 2) or faces (d = 3) of the mesh. The set of boundary edges/faces is denoted by EBh ⊂ Eh, i.e.,
e ∈ EBh if e ∩ ∂Ω 6= ∅, and EIh := Eh\EBh is the set of interior edges/faces.

Lemma 4.11. Let Wh denote a space of piecewise polynomials with respect to the partition
Th. Then Wh ⊂ H(div,Ω) provided the normal components (but not necessarily the tangential
components) of functions in this space are continuous across all inter-element boundaries e ∈ EIh.

Proof. Let wh ∈Wh and suppose that the normal component of wh is continuous across each
e ∈ EIh. Set ρh ∈ L2(Ω) such that ρh|T = ∇·wh|T for all T ∈ Th. Applying the divergence theorem
element-wise yields for any ψ ∈ C∞0 (Ω),

−
∫

Ω

∇ψ ·wh dx = −
∑
T∈Th

∫
T

∇ψ ·wh dx =
∑
T∈Th

(∫
T∈Th

ψ(∇ ·wh) dx−
∫
∂T

(wh · nT )ψ ds

)
=

∫
Ω

ρhψ dx−
∑
T∈Th

∫
∂T

(wh · nT )ψ ds.

Since the normal component ofwh is continuous, and since ψ vanishes on ∂Ω, the boundary integrals
vanish, and the statement of the lemma follows from Definition 2.3.

Two canonical H(div,Ω)-conforming finite element spaces satisfying this criterion include the
Raviart–Thomas space of order k ≥ 0 [58, 66]:

RTk := {wh ∈H0(div,Ω) : wh|T ∈ RTk(T ), ∀ T ∈ Th},(4.18a)

and the Brezzi–Douglas–Marini (BDM) space of degree k ≥ 1:

BDMk := {wh ∈H0(div,Ω) : wh|T ∈ Pk(T ), ∀ T ∈ Th}.(4.18b)

Here, H0(div,Ω) = {v ∈ H(div,Ω) : v · n|∂Ω = 0}, and RTk(T ) := Pk(T ) + xPk(T ) is the local
Raviart–Thomas space. Both of these spaces form inf-sup stable pairs with appropriate pressure
spaces, and consequently, lead to stable discretizations for second order elliptic problems.

To make this last statement precise, denote by Qh the space of discontinuous piecewise polyno-
mials of degree k if Wh = RTk or k − 1 if Wh = BDMk and with vanishing mean. Then the finite
element pair Wh ×Qh is inf-sup stable in the sense

inf
qh∈Qh\{0}

sup
wh∈Wh\{0}

∫
Ω

(∇ ·wh)qh dx

‖wh‖H(div;Ω)‖qh‖L2(Ω)
≥ βh,(4.19)

with βh > 0 uniformly bounded from below. Moreover, it is easy to see from their definitions
that the inclusion ∇ ·Wh ⊆ Qh is satisfied; as a result, the discretely divergence-free functions are
globally divergence-free pointwise, i.e., {wh ∈ Wh :

∫
Ω

(∇ · wh)qh dx = 0, ∀ qh ∈ Qh} = {wh ∈
Wh : ∇ ·wh ≡ 0}.

While these spaces are inf-sup stable with respect to the H(div,Ω) norm and the discretely
divergence-free functions are solenoidal, the spaces are not directly applicable for the Stokes problem
due to their lack of smoothness. In particular, since the Raviart–Thomas and BDM spaces satisfy
the non-inclusion Wh 6⊂ H1

0 (Ω), i.e., these spaces are non-conforming with respect to H1
0 (Ω), the

finite element method for the Stokes problem (3.1) is not well-defined since the gradients of functions
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in Wh do not exist globally. Furthermore, if the gradients in the formulation (3.1) are replaced
by the piecewise defined counterpart, the resulting method, even if non-singular, is not convergent
since the method is inconsistent in the sense that

−
∫

Ω

∆v ·wh dx 6= a(v,wh)

for general functions v ∈H2(Ω)∩H1
0 (Ω) and wh ∈Wh. As such, modifications of the method are

needed to ensure that the discrete problem is stable and consistent, yet still preserve the divergence-
free property. Generally speaking, this is achieved in two ways: (i) modify the bilinear forms in
(3.1) or (ii) modify the H(div,Ω) spaces to impose tangential continuity in some weak sense.

In the first case, using techniques found in discontinuous Galerkin methods, the bilinear form
a(·, ·) in (3.1) is modified to ensure that the form is consistent with the Laplace operator. Here,
the symmetric interior penalty arguments given in [73, 74] are presented, although different discon-
tinuous Galerkin techniques are available [25]. For simplicity it assumed that Ω ⊂ R2, however the
arguments generalize quite naturally to the three-dimensional case. Let wh ∈Wh ⊂H(div,Ω) be
an arbitrary function in the Raviart–Thomas or BDM space, and assume that the velocity solution
of the Stokes problem u is sufficiently smooth. Then it follows from Green’s theorem that

−
∫
T

∆u ·wh dx =

∫
T

∇u : ∇wh dx−
∫
∂T

∂u

∂nT
·wh ds,

where ∂u
∂nT

:= ∇unT . Let τT denote the tangential unit vector of ∂T , obtained by rotating nT by
90 degrees counter-clockwise. Due to the vector identity v = (v ·nT )nT + (v · τT )τT and summing
over T ∈ Th, there holds

−
∫

Ω

∆u ·wh dx =

∫
Ω

∇hu : ∇hwh dx−
∑
T∈Th

∫
∂T

(
∂(u · nT )

∂nT
(wh · nT ) +

∂(u · τT )

∂nT
(wh · τT )

)
ds

=

∫
Ω

∇hu : ∇hwh dx−
∑
T∈Th

∫
∂T

∂(u · τT )

∂nT
(wh · τT ) ds,(4.20)

where ∇h denotes the piecewise gradient operator, and the normal continuity of wh was used to
derive the second equality.

The sum of boundary integrals is now written as a sum of integrals over edges of the triangula-
tion. Let e ∈ EIh with e = ∂T+ ∩ ∂T− with T± ∈ Th. For a piecewise smooth vector-valued function
w the average and jump of w across e, respectively, are defined as{{

ε(w)
}}∣∣

e
:=

1

2

(
∂(w+ · τT+

)

∂nT+

+
∂(w− · τT−)

∂nT−

)
, [|w|]τ

∣∣
e

:= w+ · τT+ +w− · τT− ,

where w± = w|T± . For a boundary edge e ∈ EBh with e = ∂T ∩ ∂Ω these operators are given by{{
ε(w)

}}∣∣
e

:=
∂(w · τT )

∂nT
, [|w|]τ

∣∣
e

:= w · τT .

