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Abstract. This paper provides guaranteed upper energy error bounds for a modified
lowest-order nonconforming Crouzeix-Raviart finite element method for the Stokes equa-
tions. The modification from [A. Linke 2014, On the role of the Helmholtz-decomposition in
mixed methods for incompressible flows and a new variational crime] is based on the obser-
vation that only the divergence-free part of the right-hand side should balance the vector
Laplacian. The new method has optimal energy error estimates and can lead to errors that
are smaller by several magnitudes, since the estimates are pressure-independent. An effi-
cient a posteriori velocity error estimator for the modified method also should involve only
the divergence-free part of the right-hand side. Some designs to approximate the Helmholtz
projector are compared and verified by numerical benchmark examples. They show that
guaranteed error control for the modified method is possible and almost as sharp as for the
unmodified method.

1. Introduction

In the finite element analysis for the Stokes equations

(1) − div(ν∇u) +∇p = f , ∇ · u = 0,

the recent advance of [Lin14, BLMS14] led to a modified Crouzeix-Raviart nonconforming
finite element method with an optimal and pressure-independent a priori estimate for the
velocity in the broken energy norm ||| · |||NC (see (7) below), i.e.,

(2) |||u− uh|||NC ≤ C inf
wh∈CR(T )

|||u−wh|||NC.

Taken such an pressure-independent estimate as a definition for a divergence-free method,
the key ingredient in the design of divergence-free methods are divergence-free test functions.
For the Crouzeix-Raviart finite element method, a simple reconstruction operator πRT maps
the only discretely divergence-free test functions to divergence-free Raviart-Thomas test
functions only in the right hand side, i.e.

´
Ω f · vh dx is replaced by

´
Ω f · (πRT vh) dx. This

modification enables (2), while preserving optimal convergence rates. A more sophisticated
reconstruction with BDM finite element functions was analysed in [BLMS14].

A posteriori error estimates for the standard Crouzeix-Raviart finite element method are
well-known [DA05, CM14, BW91, Ver89, Ain04, VHS11, Ago94, DM98]. The ones compared
in [CM14] are all of the form

|||u− uh|||2NC ≤ η2 + γ(v)2

with some explicit part η ≈
∥∥ν−1/2hT f

∥∥
L2(Ω)

and some conforming interpolation error con-

tribution γ(v) := |||uh − v|||NC + c−1
0

∥∥ν1/2 div v
∥∥
L2(Ω)

that includes the inf-sup constant c0.

However, the estimation by the term η is not robust against ν for the modified Crouzeix-
Raviart finite element method at hand for the following fact. Opposite to the standard
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2 A. LINKE AND C. MERDON

method, for discretely divergence-free test functions vh, the velocity reconstructions πRT vh
are divergence-free and satisfyˆ

Ω
f · (πRT vh) dx =

ˆ
Ω

(f −∇w) · (πRT vh) dx for all w ∈ H1(Ω).(3)

In fact, only the Helmholtz projector of f , i.e. the divergence-free part of its Helmholtz
decomposition, is needed in the a posteriori error estimate and has to be approximated
efficiently by some w ∈ H1(Ω). This approximation enters the new error estimator for the

modified Crouzeix-Raviart method through the term µ(w) := CF
∥∥ν−1/2hT (f − ∇w)

∥∥
L2(Ω)

and replaces η. The crucial part for the efficiency of the estimator is a good approximation of
the minimiser of µ(w) amongst w ∈ H1(Ω) which may stem from conforming finite element
solutions of a related scalar Poisson problem.

Instead, the standard Crouzeix-Raviart finite element method and its a posteriori error
estimates cannot exploit this fact, because the test functions are not divergence-free and so
do not allow for (3).

The remaing parts of the paper are outlined as follows. Section 2 explains the setting
for the continuous problem and its finite element approximation with the standard and
the modified Crouzeix-Raviart finite element method. Section 3 recalls guaranteed upper
bounds for the standard Crouzeix-Raviart finite element method in the energy norm and
derives guaranteed upper bounds also for the modified method. Section 4 explains efficient
realisations of the guaranteed upper bounds, in particular for the design of w in (3). Section 5
reports on some numerical examples to validate the efficiency and robustness of the new
guaranteed upper bounds.

Throughout this paper, standard notation and Sobolev spaces V := H1
0 (Ω)d, H(div,Ω)

and Q := L2
0(Ω) are employed.

