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Abstract

We consider rupture of thin viscous �lms in the strong-slip regime with
small Reynolds numbers. Numerical simulations indicate that near the rupture
point viscosity and van-der-Waals forces are dominant and that there are self-
similar solutions of the second kind. For a corresponding simpli�ed model we
rigorously analyse self-similar behaviour. There exists a one-parameter family
of self-similar solutions and we establish necessary and su�cient conditions for
convergence to any self-similar solution in a certain parameter regime. We also
present a conjecture on the domains of attraction of all self-similar solutions
which is supported by numerical simulations.

1 Introduction
Numerical simulations of a variety of models for pinching of jets and thin-�lm rupture
indicate self-similar behaviour near the pinching or rupture point respectively [1�7,
and references therein]. While many, formal and rigorous, results on the existence
of self-similar solutions and their asymptotic properties are available, there seem
to be almost no rigorous results on the convergence of solutions for general data
towards these self-similar solutions. In this paper we rigorously study convergence
to self-similar rupture pro�les in a simple model for viscosity dominated thin �lms.
The starting point of our analysis is the strong-slip model [8], which contains the
non-dimensional slip-length b as one parameter. Numerical simulations in the regime
of small Reynolds number and large slip length [9] show that before rupture the
evolution passes through a self-similar regime, where viscosity and van-der-Waals
forces are dominant. The �lm thickness h and the horizontal velocity u follow the
dynamics

h(t, y) ∼ (t∗ − t)αH(η) and u(t, y) ∼ (t∗ − t)β−1U(η) ,

where η = (y− y∗)/(t∗− t)β and y∗, t∗ denote the point and time of rupture respec-
tively. The scaling exponent α is 1/3, while β is not determined by the balance of
the dominant terms and therefore one speaks of self-similarity of the second kind.
In the context of freely suspended sheets this indeterminacy was noted in [10]. Nu-
merical simulations show that inertia cannot be neglected close to the rupture point;
for freely suspended sheets this was pointed out in [11]. However, for very viscous
liquids and su�ciently large slip this transient regimes persists for a long time
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Second-kind similarity solutions also appear in simple models for jet pinch-o� which
are very similar to the model we study in this paper. Self-similar solutions are
studied in [12], while in [13] the existence of countably many self-similar solutions is
established numerically. In [14] convergence to these solutions is discussed. Under
strong assumptions on the evolution of the jet the authors show that the selection
of the self-similar solution in this model is solely determined by the behaviour of
the initial data around their minimum. This behaviour is expected, but a rigorous
analysis without a priori assumptions on the solutions has still been elusive.
The goal of this paper is to provide such an analysis for viscosity dominated thin
�lm rupture. We note that this analysis is also directly applicable to the model of
jet pinch-o� considered in [14].
The paper is organized as follows. In Section 2 we introduce the strong slip equation.
In the regime where surface tension and inertia can be neglected we can simplify
the strong-slip equation to an integro-di�erential equation following the method
in [15]. For this model �nite time rupture is established in [16] following ideas of
[15, 17] for jet pinch-o�. To investigate whether the rupture evolves self-similarly, we
introduce self-similar variables and characterize self-similar solutions in Section 3.
As described above, we encounter the situation that the scale for the spatial variable
is not determined by dimensional analysis. It turns out that for each β > 1/3 there
exists a unique self-similar solution. Equivalently these self-similar solutions can be
uniquely characterized their behaviour H(η) = H0 +Hρη

ρ as η → 0

In Section 4 we investigate whether solutions of the time-dependent problem con-
verge to a self-similar shape and, in case they do, which self-similar solution, i.e.
which ρ (or β), is selected. As expected, the long-time asymptotics are completely
determined by the behaviour of the initial pro�le h(0, y) at its minimum. We es-
tablish a necessary and su�cient condition for convergence to any of the self-similar
solutions with 0 < ρ < 3/2 (for the pinch-o� model it would be for 0 < ρ < 2/3).
The precise criterion is that the solution converges if and only if the data are regu-
larly varying at their minimum with index ρ. The corresponding rescaling is the one
associated to the self-similar solution up to some slowly varying function given by
the initial data. These results are very similar in nature to the dynamics in mean-
�eld models for domain coarsening [18�20] and coagulation [21], where the long-time
behaviour depends sensitively on the tail of the initial distribution functions.
We can prove the analogous characterization of domains of attraction for every
positive ρ under an additional assumption. Presently we have no proof whether this
assumption is satis�ed for regularly varying data. Numerical results in Section 5
indicate that it is, but they also show that the situation is much more involved than
in the case of 0 < ρ < 3/2 and the details of the convergence proof must be di�erent.
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2 Model and simpli�cation
The starting point for our considerations is the one-dimensional strong-slip model