Combining (4.20) with the algebraic identity ab− cd = 1
2 (a− c)(b+ d) + 1

2 (a+ c)(b− d), and noting
that the jump of u vanishes on all edges, yields

−
∫

Ω

∆u ·wh dx =

∫
Ω

∇hu : ∇hwh dx−
∑
e∈Eh

∫
e

{{
ε(u)

}}
[|wh|]τ ds ∀ wh ∈Wh.
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While the right-hand side of (4.20) induces a consistent bilinear form for the Laplace operator,
it has two undesirable properties. First, the right-hand side is non-symmetric with respect to u
and wh, which is in strong contrast to the self-adjoint property of the Laplacian. Second, the form
induced by (4.20) restricted to Wh×Wh is non-coercive, again, in contrast to the Laplace operator.
A simple fix to address these issues is to exploit the jump-free property of u and amend this identity
with two trivial terms:

−
∫

Ω

∆u ·wh dx =

∫
Ω

∇hu : ∇hwh dx

−
∑
e∈Eh

(∫
e

{{
ε(u)

}}
[|wh|]τ ds+

∫
e

{{
wh
}}

[|u|]τ ds−
σ

he

∫
e

[|u|]τ [|wh|]τ ds
)

(4.21)

=: ah(u,wh) ∀ wh ∈Xh,

where he = diam(e) and σ > 0 is some parameter. In the literature, the edge terms in the
bilinear form ah(·, ·), going from left to right, are commonly referred to (for obvious reasons)
as consistency terms, symmetry terms, and penalization terms, respectively. The choice of the
penalization parameter σ is dictated by the next lemma.

Lemma 4.12 ([74]). There exists σ0 > 0 depending only on the shape regularity of Th such that
for σ ≥ σ0, there holds

1

2
‖wh‖21,h ≤ ah(wh,wh) ∀ wh ∈Wh,

where the discrete H1-norm is defined as

‖w‖21,h :=
∑
T∈Th

‖∇w‖2L2(T ) +
∑
e∈Eh

he‖
{{
ε(w)

}}
‖2L2(e) +

∑
e∈Eh

h−1
e ‖ [|w|]τ ‖

2
L2(e).

Moreover, there holds for all wh ∈Wh and v ∈Hs(Ω) with s > 3/2,

ah(v,wh) ≤ (1 + σ)‖v‖1,h‖wh‖1,h.

This derivation of the bilinear form ah(·, ·) motivates the finite element method for the Stokes
problem using H(div,Ω)-conforming elements: Find (uh, ph) ∈Wh ×Qh satisfying

ah(uh,wh) + b(wh, ph) = (f ,wh) ∀ wh ∈Wh,(4.22a)

b(uh, qh) = (g, qh) ∀ q ∈ Qh.(4.22b)

From the derivation of the bilinear form ah(·, ·), one immediately sees that the method is consistent
provided u is sufficiently smooth (e.g., u ∈Hs(Ω) with s > 3/2); in particular, if one interchanges
uh with u in (4.22), then the two statements are still satisfied. Furthermore, a combination of
(4.19) and scaling arguments show that the inf-sup condition is satisfied on Wh ×Qh with respect
to the discrete H1-norm:

inf
qh∈Qh\{0}

sup
wh∈Wh\{0}

∫
Ω

(∇ ·wh)qh

‖vh‖1,h‖qh‖L2(Ω)
≥ βh,
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with βh uniformly bounded. Therefore, in light of Lemma 4.12, and by slightly generalizing the
framework of Section 3, one concludes that if σ is sufficiently large, then there exists a unique
solution to (4.22). Moreover, by approximation properties of the finite element spaces (cf. (4.18)),
and since the discretely divergence-free functions are globally divergence-free pointwise, the errors
satisfy

‖u− uh‖1,h ≤ C inf
wh∈Wh

‖u−wh‖1,h ≤ Ch`−1‖u‖H`(Ω),

‖p− ph‖L2(Ω) ≤ C
(

inf
qh∈Qh

‖p− qh‖L2(Ω) + ν‖u− uh‖1,h
)
≤ C

(
hm‖p‖Hm(Ω) + νh`−1‖u‖H`(Ω)

)
,

where ` = min{s, k + 1} and u ∈ Hs(Ω). If p ∈ Hr(Ω) and if Wh × Qh is the Raviart–Thomas
pair, then m = min{r, k + 1}. If Wh ×Qh is the BDM pair, then m = min{r, k}.

Another class of H(div,Ω)-conforming methods for the Stokes problem modifies the Raviart–
Thomas and BDM spaces locally with divergence-free vector fields such that the resulting spaces
possess weak tangential continuity [39, 55, 70, 76]. The reasoning behind this approach is that,
if the spaces are augmented with divergence-free vector fields, then the inf-sup condition (4.19) is
satisfied and discretely divergence-free functions are still globally divergence-free. To be precise,
the local spaces of these elements, in two dimensions, are of the form [39, 40]

Ŵ (T ) = W (T ) + curl (bTS(T )), with curl q :=

(
∂q/∂x2

−∂q/∂x1

)
,(4.23)

where bT is the cubic bubble function (i.e., the product of the three barycentric coordinates of
T ), S(T ) is some auxiliary space, and W (T ) is the local space of Wh, that is, W (T ) = Pk(T )
if Wh is the BDM space or W (T ) = RTk(T ) if it is the Raviart–Thomas space. Clearly one has

divŴ (T ) = divW (T ), indicating that the range of the divergence operator acting on the augmented
space is preserved.

As an example, reference [55] takes W (T ) to be the local, lowest order Raviart–Thomas space
RT0(T ), and the auxiliary space to be the space of piecewise linear polynomials, S(T ) = P1(T ).
It is easy to see in this case, that the sum in (4.23) is direct, and thus, the dimension of the local

augmented space is dim Ŵ (T ) = dim RT0(T ) + dim curl (bTP1(T )) = dim RT0(T ) + dimP1(T ) =

3 + 3 = 6. In addition to the property divŴ (T ) = divRT0(T ) = P0(T ), the normal component of

functions in Ŵ (T ) are constant on the boundary of T . Indeed, if wh = w0 + curl (bT qh) ∈ Ŵ (T )
with w0 ∈ RT0(T ) and qh ∈ P1(T ), then by properties of RT0(T ), the curl operator, and bT ,

wh · ne
∣∣
e

= w0 · ne
∣∣
e

+
∂(qhbT )

∂τe

∣∣
e

= w0 · ne|e ∈ P0(e).

On the only other hand, the tangential component is generally cubic.
In [55] it is shown that a function wh ∈ Ŵ (T ) is uniquely determined by the six values∫

e

wh ds e ⊂ ∂T,

or equivalently, ∫
e

wh · ne ds,
∫
e

wh · τe ds e ⊂ ∂T.(4.24)
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The global space Ŵh induced by the local space and degrees of freedom (4.24) is the space of

L2-functions that are (i) locally in Ŵ (T ) on each T ∈ Th; (ii) continuous with respect to (4.24) on
each e ∈ EIh; and (iii) vanish on (4.24) for e ⊂ ∂Ω.

Since the normal component of wh ∈ Ŵh is constant on edges, the first set of degrees of freedom
given in (4.24) implies that the normal component of wh is continuous across interior edges; thus,

Ŵh ⊂H(div,Ω) (cf. Lemma 4.11), and the finite element space can be written as

Ŵh =

{
wh ∈H0(div; Ω) : wh|T ∈ Ŵ (T ),

∫
e

[|wh|]τ ds = 0 ∀ e ∈ Eh

}
.