2. Continuous and discrete setting

This section explains the continuous and the discrete setting for the model problem under
consideration.

2.1. Continuous setting. The weak solution (u, p) ∈ V × Q of the continuous steady
incompressible Stokes problem satisfies the equations

a(u,v) + b(v, p) = F (v),

b(u, q) = 0 for all (v, q) ∈ V ×Q
(4)

with the multilinear forms defined by

a : V × V → R, a(u,v) :=

ˆ
Ω
ν∇u : ∇v dx,

b : V ×Q→ R, b(u, q) := −
ˆ

Ω
q div u dx,

F : V → R, F (v) :=

ˆ
Ω

f · v dx.

Within the set of weakly differentiable, divergence-free functions

(5) V0 := {v ∈ V : div v = 0},
the saddle point problem (4) can be rewritten into an elliptic problem for the velocity alone,
i.e., u ∈ V0 such that

(6) a(u,v) = F (v) for all v ∈ V0.
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2.2. Notation. In the following, T denotes a regular triangulation of the domain Ω into
triangles (d = 2) or tetrahedra (d = 3) with simplex faces E and nodes N . The subset
E(Ω) denotes the set of interior faces, while E(∂Ω) denotes the set of faces along the domain
boundary ∂Ω. For any element T ∈ T , mid(T ) denotes the barycenter of T . Likewise,
mid(F ) denotes the barycenter of a face F ∈ E , and nF abbreviates a face normal vector.

The function space of Pk(T ) contains piecewise polynomials of order k with respect to T .
The space of Crouzeix-Raviart velocity trial functions is given by

CR(T ) :=
{
vh ∈ P1(T )d

∣∣ for all T ∈ T , [vh](mid(F )) = 0 for all F ∈ E(Ω)

& vh(mid(F )) = 0 for all F ∈ E(∂Ω)
}

and the discrete pressure trial function space reads

Q(T ) :=

{
qh ∈ P0(T ) :

ˆ
Ω
qh dx = 0

}
.

Furthermore, the set of lowest order Raviart-Thomas finite element functions reads

RT(T ) :=
{

vh ∈ P1(T )d ∩H(div,Ω)
∣∣ ∀T ∈ T ∃aT ∈ Rd, bT ∈ R, vh|T (x) = aT + bTx

}
.

Note, that any Raviart-Thomas function is uniquely defined by its constant normal fluxes
at the face barycenters [BF91].

The discrete setting employs the broken gradient ∇h : V ⊕ CR(T ) → L2(Ω)d×d and the
broken divergence ∇h · (·) : V ⊕ CR(T )→ L2(Ω) in the sense that

(∇hvh)|T := ∇(vh|T ), (∇h · vh)|T := div(vh|T ) for all T ∈ T .

The discrete energy norm for the space V ⊕ CR(T ) reads

(7) |||vh|||NC :=

(ˆ
Ω
ν∇hvh : ∇hvh dx

)1/2

=
∥∥ν1/2∇hvh

∥∥
L2(Ω)

.

2.3. Interpolation operators. The Crouzeix-Raviart interpolation operator πCR : V ⊕
CR(T )→ CR(T ) is given by

(πCR v)(mid(F )) =
1

|F |

ˆ
F

vds for all F ∈ E .

The Raviart-Thomas interpolation operator πRT : V ⊕ CR(T )→ RT(T ) is defined by

nF · (πRT v)(mid(F )) =
1

|F |

ˆ
F

v · nF ds for all F ∈ E .

Note that, due to continuity in the face barycenters, this is well-defined also for v ∈ CR(T ).
By Gauss’ theorem, it immediately follows, for any v ∈ V0, that divπRT v = 0 and

∇h · πCR v = 0. Morevoer, there are the stability and approximation properties

|||πCR v|||NC ≤ |||v|||NC for all v ∈ V,(8) ∥∥v − πCR v
∥∥
L2(Ω)

≤ C
∥∥hT∇(v − πCR v)

∥∥
L2(Ω)

for all v ∈ V,(9) ∥∥v − πRT v
∥∥
L2(Ω)