∂th+ ∂y(hu) = 0, (1a)

Re∗(∂tu+ u∂yu) =
4

h
∂y(h∂yu) + ∂y

(
∂2
yyh− V (h)

)− u

b h
, (1b)

which contains the Reynolds number Re∗, the non-dimensional slip-length b, and the
van-der-Waals potential V (h) = A/h3. Boundary conditions at y = 0 and y = L are
∂yh(t, 0) = ∂yh(t, L) = 0 and u(t, 0) = u(t, L) = 0. This equation emerges as a limit
of the Navier-Stokes equations with a free boundary if the ratio ε = H/L of typical
the height scale [h] = H and the length scale [y] = L is small and if the dimensional
slip-length scales as B = ε−2b. In [8] various models with di�erent scalings of B are
derived. A model for the dynamics of freely suspended �lms can be found in [22].
As discussed in [16] large slip-length as well as surface tension do not have a direct
in�uence on the dynamics near the rupture. Hence we neglect the corresponding
terms in (1a,1b). Furthermore we consider the case of small Reynolds number and
consequently also neglect the e�ect of inertia. With L = A = 1 this leads to the
following equations for h(t, y) and u(t, y)

∂th+ ∂y(hu) = 0, (2a)
4

h
∂y(h∂yu)− ∂yV (h) = 0, (2b)

for all y ∈ (0, 1), supplemented with boundary conditions u(t, 0) = u(t, 1) = 0 and
initial data h(0, y) = h0(y) for all y ∈ [0, 1]. Equation (2a) describes transport of
�uid particles, whereas the momentum equation (2b) describes acceleration due to
van-der-Waals forces and dissipation due to Trouton viscosity.
For the analysis to come it is convenient to go over to Lagrangian coordinates. We
denote the Lagrangian reference coordinate of a �uid particle by x and its trajectory
in the Eulerian coordinate system by y = y(t, x). Then the de�ning relation for
y(t, x) is u(t, y) = ∂ty(t, x) for all x ∈ (0, 1).
Below we rewrite equations (2a,2b) through the so-called stretching variable de�ned
as s(t, x) = ∂xy(t, x). The transformation y(t, ·) preserves the orientation and it
maps (0, 1) onto itself, which implies s(t, x) > 0 and y(t, 1) =

∫ 1

0
s(t, x) dx = 1.

With h̄(t, x) = h(t, y), ū(t, x) = u(t, y) and (2a) we obtain d
dt

(
h̄(t, x) s(t, x)

)
=

0. This implies that the product h̄s is constant along characteristic curves, i.e.
c(x) = h̄(t, x)s(t, x). Integrating (2b) with respect to y and going over to Lagrangian
coordinates yields

∂ts(t, x) =
3 c(x)

8

(
1

h̄4(t, x)
− σ2(t)

h̄2(t, x)

)
, (3)

with a constant of integration σ2(t). We get rid of c(x) by choosing an initial
reference frame y0(x) = y(0, x) where c(x) is a constant function. This is apparently
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the case if y0(x) solves the ordinary di�erential equation y′0 = c/h0(y0) with y0(0) =
0. The remaining constant c is determined by the condition y0(1) = 1. Thus, after
rescaling time by an appropriate constant, (3) becomes

∂ts(t, x) = s(t, x)2
(
s(t, x)2 − σ2(t)

)
, x ∈ [0, 1] , (4a)

where �nally σ2(t) is determined by the constraint
∫ 1

0
s(t, x) dx = 1, which implies

σ2(t) =

∫ 1

0

s(t, x)4 dx
/ ∫ 1

0

s(t, x)2 dx. (4b)

Equations (4a) and (4b) have to be supplemented with initial conditions

s(0, x) = s0(x) ≥ 0 for all x ∈ [0, 1] , (4c)

where
∫ 1

0
s0(x) dx = 1.