The pressure space is the space of discontinuous constants with vanishing mean

Qh = {qh ∈ L2
0(Ω) : q|T ∈ P0(T ) ∀ T ∈ Th}.

Due to the high polynomial degree of the tangential component, the condition
∫
e

[|wh|]τ ds = 0
is not sufficient to ensure that [|wh|]τ = 0 on interior edges. As a result the global space is not

H1-conforming: Ŵh 6⊂H1(Ω); nonetheless, there does hold∫
e

| [|wh|]τ |
2 ds ≤ Ch‖∇hwh‖2L2(ωe) ∀ wh ∈ Ŵh,(4.25)

where ωe denotes the set of triangles with e as an edge. One concludes from this estimate that,
although the space is not globally conforming, it does possess a weak type of continuity across
edges.

The finite element method for the Stokes problem utilizing these spaces has the same form as
(4.22), but with Wh replaced by Ŵh, and with the bilinear form ah(·, ·) defined as

ah(w,v) =

∫
Ω

∇hw : ∇hv dx.

From the previous arguments, one concludes that this form is not consistent with the Laplace
operator since Ŵh is not globally continuous. However, one can exploit the weak continuity of Ŵh

to show ∣∣∣∣−∫
Ω

(∆u) · vh dx− ah(u,vh)

∣∣∣∣ ≤ Ch‖u‖H2(Ω)‖∇hvh‖L2(Ω) ∀ vh ∈ Ŵh.

Using this result, it can be proved that there exists a unique solution to the finite element method
and the errors satisfy

‖∇h(u− uh)‖L2(Ω) ≤ Ch‖u‖H2(Ω),

‖p− ph‖L2(Ω) ≤ Ch
(
‖p‖H1(Ω) + ν‖u‖H2(Ω)

)
.

5. Improving the pressure-robustness of standard mixed finite elements. The (vast)
majority of finite element codes contains only standard finite element methods such that the use
of standard mixed methods is a straightforward option for the discretization of incompressible flow
problems. Hence, approaches for improving the pressure-robustness of standard mixed methods
are of great interest. There are essentially two approaches for this purpose. Both modify the
bilinear form of the momentum equation of the finite element problem. The grad-div stabilization
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adds a penalization with respect to the continuity equation. This method can be applied to any
standard mixed method. It just reduces the lack of pressure-robustness but it does not remove
it. The second method chooses appropriate test functions for some terms of the finite element
formulation to reestablish properties from the continuous equation in the finite element problem,
e.g., the fundamental invariance property (1.4). This rather new approach is currently known to be
applicable to a number of mixed methods with discontinuous pressure. It leads to pressure-robust
discretizations. For the sake of completeness, a post-processing technique for low order pairs of
finite element spaces that do not satisfy the discrete inf-sup condition will be briefly discussed.

5.1. Grad-div stabilization. Grad-div stabilization is probably the most popular technique
for improving the pressure-robustness of pairs of finite element spaces which do not satisfy the
continuity equation in a sufficiently strong sense. In practice, it is usually applied in the case
∇ · u = 0 and the discussion herein will be restricted to this case. An extension to ∇ · u = g is
possible with additional technical details. For g = 0, the insufficient satisfaction of the continuity
equation means that the finite element solution is not divergence-free in the sense of Definition 2.3.

The grad-div stabilization arises from adding 0 = −γ∇(∇ · u) to the continuous momentum
equation. Applying integration by parts in deriving the weak formulation of the equation and
replacing then the infinite-dimensional spaces with finite element spaces leads to the term γ(∇ ·
uh,∇·vh) in the finite element formulation. As it was discussed throughout this paper, ∇·uh 6= 0 in
most common finite element choices, such as the Taylor–Hood pair of spaces, and so this ‘grad-div
term’ is non-zero and does have an effect on the discrete solution.

Grad-div stabilization was first introduced in [33] and it has been widely studied over the past
decade. It is now well known that it penalizes for lack of mass conservation, can improve solution
accuracy for simulations of Stokes and Navier–Stokes equations by reducing the effect of the pressure
on the velocity error [48, 63, 61, 62], and it can improve conditioning of discrete systems [38] and
convergence of iterative solvers [13, 15, 20, 41]. It has also been shown to improve solution accuracy
for related coupled multiphysics problems [29, 36, 44, 54, 71]. Some recent studies have considered
the optimal choice of the parameter γ. Although γ = O(1) is often a good choice with Taylor–Hood
elements, some guidelines are given in [43] for potentially better choices, depending on the pair of
finite element spaces, the mesh structure, the relative size of the pressure to the size of the velocity,
and whether or not the sequence of weakly divergence-free subspaces of the discrete velocity spaces
has an optimal approximation property.

To see the effect of grad-div stabilization, consider again the discrete Stokes system (1.2), but
now with a grad-div term and with g = 0. Assuming that (Xh, Yh) satisfies the discrete inf-sup
condition (3.2), the grad-div stabilized Stokes system takes the form: Find uh ∈Xh,div such that

(5.1) a(uh,vh) + γ(∇ · uh,∇ · vh) = (f ,vh) ∀ vh ∈Xh,div,

where the bilinear form a(·, ·) is given in (2.1a). Since a(·, ·) is positive definite and the term
γ(∇ ·uh,∇ · vh) is positive semidefinite, the existence and uniqueness of a solution of the grad-div
stabilized discrete Stokes system follows directly from the lemma of Lax–Milgram.

First, it will be shown that the grad-div stabilization penalizes the divergence error. This fact
can be seen immediately from an a priori estimate found by taking vh = uh in (5.1). Applying the
estimate for the dual pairing yields

ν‖∇uh‖2L2(Ω) + γ‖∇ · uh‖2L2(Ω) = (f ,uh) ≤ ‖f‖H−1(Ω)‖∇uh‖L2(Ω)

≤ ν−1

2
‖f‖2H−1(Ω) +

ν

2
‖∇uh‖2L2(Ω).
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Reducing this estimate gives

(5.2) ν‖∇uh‖2L2(Ω) + 2γ‖∇ · uh‖2L2(Ω) ≤ ν
−1‖f‖2H−1(Ω).

Since f is given, the right-hand side is a fixed constant independent of γ. Thus taking γ larger
forces the divergence error to become smaller, since (5.2) implies that ‖∇ · uh‖L2(Ω) ≤ O(γ−1/2).

Estimate (5.2) can be refined to obtain a stronger scaling with γ, following [36]. Denote by Vh
the weakly divergence-free subspace of Xh, i.e.,

Vh := {vh ∈Xh : ‖∇ · vh‖L2(Ω) = 0},

and let V ⊥h be its orthogonal complement in Xh,div with respect to the inner product induced by
a(·, ·). It is shown in [36] that for vrh ∈ V ⊥h ,

‖∇vrh‖L2(Ω) ≤ C(h)‖∇ · vrh‖L2(Ω),

with C(h) potentially depending inversely on h. However, on certain types of meshes and element
degrees, it can be even independent of h [37, 53]. Orthogonally decomposing the solution into
uh = u0

h +urh with u0
h ∈ Vh and urh ∈ V ⊥h , choosing now vh = urh in (5.1) and using a(u0

h,u
r
h) = 0

and ∇ · u0
h = 0 gives

ν‖∇urh‖2L2(Ω) + γ‖∇ · urh‖2L2(Ω) ≤ ‖f‖−1‖∇urh‖L2(Ω) ≤ C(h)‖f‖H−1(Ω)‖∇ · urh‖L2(Ω),

and consequently

‖∇ · uh‖L2(Ω) = ‖∇ · urh‖L2(Ω) ≤ C(h, ν−1,f)γ−1.