≤ CF
∥∥hT∇v

∥∥
L2(Ω)

for all v ∈ V ∪ CR(T ),(10)

where the generic constants C and CF depend only on the shape of the simplices in the
triangulation T but not on their size [BF91, AD99, CGR12]. Explicit upper bounds for the
Fortin-interpolation CF constant can be found in [CGR12] and its proof extends to functions
v ∈ CR(T ). For right-isosceles triangles they compute CF ≤ 0.6215.
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2.4. Standard and modified Crouzeix-Raviart finite element method. The discrete
weak formulation of the model problem employs the two bilinear forms

ah : CR(T )×CR(T )→ R, ah(uh,v) :=

ˆ
Ω
ν∇huh : ∇hvh dx,

bh : CR(T )×Q→ R, bh(uh, qh) := −
ˆ

Ω
qh∇h · uh dx.

Given one of the two interpolation operators above, i.e. πdiv ∈ {πCR,πRT}, the discrete
Stokes problem seeks (uh, ph) ∈ CR(T )×Q(T ) such that

ah(uh,vh) + bh(v, ph) = F (πdiv vh),

bh(uh, qh) = 0 for all (vh, qh) ∈ CR(T )×Q(T ).
(11)

The choice πdiv = πCR leads to the classical Crouzeix-Raviart nonconforming finite element
method in the spirit of [CR73], while πdiv = πRT constitutes the variational crime suggested
in [Lin14] that maps discretely divergence-free test functions to divergence-free functions
in H(div,Ω). As shown in [Lin14, BLMS14], this modification allows an optimal pressure-
independent a priori energy error estimate in the form

|||u− uh|||NC ≤ C inf
wh∈CR(T )

|||u−wh|||NC.

Remark 1 (BDM reconstructions). The BDM reconstruction πdiv = πBDM from [BLMS14]
into the Brezzi-Douglas-Marini finite element space

BDM(T ) :=
{
vh ∈ P1(T )d : [vh · nE ] = 0 along all E ∈ E

}
additionaly allows for a provable optimal L2 error convergence rate. The operator πBDM :
V ∪ CR(T )→ BDM(T ) is defined such that, for all ph ∈ P1(E) on a face E ∈ E,

ˆ
E

(πBDM v) · nE ph ds =

{´
E{{v · nE}} ph ds for all E ∈ E(Ω)´
E(πRT v) · nE ph ds for all E ∈ E(∂Ω).

Like the continuous incompressible Stokes equations, also the discretization (11) can be
formulated as an elliptic problem [Tem91, GR86] within the space of discretely divergence-
free functions

(12) V0,h := {vh ∈ CR(T ) : b(vh, qh) = 0 for all qh ∈ Q(T )} = {vh ∈ CR(T ) : ∇h ·vh = 0}.

Then, uh ∈ V0,h is uniquely defined by

(13) ah(uh,vh) = F (πdiv vh) for all vh ∈ V0,h.

3. A posteriori error estimates

This section recalls a posteriori error estimation results from [CM14, DA05] for πdiv = πCR

and derives improved results for the modified Crouzeix-Raviart finite element method for
πdiv = πRT. The original estimate includes data oscillations

osc(f , T ) :=
∥∥hT (f − fT )

∥∥
L2(Ω)

with integral mean fT |T :=
1

|T |

ˆ
T

f dx for all T ∈ T

and the elementwise Poincaré constant CP (T ) := supv∈V
∥∥v − vT∥∥L2(T )

/hT |||v|||NC. In 2D,

[LS10] shows CP (T ) = 1/j1,1 where j1,1 = 3.8317 . . . is the first positive root of the first
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Bessel function J1. In 3D, the constant CP (T ) = 1/π is valid for every convex domain
[PW60, Beb03]. Both estimates depend on the inf-sup constant

0 < c0 := inf
q∈Q\{0}

sup
v∈V \{0}

´
Ω q div v dx∥∥∇v
∥∥
L2(Ω)

∥∥q∥∥
L2(Ω)

and the contribution

γ(v) := |||uh − v|||NC + c−1
0

∥∥ν1/2 div v
∥∥
L2(Ω)

for v ∈ H1(Ω;Rd).

Theorem 1 (A posteriori error estimates for the standard Crouzeix-Raviart FEM, [CM14]).
For the solution uh of (11) with πdiv = πCR, it holds

|||e|||2NC ≤ η2 + min
v∈H1(Ω;Rd)

v=uD along ∂Ω

γ(v)2(14)

where η :=
∥∥ν−1/2fT /2 ⊗ d

∥∥
L2(Ω)

+ CP (T ) osc(ν−1/2f , T ) for the function d(x)|T := (x −
mid(T )) for x ∈ T ∈ T .