We make now our assumptions on the initial data s0 precise. For large times the
behaviour of the solution s(t, x) of (4a-4c) is determined by its behaviour around
the maximum smax(t) = esssupx∈(0,1)s(t, x). The main technical assumption in this
paper is that we only consider decreasing initial data s0, which is certainly justi�ed
if h0 is symmetric around the rupture point and can be justi�ed even for a wider
range of initial data. Otherwise we only require s0 to be right-continuous such that
smax(t) = s(t, 0) for all t ≥ 0 and for convenience we assume that s0(x) > 0 for all
x ∈ [0, 1). Since the right-hand side of (4a) is locally Lipschitz and contains x only
as a parameter we obtain existence and uniqueness of solutions locally in time. It is
easily seen that smax(t) is strictly increasing in time if s0(x) is not almost everywhere
constant. In [16] we showed that if s0(x) < smax(0) for all x > 0, then smax(t) →∞
as t→ t∗ where t∗ can be �nite or in�nite.
From now on we also assume that s0(x) ≤ smax(0) − cxρ for some c, ρ > 0. As
established in [16] this implies that there is blow-up of max s in �nite time t∗. Our
goal in this paper is to study whether this blow-up occurs in a self-similar fashion.

3 Scalings and self-similar solutions

3.1 Scalings of the solution

Roughly speaking, by scaling we denote the rate by which one zooms into the graph
of the function s(t, x) at x = 0. If that graph converges to something nontrivial
under that zooming process one speaks of self-similarity. Commonly one would seek
self-similar solutions of (4a-4c) with powerlaw-type scalings

s(t, x) =
(
t∗ − t

)−α
ϕ
(
η
)

(5)

with η = x
(
t∗ − t

)−β and θ(t) = σ2(t)(t∗ − t)2/3. By t∗ we denote the blow-up time
and α, β > 0 and the pro�le ϕ have to be determined. By plugging (5) into (4a) we
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see that α = 1/3 and ϕ must satisfy

βϕ′(η) = ϕ4 − θϕ2 − 1
3
ϕ . (6)

Next, we try to determine β using the constraint, which should be valid for a self-
similar solution as t→ t∗. This means

1 = lim
t→t∗

(
t∗ − t

)β−1/3
∫ (t∗−t)−β

0

ϕ(η) dη. (7)

This suggests to choose β = 1/3, but then equation (6) implies that ϕ(η) ∼ η−1 as
η → ∞, which is inconsistent with (7). Hence, instead we need to look for second-
kind similarity solutions, and in fact we will see that for any β > 1/3 there exists
one.
To proceed with our analysis it will be more convenient to rescale s(t, x) with smax(t)
instead of (t∗− t)−α. More precisely, we introduce new functions ψ and ϕ as follows.
De�nition 3.1. (Height scaling) For any solution s(t, x) of (4a-4c) de�ne the nor-
malized solution ψ(τ, x) and the new time-scale τ via

ψ(τ, x) =
s(t, x)

smax(t)
and τ = log

(
smax(t)

smax(0)

)
. (8)

The corresponding initial data are ψ0(x) = s0(x)
smax(0)

.

This de�nition of τ is meaningful since smax(t) is strictly increasing and unbounded.
To study the structure near the blow-up we also need to rescale the spatial variable.
This scale is not determined a priori but has to be found as part of the solution.
De�nition 3.2. (Similarity scaling) Let λ : [0,∞) → [1,∞) be a measurable func-
tion with λ(0) = 1 and λ(τ) →∞ as τ →∞. We call any such λ(τ) a rescaling.
For any solution s(t, x) of (4a-4c) de�ne the normalized and rescaled solution ϕ(τ, η)
via

ϕ(τ, η) =
s(t, x)

smax(t)
= ψ(τ, x), where η = xλ(τ) , (9)

and the initial data are ϕ0(η) = s0(η)
smax(0)

.

Two such rescalings λ(τ) and λ̄(τ) are said to be equivalent, if there exists a positive
number C such that

lim
τ→∞

(
λ(τ)

λ̄(τ)

)
= C.

3.2 Solution formulas

The solution of the integro-di�erential equation (4a-4c) in the height scaling (8)
solves

∂τψ = K(τ)
(
ψ4 − ψ2

)
+ ψ4 − ψ = f

(
K(τ), ψ

)
, (10)
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where K(τ) = θ(τ)
(
1− θ(τ)

)−1 and

θ(τ) =

∫ 1

0
ψ(τ, x)4 dx∫ 1

0
ψ(τ, x)2 dx

. (11)

This form of K(τ) is equivalent to the constraint (4b) and ensures that

1 =

∫ 1

0

s(t, x) dx = smax(0) eτ
∫ 1

0

ψ(τ, x) dx (12)

is still ful�lled. To integrate (10) we introduce for any given K∗ ≥ 0 the function

H(ξ) =

∫ ξ

1/2

dr

f(K∗, r)
.

where f is as in (10). This function is strictly decreasing, H(1/2) = 0 and

H(ξ) →
{
−∞ asξ → 1

∞ asξ → 0
.