Hence, on a fixed mesh, one can expect first order convergence to zero of the divergence error as
γ−1 goes to zero.

Now, it will be discussed that the grad-div stabilization can reduce the effect of the pressure on
the velocity error. The error estimate without grad-div stabilization for the Galerkin discretization
is given in (3.5). It shall be emphasized once more that if the pressure p is large or complex, then
the second term on the right-hand side of (3.5) becomes the dominant term of the error bound.
This term represents the best approximation error of the pressure scaled by ν−1. Note that for
the Navier–Stokes equations and other related problems, error estimates will often have this same
pressure term [47], and so similar issues occur there as well.

The finite element error analysis starts by deriving an error equation for the grad-div stabilized
finite element method (5.1) by subtracting the scheme from the weak form of the Stokes equation
(2.1a)

ν(∇e,∇vh) + γ(∇ · e,∇ · vh) = (p,∇ · vh) = (p− qh,∇ · vh) ∀ vh ∈Xh,div,

where e = u − uh and qh is arbitrary in Yh. For arbitrary Ihu ∈ Xh,div, the error is decomposed
into e = (u− Ihu)− (uh − Ihu) =: η − φh. Then choosing vh = φh provides

ν‖∇φh‖2L2(Ω) + γ‖∇ · φh‖2L2(Ω) = −(p− qh,∇ · φh) + γ(∇ · η,∇ · φ) + ν(∇η,∇φ),

which immediately reduces with Cauchy–Schwarz and Young’s inequalities to

ν‖∇φh‖2L2(Ω) + γ‖∇ · φh‖2L2(Ω) ≤ 2(p− qh,∇ · φh) + γ‖∇ · η‖2L2(Ω) + ν‖∇η‖2L2(Ω).
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Next, the pressure is majorized by using again Cauchy–Schwarz and Young’s inequalities

2(p− qh,∇ · φh) ≤ 2γ−1‖p− qh‖2L2(Ω) +
γ

2
‖∇ · φh‖2L2(Ω).

An estimate of this form is not possible for the Galerkin discretization considered in Section 3.
Inserting this estimate and applying the triangle inequality yields

(5.3) ‖∇(u− uh)‖2L2(Ω) +
γ

2ν
‖∇ · (u− uh)‖2L2(Ω)

≤ 4

γν
inf

qh∈Yh

‖p− qh‖2L2(Ω) + inf
Ihu∈Xh,div

(
4‖∇(u− Ihu)‖2L2(Ω) +

3γ

ν
‖∇ · (u− Ihu)‖2L2(Ω)

)
.

Comparing this estimate to (3.5) and considering the choice γ > ν, then the scaling of the velocity
error (in the H1 norm) with the best approximation error of the pressure is reduced from ν−1

to ν−1/2γ−1/2. Thus if the best approximation error of the pressure is the dominant source of
the velocity error, grad-div stabilization can reduce the velocity error, sometimes substantially
depending on the relative size of the pressure approximation error to the velocity approximation
error.

In some finite element settings, the weakly divergence-free subspace Vh of the velocity space
has optimal approximation properties in the sense of

inf
Ihv∈Vh

‖∇(v − Ihv)‖L2(Ω) ≤ C inf
Ihv∈Xh

‖∇(v − Ihv)‖L2(Ω)

holding when ∇ · v = 0. For example, this holds for Xh = Pk with k = d on barycenter-refined
triangular/tetrahedral meshes [65, 77]. In such cases, the error analysis for the grad-div stabilized
discretization can be modified by taking Ihu ∈ Vh, which leads to ‖∇ · η‖L2(Ω) = 0, and provides
the modified error estimate

‖∇(u− uh)‖2L2(Ω) +
γ

ν
‖∇ · (u− uh)‖2L2(Ω)

≤ C
(

1

γν
inf

qh∈Yh

‖p− qh‖2L2(Ω) + inf
Ihu∈Xh

‖∇(u− Ihu)‖2L2(Ω)

)
.(5.4)

This estimate is better than (5.3) in the sense that one can take in (5.4) large values of γ without
increasing the error bound at all. The best approximation error in Xh,div appearing in (5.3) can be
estimated with the best approximation error in Xh using (4.2). Since Vh ⊂Xh,div, the constant in
(5.4) will potentially be bigger than the constant which is introduced by applying (4.2) to (5.3). But
on the other hand one can take γ arbitrarily large (up to where the condition number of the linear
system of equations becomes prohibitively large) and essentially completely remove the impact of
the pressure on the velocity error.

Proposals for the choice of the stability parameter γ in practice rely on equilibrating the terms
in the error bound containing γ. For instance, if both infima on the right-hand side of (5.3) are
asymptotically of the same order, then this approach leads to γ = O(1) with respect to the mesh
width. A careful study of optimal choices of γ with respect to error bounds in different norms and
of the dependence of γ on norms of the solution of the Stokes problem can be found in [43]. In
this paper, the analytical results were supported with comprehensive numerical studies. It turns
out that for each concrete example an appropriate choice typically depends on several aspects such
that a good choice is usually a priori not clear.
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In summary, grad-div stabilization is a popular, simple, and rather well understood technique
for improving the pressure-robustness of any mixed method. However, it is not a complete remedy
in the sense that a pressure-robust method is not constructed in this way, see also Example 6.2.

5.2. Using appropriate reconstructions of test functions. This section shows that an
appropriate modification of the test functions might lead to pressure-robust mixed methods. This
recent and quite general approach was introduced in [49, 50, 2], and it is based on well-understood
inf-sup stable mixed methods. The modifications of the standard mixed methods are not severe,
and in the case of the Stokes equations, the stiffness matrix is even unchanged.

The approach is based on the observation that test and trial functions play a quite different
role. Changing the velocity test functions by using an H(div)-conforming velocity reconstruction
operator, one establishes the L2-orthogonality between discretely divergence-free test functions and
arbitrary gradient fields. In this way, one obtains the discrete counterpart of the Helmholtz–Hodge
decomposition, Lemma 2.6, which is relaxed in classical mixed methods. Then, also the fundamental
invariance property (1.4) is recovered. In addition, one obtains a discrete vorticity equation which
is close to equation (4.9) for pressure-robust mixed methods with Xh,div ⊂Xdiv. The price to pay
is an additional velocity-dependent consistency error, which is however of sufficiently high order.