Here, x⊗ y ∈ Rd×d denotes the dyadic product of two vectors x, y ∈ Rd.

Proof. See [CM14]. �

Theorem 2 (A posteriori error estimates for the modified Crouzeix-Raviart FEM). For the
solution uh of (11) with πdiv = πRT, it holds

|||e|||2NC ≤ min
w∈H1(Ω)

µ(w)2 + min
v∈H1(Ω;Rd)

v=uD along ∂Ω

γ(v)2(15)

where µ(w) := CF
∥∥ν−1/2hT (f −∇w)

∥∥
L2(Ω)

.

Proof. As in the proof of Theorem 1 from [CM14], the point of departure is the orthogonal
split

ν∇he = ν∇z + y

into z ∈ V0 with ˆ
Ω
ν∇z : ∇v dx =

ˆ
Ω
ν∇he : ∇v dx for all v ∈ V0,

and the remainder

y ∈ Y :=

{
y ∈ L2(Ω;Rd×d)

∣∣ ˆ
Ω
y : ∇v dx = 0 for all v ∈ V0

}
.

Orthogonality holds in the sense of

|||e|||2NC = |||z|||2NC +
∥∥ν−1/2y

∥∥2

L2(Ω)
=

ˆ
Ω
ν∇he : ∇z dx +

ˆ
Ω
∇he : y dx.

The estimate of
´

Ω ν∇he : ∇z dx is different from the proof in [CM14]. Since
´
T ∇z dx =´

T ∇πCR z dx (by an integration by parts) for all T ∈ T , (11) for πdiv = πRT shows
ˆ

Ω
ν∇he : ∇z dx =

ˆ
Ω

f · (z− πRT z) dx.
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Both functions z and πRT z are divergence-free and have zero normal components along the
boundary ∂Ω and therefore are orthogonal on any gradient ∇w of any w ∈ H1(Ω). This and
the Fortin interpolation estimate (10) yield

|||z|||2NC =

ˆ
Ω
ν∇he : ∇z dx =

ˆ
Ω

(f −∇w) · (z− πRT z) dx

≤
∥∥f −∇w∥∥

L2(Ω)

∥∥z− πRT z
∥∥
L2(Ω)

≤ CF
∥∥ν−1/2hT (f −∇w)

∥∥
L2(Ω)

|||z|||NC.

In total

|||z|||NC ≤ CF min
w∈H1

0 (ω)

∥∥ν−1/2hT (f −∇w)
∥∥
L2(Ω)

.

It remains to estimate
´

Ω∇he : y dx as in [DA05, CM14]. The theory of [Gal94, Chapter

III.1] shows that, for each y ∈ Y , there exists some w ∈ L2
0(Ω) := {q ∈ L2(Ω)

∣∣ ´
Ω q dx = 0}

with ˆ
Ω
y : ∇v dx =

ˆ
Ω
w div v dx for all v ∈ V(16)

and ∥∥w∥∥
L2(Ω)

≤ c−1
0

∥∥y∥∥
L2(Ω)

.

Hence, given any v ∈ H1(Ω;Rd) with u− v = 0 on ∂Ω, it holds∥∥ν−1/2y
∥∥2

L2(Ω)
=

ˆ
Ω
∇he : y dx

=

ˆ
Ω
ν1/2∇h(uh − v) : ν−1/2y dx +

ˆ
Ω
∇(v − u) : y dx

≤ |||uh − v|||NC

∥∥ν−1/2y
∥∥
L2(Ω)

+

ˆ
Ω

div(v − u)w dx

≤
(
|||uh − v|||NC + c−1

0

∥∥ν1/2 div v
∥∥
L2(Ω)

)∥∥ν−1/2y
∥∥
L2(Ω)

.