Next we insert the solution in the height scaling (8) into HK∗ and compute the
derivative with respect to τ

d

dτ
H(ψ(τ, x)) =

∂τψ

f(K∗, ψ)
=
f
(
K(τ), ψ(τ, x)

)

f
(
K∗, ψ(τ, x)

) .

Integrating in time this gives

H
(
ψ(τ, x)

)−H
(
ψ(τ0, x)

)
= τ − τ0 +

∫ τ

τ0

(
f
(
K(t),ψ(t,x)

)

f
(
K∗,ψ(t,x)

) − 1

)
dt

= τ − τ0 +
∫ τ

τ0

(
K(t)−K∗

)
g
(
ψ(t, x)

)
dt (13)

for all x ∈ (0, 1) and 0 ≤ τ0 ≤ τ with g de�ned as

g(ξ) =
ξ(ξ + 1)

1 + (K∗ + 1)ξ(ξ + 1)
∈

[
0,

2

2K∗ + 3

]
. (14)

Note that g is bounded and does not depend on K(τ). It is convenient to study
rescaled solutions in this formulation since convergence of K(τ) → K∗ and the
behaviour of solutions near x = 0 are encoded separately in the integral over (K −
K∗)g and in H respectively.
We will repeatedly use that the leading order singular behaviour of H as ψ → 1 is

H(ψ) = 1
2K∗+3

log(1− ψ) +O(1) , (15)

which follows from the fact that
1

2K∗ + 3
log

(
1− ψ

1/2

)
−H(ψ) =

∫ ψ

1/2

(
1

(2K∗ + 3)(ξ − 1)
− 1

f(K∗, ξ)

)
dξ (16)
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and that the integrand on the right-hand side is bounded as s→ 1.
Now we consider solutions ϕ(τ, η) under the similarity scaling. For further reference
notice that the functions θ(τ) and K(τ) de�ned in (11) are independent of the
rescaling λ = λ(τ) and can also be written as K = θ(1− θ)−1 where

θ(τ) =

∫ λ

0
ϕ(τ, η)4 dη∫ λ

0
ϕ(τ, η)2 dη

. (17)

Notice that K(τ) is independent from any particular choice of a(τ). Recalling (9),
equation (13) implies that

H
(
ϕ(τ, η)

)
= τ − τ0 +H

(
ϕ

(
τ0, η

λ(τ0)
λ(τ)

))

+
∫ τ

τ0

(
K(t)−K∗

)
g
(
ϕ

(
t, η λ(t)

λ(τ)

))
dt. (18)

for all η ∈ (
0, λ(τ)

)
and 0 ≤ τ0 ≤ τ . Notice that this formulation is weaker than

∂τϕ+ (∂τ log λ) η∂ηϕ = f
(
K(τ), ϕ

)
, (19)

which holds for su�ciently smooth ϕ and λ.

3.3 Self-similar solutions

Self-similar solutions are time-independent rescaled solutions ϕ∗(η) of (4a-4c) with
constant K(τ) = K∗. That is, in view of (18) they satisfy

H
(
ϕ∗(η)

)
= τ +H

(
ϕ∗

( η

λ(τ)

))
(20)

for all η > 0 and for some rescaling λ(τ).
If we assume that ϕ∗ and λ are di�erentiable, which is justi�ed a-priori, then we
�nd from (19) that ∂τ log λ(τ) is constant. We denote this constant by γ and see
λ(τ) = eγτ . Since ϕ∗ is decreasing and f < 0 we deduce that γ > 0 and that ϕ∗
solves

γη
dϕ∗
dη

= K∗
(
ϕ2
∗ − ϕ2

∗
)

+ ϕ4
∗ − ϕ∗ = f(K∗, ϕ∗) . (21)

Notice that for any K∗ ∈ R equation (21) also has the two homogeneous solutions
ϕ∗(η) = 1 and ϕ∗(η) = 0 for all η > 0. The latter is discontinuous for η → 0. These
are obviously not relevant solutions and correspond to rescalings which either grow
to fast, such that one sees only ϕ∗ = 1 in the limit, or too slowly in the other case.
Equation (21) is equivalent to

H(ϕ∗(η)) =
1

γ
log η + C (22)
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for some constant C ∈ R. The undetermined constant C in (22) is due to the
invariance of equation (21) under a constant rescaling of η which is also valid for
equation (19) and is also related to the equivalence of rescalings λ(τ).
In the following we will call two stationary solutions ϕ1

∗ and ϕ2
∗ equivalent if there

exists c > 0 such that ϕ1
∗(cη) = ϕ2

∗(η) for all η > 0. Sometimes it is convenient to
�x one member of each equivalence class, for example by requiring that

ϕ∗(1/2) = 1/2. (23)

Then equation (22) becomes

H(ϕ∗(η)) =
1

γ
log

(
η

1/2

)
.