While the approach was originally presented and analyzed for the first-order non-conforming
Crouzeix–Raviart element, it will be presented here for the conforming pair of finite element spaces
Xh/Yh = Pbubble

2 /Pdisc
1 , to have a better comparison with the results from Section 3. Besides the

discrete spaces Xh and Yh, the construction of the method needs the first order Raviart–Thomas
space Rh := RT1, which is a H(div)-conforming space (cf. Section 4.4). Important properties of
Rh utilized for the construction of the method are:

• for all vh ∈ Rh, e ⊂ ∂T, T ∈ Th it holds that vh|e ∈ P1(e),
• for all q ∈ P1(e) it is

∫
e
q [|vh · ne|]τ ds = 0,

• for all vh ∈ Rh it holds ∇ · vh ∈ Yh.
The construction of the method requires the definition of a velocity reconstruction operator Πh :
X → Rh satisfying the following properties:∫

T

(v −Πhv) dx = 0, ∀ v ∈X,∀ T ∈ Th,(5.5) ∫
e

(v −Πhv) · neqh ds = 0, ∀ v ∈X,∀ qh ∈ P1(e),(5.6)

‖Πhv − v‖L2(T ) ≤ Ch
m
T |v|Hm(T ) , m = 0, 1, 2,(5.7)

with a constant C depending only on the angles of T . By this definition, the reconstruction operator
is just the standard Fortin interpolator for the RT1 element. Using the product rule, integration
by parts, (5.5), (5.6), ∇qh|T is constant, and once more integration by parts gives for v ∈ X, for
all T ∈ Th and all qh ∈ Yh∫

T

∇ · vqh dx =

∫
T

∇ · (vqh) dx−
∫
T

∇qh · v dx =

∫
∂T

qhv · nT ds−
∫
T

∇qh · v dx(5.8)

=

∫
∂T

qh(Πhv) · nT ds−
∫
T

∇qh · (Πhv) dx =

∫
T

∇ · (Πhv)qh dx.

Consequently, it holds that

(5.9) ∇ · (Πhv) = πYh
(∇ · v).
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In particular, for discretely divergence-free vector fields vh ∈ Xh,div the left-hand side of (5.8)
vanishes such that from (5.9) it follows that such fields are mapped to divergence-free ones in the
sense of H(div).

Now, the modified scheme reads as follows: Find (uh, ph) ∈Xh×Yh such that for all (vh, qh) ∈
Xh × Yh

a(uh,vh) + b(vh, ph) = (f ,Πhvh),(5.10a)

b(uh, qh) = (g, qh).(5.10b)

Lemma 5.1. Let u ∈ H3(Ω)d and v ∈X, then it holds

(5.11) |(∆u,Πhv) + (∇u,∇v)| ≤ C
∑
T∈Th

h2
T |u|H3(T ) |v|H1(T ) .

Proof. Using integration by parts, (5.5), the Cauchy–Schwarz inequality, and interpolation
estimates for both factors, e.g., (5.7) yields

(∆u,Πhv) + (∇u,∇v) = (∆u,Πhv − v) + (∇u,∇v) + (∆u,v)

= (∆u− πP0(T )∆u,Πhv − v) ≤ C
∑
T∈Th

h2
T |u|H3(T ) |v|H1(T ) .

Theorem 5.2. Assume that the solution of the Stokes equations (2.1) satisfies u ∈ H3(Ω)
and p ∈ H2(Ω). Let the finite element problem (5.10) be discretized with Pbubble

2 /Pdisc
1 , then the

following error bounds hold

‖∇(u− uh)‖L2(Ω) ≤ 2(1 + CF ) inf
wh∈Xh

‖∇(u−wh)‖L2(Ω) + Ch2 |u|H3(Ω) ,(5.12)

‖πYh
p− ph‖L2(Ω) ≤

ν

βh

(
2(1 + CF ) inf

wh∈Xh

‖∇(u−wh)‖L2(Ω) + Ch2 |u|H3(Ω)

)
,(5.13)

‖p− ph‖L2(Ω) ≤ inf
qh∈Yh

‖p− qh‖L2(Ω)(5.14)

+
ν

βh

(
2(1 + CF ) inf

wh∈Xh

‖∇(u−wh)‖L2(Ω) + Ch2 |u|H3(Ω)

)
.

Proof. Because of uh ∈ Xh,div(g) it holds for an arbitrary wh ∈ Xh,div(g) that v0
h := uh −

wh ∈ Xh,div. Since C∞0 (Ω) is dense in H2(Ω) and Πhv
0
h ∈ H(div), one gets from (2.2) that

(∇p,Πhv
0
h) = 0. Using this property, after having applied (5.10a), gives

ν‖∇v0
h‖2L2(Ω) = a(v0

h,v
0
h) = a(uh,v

0
h)− a(wh,v

0
h) = (−ν∆u+∇p,Πhv

0
h)− a(wh,v

0
h)

= a(u−wh,v0
h)− ν

(
(∆u,Πhv

0
h) + (∇u,∇v0

h)
)
.

Using (5.11) and the Cauchy–Schwarz inequality yields

ν‖∇v0
h‖2L2(Ω) ≤ ν‖∇(u−wh)‖L2(Ω)‖∇v0

h‖L2(Ω) + νCh2|u|H3(Ω)‖∇v0
h‖L2(Ω),

such that

‖∇v0
h‖L2(Ω) ≤ inf

wh∈Xh,div(g)
‖u−wh‖L2(Ω) + Ch2|u|H3(Ω).
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With the triangle inequality it follows that

‖∇(u− uh)‖L2(Ω) ≤ ‖∇(u−wh)‖L2(Ω) + ‖∇v0
h‖L2(Ω).

Inserting now the estimate for ‖∇v0
h‖L2(Ω), noting that wh was chosen to be arbitrary, and applying

(4.2) finishes the proof of estimate (5.12).
To proof (5.13), consider an arbitrary function vh ∈ Xh. It is ∇ · Πhvh ∈ Yh and from the

definition of the L2-projection and (5.8) it follows that

(5.15) (p,∇ ·Πhvh) = (πYh
p,∇ ·Πhvh) = (πYh

p,∇ · vh).

Using now (5.10a), integration by parts, and (5.15) yields

(πYh
p− ph,∇ · vh) = (πYh

p,∇ · vh) + (f ,Πhvh)− a(uh,vh)

= (πYh
p,∇ · vh) + (∇p,Πhvh)− (ν∆u,Πhvh)− a(uh,vh)

= (πYh
p,∇ · vh)− (p,∇ ·Πhvh)− (ν∆u,Πhvh)− a(uh,vh)

= −(ν∆u,Πhvh)− a(uh,vh)

= −(ν∆u,Πhvh)− a(u,vh)− a(uh − u,vh).

Inserting this expression in the discrete inf-sup condition (3.2) and applying the triangle and the
Cauchy–Schwarz inequalities and (5.11) gives

‖πYh
p− ph‖ ≤

ν

βh

(
‖∇(u− uh)‖L2(Ω) + sup

06=vh∈Xh

|(∆u,Πhvh) + (∇u,∇vh)|
‖∇vh‖L2(Ω)

)
≤ ν

βh

(
‖∇(u− uh)‖L2(Ω) + Ch2|u|H3(Ω)

)
.

The proof of (5.13) is finished by inserting (5.12).
Estimate (5.14) is a direct consequence of the triangle inequality

‖p− ph‖L2(Ω) ≤ ‖p− πYh
p‖L2(Ω) + ‖πYh

p− ph‖L2(Ω),

estimate (5.13), and the observation that the L2-projection is the best approximation in the L2(Ω)
norm.