The combination of all mentioned results concludes the proof. �

Remark 2 (Efficiency of µ(w)). For w ≡ 0, it holds µ(0) ≈
∥∥hT f

∥∥
L2(Ω)

≈ η up to higher-

order terms. Hence, µ(0) is as efficient as η. Behind the minimisation of µ(w) =
∥∥f −

∇w
∥∥
L2(Ω)

is in fact an approximation of the L2 norm of the divergence-free part of the

Helmholtz decomposition

ν−1f = ν−1∇α+ β(17)

into α ∈ H1(Ω)/R and β ∈ H1(div,Ω) with ∇ · β = 0 in Ω and (f −∇α) · n = 0 along ∂Ω.
Every approximation w of α gives an upper bound in the sense∥∥ν−1/2(f −∇w)

∥∥2

L2(Ω)
=
∥∥ν−1/2∇(α− w)

∥∥2

L2(Ω)
+
∥∥ν1/2β

∥∥2

L2(Ω)
≥
∥∥ν1/2β

∥∥2

L2(Ω)
.(18)

Therefore,

min
w∈H1(Ω)

µ(w) = µ(α) = CF
∥∥hT ν1/2β

∥∥
L2(Ω)

.

Thus, µ(w) has the potential to be more efficient than η for right-hand sides f with a large
irrotational component and this is exactly the case the modified Crouzeix-Raviart method is
designed for. To make the efficiency of the a posteriori error estimator robust against this



GUARANTEED ENERGY ERROR CONTROL FOR A MODIFIED CROUZEIX-RAVIART FEM 7

contribution, a good approximation of α by w is needed. Possible designs are suggested in
Section 4.2.

4. Suitable interpolations for the design of upper bounds

The guaranteed upper bounds from Theorem 2 need efficient designs of two conforming
interpolations v ∈ H1(Ω;Rd) and w ∈ H1(Ω). The first interpolation v needs to be close
to uh in the energy norm and the second interpolation w needs to be close to α from the
Helmholtz decomposition (17) of f as pointed out in Remark 2. Possible designs for v were
studied in [CM14], whereas designs for w are open.

4.1. Designs for γ(v). Since we want to concentrate on the new error estimator contri-
bution µ, we stick to the error estimators for the second contribution that were the most
efficient in the comparison of [CM14]. Algorithm 1 computes the global minimisers vMP1 in
P1(T ) ∩ C(Ω), vMP2 in P2(T ) ∩ C(Ω) and vMP1red in P1(red(T )) ∩ C(Ω) on the red-refined
triangulation red(T ).

The idea behind Algorithm 1 is the argument

(|a|+ |b|)2 = min
λ∈R+

(
(1 + λ) |a|2 + (1 + 1/λ) |b|2

)
for any (a, b) ∈ R2

with minimum λ = |b| / |a|. Hence, for any W (T ) ⊆ H1(Ω),

argmin
v∈W (T )

(
|||uh − v|||NC +

∥∥ν1/2 div v
∥∥
L2(Ω)

)2

= argmin
v∈W (T )

min
λ∈R+

(
(1 + λ)|||uh − v|||2NC + (1 + 1/λ)

∥∥ν1/2 div v
∥∥2

L2(Ω)
/c2

0

)
Algorithm 1 alternately computes the minimiser vW (T ) (for a fixed λ) and the minimal λ
(for a fixed vW (T )). In this way, the right hand side is minimised in each step and converges
to the minimum. Undisplayed experiments convey that three iterations give satisfactory
results.

Algorithm 1: Minimisation of γ

Input : uh ∈ CR(T ), W (T ) ∈ {P1(T ) ∩ C(Ω), P1(red(T )) ∩ C(Ω), P2(T ) ∩ C(Ω)}
Output: vMP1 := vP1(T )∩C(Ω), vMP1red := vP1(red(T ))∩C(Ω), or vMP2 := vP2(T )∩C(Ω)

Set λ := 1

for ` = 1, 2, 3 do
Compute the minimiser

vW (T ) := argmin
v∈W (T )

(
(1 + λ)|||uh − v|||2NC + (1 + 1/λ)

∥∥ν1/2 div v
∥∥2

L2(Ω)
/c2

0

)
(19)

Update λ :=
∥∥ν1/2 div vW (T )

∥∥
L2(Ω)

/
(
c0|||uh − vW (T )|||NC

)
end

This results in the three error estimators

η2
MP1 := η2 + γ(vMP1)2,

η2
MP1red := η2 + γ(vMP1red)2,

η2
MP2 := η2 + γ(vMP2)2.
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All of them are guaranteed upper bounds of the energy error |||u− uh|||NC for the standard
Crouzeix-Raviart finite element method (11) for πdiv = πCR in the sense of Theorem 1.