Before we proceed we collect some properties of a stationary solution ϕ∗(η). First,
(22) implies that ϕ∗ is decreasing and satis�es limη→0 ϕ∗(η) = 1 and limη→∞ ϕ∗(η) =
0. Furthermore, as η →∞ equation (21) implies that

ϕ∗(η) ∼ 1

η1/γ
as η →∞ . (24)

Using Taylor's expansion f(K, ξ) = −(2K + 3)(1 − ξ) + O
(
(1 − ξ)2

)
, we also �nd

that every solution of (21) satis�es

ϕ∗(η) ∼ 1− Cηn for η → 0 where γn = 2K∗ + 3 .

Next, we have to ask which combinations of γ and K∗ are meaningful. We �rst
notice, that the constraint (12) poses further restrictions on γ. As discussed before,
we request that (12) is valid in the limit as τ →∞, that is

1

smax(0)
= lim

τ→∞
e−(γ−1)τ

∫ eγτ

0

ϕ∗(η) dη . (25)

Thus a nontrivial self-similar solution which satis�es (12) can only exist if γ ≥ 1.
Furthermore, due to (24), the choice γ = 1 leads to a contradiction with (25). Hence
we need γ > 1 for a self-similar solution. Instead of working with (25), which is
di�cult to deal with due to the divergences involved, we will in the following request
that a self-similar solution satis�es the appropriate analogue of (17).
De�nition 3.3. (Exact similarity solutions) A function ϕ∗, which for some γ > 1
satis�es (22) for all η > 0 and for which

K(K∗, γ) = K∗ , (26a)

where
K(K∗, γ) =

∫∞
0
ϕ4
∗(η) dη∫∞

0

(
ϕ2∗(η)− ϕ4∗(η)

)
dη
, (26b)

is called an exact self-similar solution of (4a-4c). In (26b) we use the convention
that K = 0 if the second moment of ϕ∗ is in�nite.
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In De�nition 3.3 we setK = 0 if
∫∞
0
ϕ2
∗ dη = ∞. This is is motivated by the following

Lemma.

Lemma 3.1. Assume that ϕ(τ, η) converges pointwise to a self-similar solution ϕ∗
and that

∫ λ(τ)

0
ϕ2 dη →∞ as τ →∞. Then K(τ) → 0 as τ →∞.

Proof. We know that a self-similar solution in the sense of De�nition 3.3 is decreasing
and satis�es ϕ∗(η) ∈ (0, 1) for all η > 0. Thus we can choose for an arbitrary ε > 0
numbers η0 and τ0 such that ε/2 < ϕ(τ, η0) < ε for all τ > τ0. Then we have

θ(τ) =

∫ λ(τ)

0
ϕ4 dη

∫ λ(τ)

0
ϕ2 dη

≤
∫ η0
0
dη +

∫ λ(τ)

η0
ϕ4 dη

∫ η0
0

(ε/2)2 dη +
∫ λ(τ)

η0
ϕ2 dη

≤
η0 + ε2

∫ λ(τ)

η0
ϕ2 dη

η0ε2/4 +
∫ a(τ)

η0
ϕ2 dη

→ ε2 as τ →∞.

Since ε was arbitrary, this implies in particular K(τ) = θ(τ)(1 − θ(τ))−1 → 0 as
τ →∞.

Our main result en existence and uniqueness of self-similar solutions is the following.

Theorem 3.2. For any γ > 1, or equivalently for any ρ > 0, there exists a self-
similar solution ϕ∗ which is unique up to equivalence.

For given γ > 1 and K∗ ≥ 0 we �nd a ϕ∗ via (22) and impose (23). For such a
solution consider K(K∗, γ) as in (26b) and �nd a unique �xed point K∗ of K(K∗, γ).

Proof.