The error estimates above show that, in order to get pressure-robustness, the inclusionXh,div ⊂
Xdiv is not needed. In fact, for the incompressible Stokes equations a lack of pressure-robustness can
only evolve in the discretization of the right hand side term (f ,vh). The key idea is to repair the L2

scalar product, in order to achieve that discretely divergence-free vector fields become orthogonal to
gradient fields. For more complex flows than the incompressible Stokes equations, one has to repair
this kind of L2-orthogonality in every term of the discrete weak formulation, where some force is
tested in the L2 sense with a test function vh. This issue concerns also the nonlinear convection
term (uh · ∇)uh and the Coriolis force term, see [50, 51]. So far, the approach could be generalized
to mixed discretizations of arbitrarily high order on triangles, tetrahedra, squares, and cuboids, if
the discrete pressures are discontinuous [2].

Remark 5.3. Instead of Rh = RT1 one can also use Rh := BDM2 and its standard Fortin
interpolator Πh. This approach has the advantage of a possibly smaller consistency error and it
leaves quadratic test functions untouched. In other words, only the non-quadratic bubble functions
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have to be modified. This version of the reconstruction was used in the numerical examples below.
Similarly, the test functions of the lowest order Bernardi–Raugel element were reconstructed into
Rh := BDM1 with the associated standard Fortin interpolator, which only affects the normal-
weighted face bubbles.

5.3. Post-processing of low order velocity fields computed with non-inf-sup stable
methods. An approach for post-processing a finite element solution in such a way that one obtains
a divergence-free solution inH(div) was proposed for certain stabilized discretizations in [10, 11, 12].
In these paper, two-dimensional problems were considered which were discretized with P1 finite
elements for the velocity and P0 or P1 finite elements for the pressure. The stabilization with
respect to the discrete inf-sup condition is based on jumps of ∇uh or ph across the edges of the
mesh cells. The basic idea of this approach consists of adding a correction from RT0(Th) to uh so
that the resulting discrete velocity is divergence-free. The concrete form of the correction depends
on the stabilization used. It can be shown that the divergence-free velocity field converges with
optimal order in appropriate norms.

6. Numerical studies. This section presents a couple of examples which illustrate situations
in which the methods discussed in the previous sections are beneficial, but also situations where
standard methods work equally well.

Example 6.1. Example 1.1 – Example 1.3 with appropriate reconstructions of test functions.
In Examples 1.1 – 1.3 the dependence of the velocity error on the viscosity for the standard non-
conforming Crouzeix–Raviart finite element discretization PCR

1 /P0 was clearly seen. As mentioned
at the beginning of Section 5.2, a reconstruction of the test function can be applied for this pair of
finite element spaces, see [50]. In the case of the Stokes equations, this reconstruction is performed
only on the right-hand side. For the Navier–Stokes equations, the test function in the convective
term, and if present, also the term with the Coriolis force, have to be reconstructed, see [16].
For the Crouzeix–Raviart finite element, the reconstructed test function is a projection onto a
Raviart–Thomas function of order zero (RT0). Applying this reconstruction, one obtains the results
presented in Figure 6.1. One can see that in all cases the velocity fields are recovered up to round-off
errors.

Example 6.2. Grad-div stabilization. The effect of using the grad-div stabilization described
in Section 5.1 will be illustrated for the Stokes equations with the prescribed solution

u = 200

(
x2(1− x)2y(1− y)(1− 2y)
−x(1− x)(1− 2x)y2(1− y)2

)
, p = 10

((
x− 1

2

)3

y2 + (1− x)3

(
y − 1

2

)3
)
,

see Figure 6.2. The velocity field has the form of a large vortex. Note that for the flow problem
from Example 1.1, the second infimum in the error bound (5.3) vanishes such that γ →∞ leads to
the ideal computed velocity field. This situation is not representative for the general case.

Here, only a few results will be presented. The simulations were performed with the Taylor–
Hood pair of spaces P2/P1. The unstructured initial grid depicted in Figure 6.2 was refined four
times leading to 36,546 degrees of freedom (d.o.f.) for the velocity and 4,688 d.o.f. for the pressure.
In this situation, the error estimate (5.3) for ‖∇(u − uh)‖2L2(Ω) applies. Both infima in the error

bound are of the same order, hence their equilibration leads to the choice γ = O(1) with respect to
the mesh width. The analysis from [43] shows that the optimal choice of γ depends on norms of the
solution. Since the prescribed solution does not depend on the viscosity, the optimal stabilization
parameter should be independent of ν. A representative result is presented in Figure 6.3. It can be
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Fig. 6.1. Example 6.1. Crouzeix–Raviart pair of spaces with reconstructed test function, Examples 1.1 – 1.3.

Fig. 6.2. Example 6.2. Velocity, pressure, initial grid (level 0).

seen that for ν = 1 one gets for a wide range of γ approximately the same results. Only for large
γ, the divergence error decreases but at the same time ‖∇(u − uh)‖2L2(Ω) increases. For smaller

values of ν, one observes that the optimal stabilization parameter with respect to ‖∇(u−uh)‖2L2(Ω)

is contained in [0.03, 0.08]. The impact on the error ‖∇ · uh‖2L2(Ω) is much higher for small ν. In

particular in the case ν = 10−6, very large values of γ lead to almost divergence-free solutions with
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only a slightly larger velocity error compared with the optimal parameter for ‖∇(u − uh)‖2L2(Ω).
However, it shall be emphasized that large contributions of the grad-div stabilization result in linear
systems of equations with large condition numbers [62].
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grad-div parameter γ
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||∇
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∇u

h)
|| L
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Fig. 6.3. Example 6.2. Errors for a wide range of stabilization parameters.

The presented result illustrates the final comment of Section 5.1 quite well: the grad-div sta-
bilization might improve the pressure-robustness in certain situations but it is not a remedy. For
this reason, the presentation of more numerical results will be omitted here. Instead it is referred
to the comprehensive numerical studies in [43].

Example 6.3. Natural convection in a triangular cavity. In natural convection problems, the
flow is driven by the temperature. Here, a model consisting of a coupled system of the Stokes
equations and of a convection-diffusion equation for the temperature will be considered:

−∆u+∇p = Raejθ,(6.1)

∇ · u = 0,(6.2)

−∆θ + u · ∇θ = 0,(6.3)

with θ representing temperature, and ej being a unit vector pointing in the direction opposite to
gravity. Simulations were performed with the Rayleigh number Ra = 106. Models of this type can
be used for the simulation of fluids like silicon oil.

Natural convection problems defined on the unit square are standard test problems. To present
a different setup, the domain Ω was chosen to be the right triangle with vertices (0, 0), (1, 0)
and (0, 1). The boundary is considered to be solid walls. Thus, homogeneous Dirichlet boundary
conditions for the velocity are prescribed on the walls. For the temperature, a sinusoidal heat
source is enforced on the bottom boundary with a Dirichlet condition, the left wall is set to a
constant temperature of zero, and the hypotenuse wall is perfectly insulated so that a Neumann
boundary condition is appropriate. A diagram of the domain and the boundary conditions is given
in Figure 6.4. This figure shows also the initial triangulation (level 0) used in the simulations.