Remark 3. To reduce the computational costs of (19) one might use the nodal interpolation
vMAred from [CM14] as an initial guess for a preconditioned conjugate gradients scheme with
Jacobi preconditioner to draw near the minimiser of (19) for W (T ) = P1(red(T )) ∩ C(Ω).
Similarly, the nodal values of vMAred define some piecewise quadratic function and hence an
initial value for some PCG algorithm for the approximation of the minimiser of (19) for
W (T ) = P2(T ) ∩ C(Ω).

4.2. Designs for µ(w). The function α from (17) satisfies the scalar Poisson equation

div(ν−1∇α) = div(ν−1f) and (f −∇α) · n = 0 along ∂Ω

with its weak formulationˆ
Ω
ν−1∇α · ∇v dx = −

ˆ
Ω

div(ν−1f)v dx−
ˆ
∂Ω

(f · n)v dx

=

ˆ
Ω
ν−1f · ∇v dx for all v ∈ H1(Ω)/R.

(20)

To approximate α one can solve (20) by conforming Pk(T )∩H1(Ω)/R finite element methods.
If such a method satisfies (and this is true for smooth data and domain or adaptive mesh

refinement)
∥∥ν−1/2∇(α− w)

∥∥
L2(Ω)

. hk
∥∥ν−1/2 div f

∥∥
L2(Ω)

, (18) shows

µ(w)2 = C2
F

∥∥ν−1/2hT (f −∇w)
∥∥2

L2(Ω)
≤ h2C2

F

(∥∥ν−1/2∇(α− w)
∥∥2

L2(Ω)
+
∥∥ν1/2β

∥∥2

L2(Ω)

)
. C2

F

(
h2+2k

∥∥ν−1/2 div f
∥∥
L2(Ω)

+ h2
∥∥ν1/2β

∥∥2

L2(Ω)

)
.

Then, µ(w) converges to CFh
∥∥ν1/2β

∥∥
L2(Ω)

≤ CFh
∥∥ν1/2∆u

∥∥
L2(Ω)

with at least quadratic

speed. The numerical examples below compare the three estimators

η̂2
MP1 := min

w∈P1(T )∩H1(Ω)/R
µ(w)2 + γ(vMP1)2,

η̂2
MP1red := min

w∈P1(red(T ))∩H1(Ω)/R
µ(w)2 + γ(vMP1red)2,

η̂2
MP2 := min

w∈P2(T )∩H1(Ω)/R
µ(w)2 + γ(vMP2)2.

All of them are guaranteed upper bounds of |||u− uh|||NC for the modified Crouzeix-Raviart
finite element method (11) for πdiv = πRT in the sense of Theorem 2.

Remark 4. Compared to the Stokes problem, the minimisation problem for w is only a scalar
elliptic conforming problem and therefore much cheaper to solve even for k = 2. However, it
might be a good idea to prolongate and update w from level to level by a truncated iterative
solver.

Remark 5. The factor
∥∥f − ∇w∥∥

L2(Ω)
/
∥∥f∥∥

L2(Ω)
may be used to measure the divergence-

free part of f and yields a criterion to decide if the modified Crouzeix-Raviart finite element
method (when the factor is small) or the standard Crouzeix-Raviart finite element method
(when the factor is close to 1) should be used.
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5. Numerical rxamples

5.1. Adaptive mesh refinement algorithm. The adaptive mesh refinement algorithm
specified in Algorithm 2 with red-green-blue-refinement according to [Car04, Ver13] is steered
by refinement indicators that are based on the a posteriori error estimators as follows. Given
designs of v and w, the refinement indicators for the modified Crouzeix-Raviart finite element
method (11) with πdiv = πRT read, for all T ∈ T ,

η(T )2 := C2
F

∥∥ν−1/2hT (f −∇w)
∥∥2

L2(T )
+
∥∥ν1/2∇h(uh − v)

∥∥2

L2(T )
+ c−2

0

∥∥ν1/2 div v
∥∥2

L2(T )
,

while the the refinement indicators for the standard Crouzeix-Raviart finite element method
(11) with πdiv = πCR read, for all T ∈ T ,

η(T )2 :=
∥∥ν−1/2fT /2⊗ (• −mid(T ))

∥∥2

L2(T )
+ CP (T )2 osc(ν−1/2f , T )2

+
∥∥ν1/2∇h(uh − v)

∥∥2

L2(T )
+ c−2

0

∥∥ν1/2 div v
∥∥2

L2(T )
.