1. Proof for K∗ = 0 (γ ≥ 2 or 0 < ρ ≤ 3/2)
We can easily integrate (21) explicitly using (22). For K∗ = 0 we �nd that

H
(
ϕ∗(η)

)
=

1

3
log

(
s3 − 1

s3

)∣∣∣∣
ϕ∗(η)

1/2

such that ϕ∗(η) =
(
1 + c0η

3/γ
)−1/3

, where the choice of c0 ensures ϕ∗(1/2) =
1/2.
For ϕ∗ to be a self-similar solution we need K(0, γ) = 0, more precisely∫∞

0
ϕ2
∗(η) dη = ∞. This is the case for γ ≥ 2. Solutions of (21) with same

γ are equivalent and the relation between γ and ρ is γρ = 3. This proves
Theorem 3.2 for γ ≥ 2 or ρ ∈ (0, 3/2] respectively.

2. Proof for K∗ > 0 (γ ∈ (1, 2) or ρ > 3/2):
A rigorous proof can be found in [9]. The main idea is to show K > K for
su�ciently large K and �xed γ. As this proof is somewhat lengthy we only
present a numerical solution to the problem. Figure 1 shows that for any
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γ ∈ (1, 2) the function K(K∗, γ) is positive at K∗ = 0 and grows slowly with
increasing K∗. Since K depends continuously on K̄ there exists a (unique)
�xed point K∗ > 0. The relation between ρ and γ is one-two-one because of
γρ = 2K∗ + 3 and since K in Figure 1 is decreasing with γ.

Figure 1: K̄(K∗, γ) surface by numerical quadrature (bright) and K plane (dark);
Self-similar solutions with γ ∈ (1, 2) lie on the intersection curve of both surfaces.

4 Convergence to self-similar solutions
Now we study the dynamics of solutions s(t, x) of (4a-4c). What we prove is that,
for a large class of initial data, solutions evolve approximately self-similar. That
is to say that the corresponding ϕ(τ, η) of (9) converges to some ϕ∗(η) as τ → ∞
for some yet unknown scaling λ(τ). As mentioned earlier, there are the two trivial
ϕ∗ = 1 and ϕ∗ = 0 a.e., which are meaningless if one wants to consider convergence
to self-similar solutions.
In the following lemma we show that convergence of ϕ to a self-similar solution
implies uniqueness of the corresponding scalings up to the equivalence.

Lemma 4.1. Let s(t, x) be a solution of (4a-4c) with decreasing initial data and for
some λ(τ) let ϕ(τ, η) be the associated similarity scaling. Assume ϕ(τ, η) converges
(pointwise) to a nonconstant continuous function ϕ∗(η) as τ →∞. Then this scale
transformation λ is unique up to equivalence.
Furthermore, one can always select a rescaling λ̄(τ) such that the corresponding
rescaled solution solution rescaled with λ̄(τ) ful�ls ϕ(τ, 1/2) = 1/2 for all τ ≥ 0.

Proof. First note that ϕ converges uniformly. Assume that there exist two rescalings
λi, such that the corresponding ϕi converge (i = 1, 2). Both solutions are related
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via ϕ2(τ, η) = ϕ1(τ, ηλ1(τ)/λ2(τ)). Then if (λ1/λ2)(τn) → 0 for a subsequence
τn →∞, we would have ϕ2(τn, η) → 1 which gives a contradiction since the solution
is constant. Similarly we can exclude that (λ1/λ2)(τn) → ∞ for a subsequence
τn →∞, since this would give the second trivial solution ϕ∗(η) = 0 for η > 0.
Now assume that (λ1/λ2)(τ) remains bounded, but does not converge. Then there
are at least two di�erent accumulation points α1 and α2. If ϕ∗1 denotes the limit of
ϕ1 and ϕ∗2 the limit of ϕ2, we �nd ϕ∗2(η) = ϕ∗1(α1η) = ϕ∗1(α2η) for all η > 0. Due
to the properties of the limit functions this is only possible if α1 = α2 which proves
uniqueness up to equivalence of the rescaling.
The second part of the Lemma follows by choosing λ̄(τ) = λ(τ)

2χ(τ,1/2)
where χ(τ, ·)

denotes the (generalized) inverse of ψ(τ, ·) for any τ ≥ 0.

Our main result, Theorem 4.3, gives a necessary and su�cient criterion for conver-
gence to any of the self-similar solution under the assumption that K(τ) converges
su�ciently fast. If the data satisfy ϕ0(η) ≤ 1 − cηρ for 0 < ρ < 3/2 we can also
prove fast convergence of K(τ) → 0 (cf. Proposition 4.4), such that we are able
to completely characterize the domain of attraction of the self-similar solutions for
ρ ∈ (0, 3/2) (cf. Corollary 4.5).