Besides presenting plots of the numerical solutions, the Nusselt number defined by

Nu =

∫
∂Ω∩{y=0}

∇T · n ds
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1 : u=0, T = 2(1 cos(2  x) )

1 :
u=0,
 T = 0

3 : u=0,
  T  n= 0

(0,1)

(1,0)(0,0)

Fig. 6.4. Example 6.3. Left: domain and boundary conditions for the natural convection problem in a triangular
cavity; right: initial triangulation (level 0).

will be studied. Extrapolating results obtained with higher order discretizations, one finds Nu ≈
24.535.

First, results for a low order discretization will be presented. For the Stokes equations, the
Bernardi–Raugel element PBR

1 /P0 [14] was used and for the temperature the P1 finite element.
The velocity space in the Bernardi–Raugel element consists of P1 functions which are enriched
with edge bubble functions. For this element, a reconstruction of the test function as described in
Section 5.2 and Remark 5.3 can be constructed.

For the methods that use a reconstruction of the test functions, the discrete velocity fields are
not weakly divergence-free. In order to enforce this property, one has to apply a projection operator
which maps the discretely divergence-free velocity field to a divergence-free velocity field. To this
end, the same operator Πh can be employed which was used for reconstructing the test functions.
The desired divergence-free property follows from (5.9). This reconstruction was applied to u in
(6.3).

Computed solutions obtained without and with this reconstruction are depicted in Figures 6.5
– 6.7. The Nusselt numbers and the divergence of the discrete velocity are given in Table 6.1. The
velocity fields computed using the method with reconstruction is much smoother on coarse grids.
Also the temperature is somewhat smoother. The computed pressure fields look similar for both
methods. With respect to the Nusselt number, generally the results of the method with reconstruc-
tion are more accurate. Altogether, the use of an appropriately reconstructed test function in the
Bernardi–Raugel pair of spaces led to a clear improvement of the accuracy of the computed results
compared with the standard method.

As higher order discretizations, the Taylor–Hood pair P2/P1, the Scott–Vogelius pair P2/P
disc
1

[68], and the pair Pbubble
2 /Pdisc

1 from [26] were considered. In the Pbubble
2 /Pdisc

1 finite element, the ve-
locity space consists of P2 functions and an enrichment with mesh cell bubbles. The reconstruction
of the test function for this pair is described in Section 5.2 and Remark 5.3. As for the Bernardi–
Raugel element with reconstruction, the reconstruction is also applied to u in (6.3). For applying
the Scott–Vogelius pair, an additional barycentric refinement of the grids was applied to guarantee
the satisfaction of the discrete inf-sup condition (3.2), see [65]. Since Yh = Pdisc

1 = ∇ · P2 = Xh,
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Table 6.1
Example 6.3. Nusselt number obtained with the Bernardi–Raugel element PBR

1 /P0.

level d.o.f. standard with reconstruction
0 271 not conv. 11.828
1 947 14.016 13.870
2 3317 17.232 20.935
3 13115 21.955 23.665
4 51697 23.664 24.238
reference 24.535

Fig. 6.5. Example 6.3. Absolute value of the velocity (speed) obtained with the Bernardi–Raugel element
PBR
1 /P0 on levels 1 to 3; top: standard formulation; bottom: with reconstruction of the test function.

the use of the Scott–Vogelius pair gives divergence-free velocity fields in the sense of Definition 2.3.
For all higher order discretizations, the temperature was discretized with the P2 finite element.

The computed velocity fields for the higher order discretizations are presented in Figure 6.8.
Only for the grids with the smallest number of degrees of freedom, small differences can be observed.
In this case, the velocity obtained with the Taylor–Hood pair seems to be the least accurate. The
situation is similar for the temperature. With respect to the pressure, there are only small differences
between the different methods, which is the same situation as for the low order discretizations. For
the sake of brevity, the presentation of the pressures computed by the higher-order methods is
omitted.

To obtain a reference value for the Nusselt number, simulations with the Taylor–Hood and
Scott–Vogelius finite elements were performed on very fine meshes and the numbers were extrap-
olated by Aitken extrapolation, see Table 6.2. Both methods agree on the first two digits. For
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Fig. 6.6. Example 6.3. Pressure obtained with the Bernardi–Raugel element PBR
1 /P0 on levels 1 to 3; top:

standard formulation; bottom: with reconstruction of the test function.

Fig. 6.7. Example 6.3. Temperature obtained with the Bernardi–Raugel element PBR
1 /P0 on levels 1 to 3; top:

standard formulation; bottom: with reconstruction of the test function.
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Table 6.2
Example 6.3. Nusselt number obtained with P2/P1, P2/Pdisc

1 , Pbubble
2 /Pdisc

1 , Pbubble
2 /Pdisc

1 with reconstructed
test function.

P2/P1 P2/P
disc
1 Pbubble

2 /Pdisc
1 std./reco.

level d.o.f. Nu d.o.f. Nu d.o.f. Nu Nu
0 446 0.074 1539 10.318 675 5.778 6.240
1 1551 16.105 5829 17.867 2469 13.850 13.765
2 5414 20.748 21333 21.967 8869 20.261 20.254
3 21361 23.475 86409 23.918 35561 23.460 23.461
4 84108 24.183 344685 24.333 141149 24.184 24.184
5 332757 24.427 1373127 24.471
6 1325912 24.501

extrapolation 24.537 24.533

a similar number of degrees of freedom, more accurate Nusselt numbers were obtained with the
Taylor–Hood pair of spaces compared with the Scott–Vogelius pair. The application of the recon-
struction for Pbubble

2 /Pdisc
1 had only a minor effect on the computed Nusselt numbers.

Altogether, with the standard Taylor–Hood pair of spaces P2/P1 good results were obtained,
except on grids with very few degrees of freedom. Apart of getting a divergence-free solution, there
is no advantage to use the Scott–Vogelius pair for this problem. There was also no advantage to
apply a reconstruction of the test function for the Pbubble

2 /Pdisc
1 pair of spaces. Possibly, the almost

linear pressure, which can be resolved well by all discrete piecewise linear pressure spaces, is a
reason that only minor differences for the higher order methods could be observed. However, it
will be shown in Example 6.5 that a divergence-free solution might be very important if the scalar
quantity possesses certain restrictions arising from the physics of the problem.

Example 6.4. Flow over a forward facing step with Coriolis force. As already mentioned in
Example 1.3 flows with strong Coriolis forces appear in several applications. The simplest model
for such a flow has the form

−ν∆u+∇p+ 2ω × u = f , ∇ · u = 0,

where ω is a constant angular velocity vector. A two-dimensional example with ω = (0, 0, ω)T will
be considered. Since

∇× (ω × u) = ω

−∂zu1

−∂zu2

∇ · u

 = 0,

(ω × u) is conservative, which implies that there is a function φ satisfying ω∇φ = ω × u. Thus,
changing the magnitude ω of the Coriolis force will change only the pressure solution, i.e., p →
p+ ωφ, and not the velocity solution.