All experiments are performed on triangulations with rectangular triangles and the constants
CF = 0.6215 and CP (T ) = 0.2610. The inf-sup constant c0 depends on the domain and is
chosen problem-dependent. The bulk parameter Θ in Algorithm 2 is set to Θ = 0.5 for
adaptive mesh refinement or Θ = 1.0 for uniform mesh refinement.

Algorithm 2: Adaptive mesh refinement algorithm

Input : Initial mesh T 0 and 0 < Θ ≤ 1
Output: Sequence of meshes T0, T1, . . .
for ` = 0, 1, 2, . . . until termination do

Compute discrete solution uh of (11) on T `
Estimate and calculate refinement indicators η(T )2

Mark a minimal subset M` of T ` such that Θ
∑

T∈T `
η(T )2 ≤

∑
T∈M`

η(T )2

Refine T ` by red -refinement of triangles in M` and red-green-blue-refinement of
further triangles to avoid hanging nodes and compute T `+1

end

5.2. Example with rotation-free right hand side. The first example considers a rotation-
free right hand side f ≡ ∇p for the exact pressure p(x, y) = x3 + y3 − 0.5 and zero velocity
u ≡ 0 on the unit square with inf-sup constant c0 = 0.3826.

A rotation-free right hand side is the worst case for the standard Crouzeix-Raviart finite
element method in the sense that the velocity, though an element of the ansatz space, cannot
be found exactly due to the nonphysical interactions with the (only) discretely divergence-
free test functions. Nevertheless, the energy error of the velocity can be estimated very
sharply by the a posteriori error estimators as depicted in Figure 1.

The modified Crouzeix-Raviart finite element method computes the exact velocity solution
and therefore the energy error is zero. Consequently, the second part of the error estimator
vanishes for v ≡ 0, i.e. γ(0) = 0. The µ(w) part in the error estimator would vanish for
w = p ∈ P3(Ω) in this example, but this choice is not possible for the error estimators ηMP1,
ηMP1RED and ηMP2. However, µ(w) converges to zero with a higher converge rate than the
energy error for the standard method as can be seen in Figure 1.
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η̂MP1RED

η̂MP2

Figure 1. Convergence history of the exact energy error and the error es-
timators ηMP2, η̂MP1, η̂MP1RED and η̂MP2 for adaptive mesh refinement in
Subsection 5.2.
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Figure 2. Convergence history of the exact energy error and the best error
estimators (left) and efficiency indices η/|||u − uh|||NC of all error estimators
η (right) for adaptive mesh refinement in Subsection 5.3.

5.3. Example with zero pressure. The second example considers the Stokes problem
with f := −∆u for the exact solution u(x, y) = rot(x2(1 − x)2y2(1 − y)2), ν = 1 and p ≡ 0
on the unit square with inf-sup constant c0 = 0.3826.

Since the pressure is zero, the pressure-dependent error part of the standard method is
zero and there is no pollution of the velocity error. In this worst case for the modified
method, the energy error of the velocity solution of the modified version is slightly larger
than the energy error in the standard method as depicted in Figure 2 for adaptive mesh
refinement (the results for uniform mesh refinement are very similar). The efficiency index
of η̂MP2 is about 2.0, while the efficiency index of ηMP2 is about 1.1. A possible reason may
be the constant of the Fortin interpolation operator in the contribution µ(w). A smaller
(guaranteed lower bound of the) constant would lead to better efficiency indices. A similar
but milder difference can be observed for the other estimators. The estimators ηMP1RED and
η̂MP1RED attain efficiency indices around 1.8 and 2.3, respectively, while ηMP1 and η̂MP1 end
up with efficiency indices about 2.5 vs. 2.7.
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Figure 3. Convergence history of the exact energy error and the best error
estimators (left) and efficiency indices η/|||u − uh|||NC of all error estimators
η (right) for uniform mesh refinement in Subsection 5.4.