4.1 Weak characterization of scalings

Before we prove our main result, we �rst give a weak characterization of scale trans-
formations λ, i.e., for a large class of initial data we characterize for which λ there can
never be convergence. Assuming that K(τ) converges and that the initial data are
bounded from above or from below by some power law behaviour, i.e., ϕ0(η) ≤ 1−cηρ
or ϕ0(η) ≥ 1− cηρ, then a solution does not converge to a self-similar solution, but
rather to one of the two trivial homogeneous states, if the rescaling is not suitable.

Theorem 4.2. Consider a solution s(t, x) of (4a-4c) and assume K(τ) → K∗.
Furthermore let ϕ(τ, η) be de�ned as in (9) and assume for some γ > 1 that γτ −
log λ(τ) = o(τ) as τ →∞.

1. If the initial data satisfy

ϕ0(η) ≥ 1− αηρ for some α, ρ > 0

and ρ > 2K∗+3
γ

, then ϕ(τ, η) → 1 for all η ≥ 0.

2. Conversely, if the initial data satisfy

ϕ0(η) ≤ 1− αηρ for some α, ρ > 0

and ρ < 2K∗+3
γ

, then ϕ(τ, η) → 0 for all η > 0.
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Remark. Rescalings which satisfy the assumption in the previous Theorem are for
example λ(τ) = eγτ , but also λ(τ) = eγτ (1 + τ)k with k ∈ R.
It will be immediately apparent from the proof, that the statements can be slightly
generalized. The �rst statement remains true if the positive part ful�ls

(
γτ − log λ(τ)

)
+

= o(τ),
while the second remains valid if

(
γτ − log λ(τ)

)
− = o(τ) as τ →∞.

Proof. (Part 1.) For given positive ε < ργ
2K∗+3

−1 choose τ1 such that supτ≥τ1 |K(τ)−
K∗| 2

2K∗+3
< ε. Then

∣∣ ∫ τ1
0

(K(t) −K∗)g dt| ≤ C(τ1) due to (14), where the value of
the expression C(τ1) does not depend on τ . Now we use (18) for τ0 = 0 and (15) to
�nd

H(ϕ(τ, η)) ≤ τ +H
(
ϕ0

(
η 1
λ(τ)

))
+ ετ + C(τ1)

= τ(1 + ε) + 1
2K∗+3

log
(
ηρ

(
1

λ(τ)

)ρ)
+ C(τ1)

= τ(1 + ε)− ρ
2K∗+3

log
(
λ(τ)

)
+ C(τ1)

= τ
(
1− ργ

2K∗+3
+ ε

)
+ ρ

2K∗+3
(γτ − log λ) + C(τ1) .

By assumption the second term is of order o(τ) as τ → ∞, whereas the �rst one
converges to −∞ linearly in τ . Hence ϕ(τ, η) → 1 as τ →∞ for all η > 0.
The proof of Part 2. is entirely similar.

4.2 Criterion for convergence

In the remainder of this paper we will denote for any ρ ∈ R the corresponding
self-similar solution by ϕρ∗ and the corresponding value of K∗ by Kρ

∗ .
Our main result is the following. If for given ρ we have K(τ) → Kρ

∗ su�ciently fast,
then ϕ(τ, η) converges to ϕρ∗(η) if and only if the data are regularly varying at zero
with power ρ, that is, more precisely if 1 − ϕ0(η) ∼

(
ηL(η)

)ρ for a slowly varying
function L.
We say that function L is slowly varying at zero if

lim
x→0

L(tx)

L(x)
= 1 for all t > 0 .

Typical examples of slowly varying functions are log x, log(log x) etc. and all powers
of logarithms. We refer to the book [23] for a full characterization of slowly varying
functions, as well as further generalizations and examples.
Theorem 4.3. Let s(t, x) be a solution of (4a), let ρ > 0 and assume K(τ) → Kρ

∗
as τ →∞ such that

∫∞
0
|K(τ)−Kρ

∗ | dτ <∞.
Then there exists a rescaling λ(τ) (9) such that with ϕ(τ, η) as in (9) we have that
ϕ(τ, η) → ϕρ∗(η) for all η > 0 as τ →∞ if and only if the data satisfy

1− ϕ0(η) ∼
(
ηL(η)

)ρ as η → 0 (27a)
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with slowly varying function L. The rescaling is equivalent to λ(τ) implicitly de�ned
as

ϕ0

(
1

λ(τ)

)
= 1− e−(2Kρ

∗+3)τ . (27b)