This problem was considered in the domain Ω = (0, 4)×(0, 2)\ [2, 4]× [0, 1], see Figure 6.9. The
inlet is situated at x = 0 and the outlet at x = 4. Dirichlet boundary conditions were prescribed on
the entire boundary, where the volume preserving parabolic inflow and outflow profiles were given
by

uin =

(
y(2− y)/2

0

)
, uout =

(
4(2− y)(y − 1)

0

)
,
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Fig. 6.8. Example 6.3. Absolute value of the velocity (speed); top to bottom: P2/P1 (levels 1 to 3), P2/Pdisc
1

(levels 0 to 2 with barycentric refinement), Pbubble
2 /Pdisc

1 (levels 0 to 2), Pbubble
2 /Pdisc

1 with reconstructed test
function (levels 0 to 2).

and no-slip conditions were used at all other parts of the boundary. Simulations were performed
with ν = 0.01 and ω = 100. The initial grid is depicted in Figure 6.9. For the Scott–Vogelius pair
of finite element spaces, a barycentric refinement of all grid levels was applied.
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Fig. 6.9. Example 6.4. Domain and boundary conditions and coarsest mesh (level 0).

Computed solutions obtained on coarse grids are presented in Figures 6.10 – 6.12. The positive
effect of using the formulation with reconstructed test function and Coriolis force term can be
observed clearly, not only for the low order Bernardi–Raugel element PBR

1 /P0 but also for the
higher order Pbubble

2 /Pdisc
1 pair of spaces, Figures 6.10 and 6.11. Also the solutions computed with

the divergence-free Scott–Vogelius finite element are considerably more accurate than the solutions
obtained with the Taylor–Hood element on grids with a comparable number of degrees of freedom,
Figure 6.12. Note that due to the barycentric refinement, the number of degrees of freedom for
the Scott–Vogelius element on level l is approximately the same as for the Taylor–Hood element on
level l − 1.

Fig. 6.10. Example 6.4. Absolute value of the velocity (speed) obtained with the Bernardi–Raugel element
PBR
1 /P0 on refinement levels 2 and 3; top: standard formulation; bottom: with reconstruction of the test function.
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Fig. 6.11. Example 6.4. Absolute value of the velocity (speed) obtained with Pbubble
2 /Pdisc

1 on refinement levels
1 and 2; top: standard formulation; bottom: with reconstruction of the test function.

Fig. 6.12. Example 6.4. Absolute value of the velocity (speed) obtained with the Taylor–Hood element on
refinement levels 1 and 2 (top) and the Scott–Vogelius element on refinement levels 0 and 1 (bottom).

Altogether, this example shows clearly the benefit which might be achieved if pressure-robust
discretizations are used for simulations of flows with Coriolis forces.

Example 6.5. Convection-dominated transport of a passive scalar. The final example demon-
strates that divergence-free discrete velocity fields might be also of advantage in coupled problems.
To this end, consider the transport of a passive scalar, e.g., temperature, through a domain with a
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flow field which is governed by the Stokes equations

−ν∆u+∇p = 0,(6.4)

∇ · u = 0,(6.5)

−ε∆θ + u · ∇θ = 0.(6.6)

The domain and the boundary conditions for the velocity are the same as in Example 6.4. At the
inlet, the constant temperature θ = 1 is prescribed and on all other boundaries a free temperature
flux −ε∇θ · n = 0. Together with (6.6) it follows that θ = 1 is the solution for the temperature
field. Simulations were performed with the coefficients ν = 0.01 and ε = 10−6. The same initial
grid was used as presented in Figure 6.9.

The Stokes equations were discretized either by the Bernardi–Raugel element PBR
1 /P0, the

Pbubble
2 /Pdisc

1 element, or the Taylor–Hood element. Equation (6.6) for the temperature is a con-
vection-dominated equation. It is well known that stabilizations are necessary for discretizing this
type of system. There are numerous proposals, e.g., see [67]. However, there are only a few
stabilized methods that satisfy a discrete maximum principle, which is an important property in
many applications to guarantee that numerical solutions have meaningful physical values. One of
these discretizations is the exponentially-fitted Voronoi finite volume method from [34, 35]. This
method satisfies the discrete maximum principle on Delaunay grids (the used grids are of this type)
and for divergence-free convection fields.

The computation of weakly divergence-free fields for the methods that use a reconstruction of
the test functions is described in Example 6.3.

Figure 6.13 and Table 6.3 present results of the numerical simulations. The velocity field
is of the same form as in Example 6.4. Since there is no Coriolis force, visually there appear
almost no differences of the velocity fields computed with the different discretizations (presentation
omitted for the sake of brevity). However, the violation of the divergence constraint causes (strong)
spurious oscillations of the discrete temperature in all cases where the discrete velocity fields are
not divergence-free. In contrast, the methods with divergence-free velocity fields compute the
temperature with exact accuracy on all grid levels.

Table 6.3
Example 6.5. Minimal and maximal temperature.

PBR
1 /P0 Pbubble

2 /Pdisc
1 P2/P1 P2/P

disc
1

level std. reco. std. reco.
0 0.550/1.331 1.000/1.000 0.942/2.071 1.000/1.000 0.881/1.930 1.000/1.000
1 0.273/6.343 1.000/1.000 0.875/1.319 1.000/1.000 0.828/1.640 1.000/1.000
2 0.408/2.997 1.000/1.000 0.948/1.037 1.000/1.000 0.773/1.052 1.000/1.000
3 0.582/2.761 1.000/1.000 0.993/1.005 1.000/1.000 0.955/1.030 1.000/1.000
4 0.827/1.415 1.000/1.000 0.993/1.002 1.000/1.000 0.909/1.017 1.000/1.000

7. Outlook. This paper has provided a thorough review of the state of the art methods and
numerical analysis for the enforcement of the divergence constraint in mixed finite element methods
for equations that model incompressible flows, with a special emphasis on the Stokes equations with
possibly non-vanishing divergence of the velocity field. Although a significant amount of progress
has been achieved, in particular in the past decade, these methods have not reached large scale and
widespread use. As already discussed in Section 4.3, there remain several open problems related to
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Fig. 6.13. Example 6.5. Concentration obtained with a Voronoi finite volume method and velocity fields by
the Bernardi–Raugel element PBR

1 /P0 on refinement levels 2–4 (top), the Pbubble
2 /Pdisc

1 on refinement levels 1–3
(middle), or the Taylor–Hood element on refinement levels 1–3 (bottom).

de Rham complexes in the three-dimensional case. Further, since the concentration here was mainly
on the Stokes equations, additional important details can arise when Coriolis forces are present, for
the Navier–Stokes equations, and for multi-physics systems. This concerns all methods discussed,
but especially all discussed pressure-robust discretizations that are only H(div)-conforming and
the methods that apply H(div)-conforming velocity reconstructions, see Section 5.2 and Section 5
in [50].

Another important open problem is the development of efficient linear solvers for large-scale
computations with divergence-free elements. Most linear solvers used in large-scale Navier–Stokes
codes seem tailored to low order elements, and are less effective when used with divergence-free
elements, due to the pressure matrices being much larger. However, these larger pressure matrices
are very sparse, and this can likely be exploited. Furthermore, divergence-free elements usually
have a macro-element structure in the mesh, which seems to provide a natural framework to develop
multigrid preconditioners.
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