100 101 102 103 104 105 106

10−3

10−2

10−1

100

|||e|||NC(πCR)

|||e|||NC(πRT)
ηMP2

η̂MP2

100 101 102 103 104 105 106
1

2

3

4

5

6

1.5

2.5

3.5

4.5

5.5
ηMP1

ηMP1RED

ηMP2

η̂MP1

η̂MP1RED

η̂MP2

Figure 4. Convergence history of the exact energy error and the best error
estimators (left) and efficiency indices η/|||u − uh|||NC of all error estimators
η (right) for adaptive mesh refinement in Subsection 5.4.

5.4. Example with smooth solution on unit square. The third example considers the
Stokes problem for the exact solution u(x, y) = rot(x2(1 − x)2y2(1 − y)2) and p(x, y) =
x3 + y3 − 0.5 on the unit square for the right-hand side f := −ν∆u +∇p for ν = 1. For the
estimator we set c0 = 0.3826.

The left part of Figures 3 and 4 show the convergence history for the exact energy errors
of the standard and the modified Crouzeix-Raviart finite element method for uniform and
adaptive refinement. The energy error for the modified method is smaller than the energy
error for the standard method. Note, that for smaller ν the superiority of the modified
method can be driven to an arbitrary extent. The figures also show the best guaranteed
upper bounds for each method. While ηMP2 for the standard method is very close to the
exact energy error, the upper bound η̂MP2 for the modified method is not as efficient on
coarse meshes due to the inexact approximation of α in (20). The convergence speed of the
higher-order approximation error is significantly faster and restores the best efficiency at
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Figure 5. Convergence history of the exact energy error and the best error
estimators (left) and efficiency indices η/|||u − uh|||NC of all error estimators
η (right) for uniform mesh refinement in Subsection 5.5.

around 103 degrees of freedom. Then, the efficiency index of η̂MP2 is about 2.0. The other
estimators for the modified method η̂MP1RED and ηMP1 attain slithly worse efficiency indices
between 2.2 and 2.7 as depicted in the right part of Figures 3 and 4.

5.5. Example with smooth solution on L-shaped domain. The last example studies
f ≡ ∇p for the pressure p(x, y) = 100 sin(xyπ) on the L-shaped domain Ω = (−1, 1)2 \
((0, 1)× (−1, 0)) with the exact velocity solution

u(r, ϕ) = rα
(

(α+ 1) sin(ϕ)ψ(ϕ) + cos(ϕ)ψ′(ϕ)
−(α+ 1) cos(ϕ)ψ(ϕ) + sin(ϕ)ψ′(ϕ)

)T
given in polar coordinates and with

ψ(ϕ) = 1/(α+ 1) sin((α+ 1)ϕ) cos(αω)− cos((α+ 1)ϕ)

+ 1/(α− 1) sin((α− 1)ϕ) cos(αω) + cos((α− 1)ϕ)

and α = 856399/1572864 ≈ 0.54, ω = 3π/2 from [Ver89]. For the estimator we set c0 = 0.3.
Figure 5 shows the convergence history for uniform mesh refinement, while Figure 6 shows

the convergence history for adaptive mesh refinement. The reconstructed method (πRT) has
a convergence rate of about 0.25 with respect to the number of degrees of freedom for uniform
mesh refinement, whereas the standard method (πCR) seems to have the optimal convergence
rate of 0.5 which corresponds to a convergence of O(h) in two dimensions. This might be
the influence of the dominating pressure contribution in the a priori energy estimate that
pollutes the overall energy error but decreases faster than the contribution from the exact
velocity. However, even on the finest mesh the error of the standard method is still larger
than the error of the modified method. With adaptive mesh refinement, all methods lead
to optimal convergence rates and the modified method preserves its headstart of an more
than one magnitude smaller energy error. While the efficiency of η̂MP1 and η̂MP1RED are
slightly worse, the efficiency indices of η̂MP2 are comparable with those of ηMP2. Due to
the inexact approximation of α in (20), there is an preasymptotic phase with suboptimal
efficiency indices that ends at around 103 degrees of freedom for η̂MP2 and around 104 degrees
of freedom for η̂MP1 and η̂MP1RED. However, the guaranteed upper bounds for the energy
error always remain below the energy error for the standard method after 100 degrees of
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Figure 6. Convergence history of the exact energy error and the best error
estimators (left) and efficiency indices η/|||u − uh|||NC of all error estimators
η (right) for adaptive mesh refinement in Subsection 5.5.

freedom. The availability of such a guaranteed upper bound increases the interest in the
modified method with divergence-free reconstructions of the test functions.
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