Remark. Notice �rst that (27b) de�nes a proper rescaling since ϕ0 is decreasing and
ϕ0(0) = 1. Equation (27b) implies that with γ = 2Kρ

∗+3
ρ

we have

1

λ(τ)
L

( 1

λ(τ)

)
∼ e−γτ as τ →∞

which can be rewritten, using the de Bruijn conjugate L# of L. This is a slowly
varying function which satis�es L(x)L#

(
xL(x)

) ∼ 1 as x → 0 and comes into play
for example if one wants to invert slowly varying functions. With this de�nition and
the inversion formula (see Chapter 1.5.7 of [23]), we can write λ as

1

λ(τ)
∼ e−γτL#

(
e−γτ

)
as τ →∞ .

Thus we see that λ(τ) is essentially the time scale for the self-similar solution up to
a slowly varying correction which is given by the data.
Convergence for rescalings equivalent to e−γτ only occurs if 1−ϕ0(η) ∼ cηρ as η → 0,
that is if the data behave exactly as a power law.

Proof. Let λ(τ) be a rescaling and ϕ(τ, η) as in (9). Within this proof we denote
for convenience Kρ

∗ by K∗.

1. The solution formula (18) for τ0 = 0 implies

H
(
ϕ(τ, η)

)
= τ +H

(
ϕ0

(
η

λ(τ)

))
+

∫ τ

0

(
K(t)−K∗

)
g
(
ϕ
(
t, η λ(t)

λ(τ)

))
dt .

We �rst argue that

I(τ) =

∫ τ

0

(
K(t)−K∗

)
g
(
ϕ
(
t, η λ(t)

λ(τ)

))
dt→ g(1)

∫ ∞

0

(
K(t)−K∗

)
dt (28)

as τ → ∞. Indeed, for any τ0 > 0 we write I(τ) =
∫ τ0
0
· · · +

∫ τ

τ0
· · · =

I1(τ) + I2(τ). Due to the assumptions on K(τ) and the boundedness of g (cf.
(14)), we can for any given ε > 0 choose τ0 so large such that |I2(τ)| < ε for
all τ > τ0. Furthermore, since λ(τ) →∞ as τ →∞ we �nd

g(ϕ(t, ηλ(t)/λ(τ)))
τ→∞→ g(ϕ(1, 0)) = g(1)

for all 0 ≤ t < τ . Since |(K(t) − K∗)g(ϕ(t, ηλ(t)/λ(τ)))| ≤ C|K(τ) − K∗|
and since |K(t) − K∗| is integrable by assumption, Lebesgue's Dominated
Convergence Theorem implies that I1(τ) → g(1)

∫ τ0
0

(K(t)−K∗) dt as τ →∞.
This proves (28).
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2. Next we recall (15) and (16) to write

H
(
ϕ0

(
η

λ(τ)

))
= 1

2K∗+3
log

(
1− ϕ0

(
η

λ(τ)

))
+ log 2

2K∗+3

+
∫ ϕ0

(
η

λ(τ)

)
1/2

{
1

(2K∗+3)(ξ−1)
− 1

f(K∗,ξ)

}
dξ . (29)

Since the integrand in the last term is bounded as s→ 1 we �nd that
∫ ϕ0

(
η

λ(τ)

)

1/2

{ 1

(2K∗ + 3)(ξ − 1)
− 1

f(K∗, ξ)

}
dξ →

∫ 1

1/2

. . . dξ = const. (30)

as τ →∞. Thus, (28), (29) and (30) imply

H
(
ϕ(τ, η)

)
= τ +

1

2K∗ + 3
log

(
1− ϕ0

( η

λ(τ)

))
+ ω(τ) , (31)

with some function ω(τ) that satis�es ω(τ) → const. as τ →∞ with a constant
independent of η.

3. Now assume that ϕ0(·) satis�es (27a) and choose λ(τ) as in (27b). Then (31)
gives

H
(
ϕ(τ, η)

)
= 1

2K∗+3
log


1−ϕ0

(
η

λ(τ)

)

1−ϕ0

(
1

λ(τ)

)

 + ω(τ)

= ρ
2K∗+3


log η + log


L

(
η

λ(τ)

)

L

(
1

λ(τ)

)




 + ω(τ) . (32)

Since L is slowly varying at zero we �nd

lim
τ→∞

log
(L(

η
λ(τ)

)

L
(

1
λ(τ)

)
)
→ 0

and thus
H

(
ϕ(τ, η)

) → ρ

2K∗ + 3
log η + C as τ →∞,

which indeed implies that ϕ(τ, η) → ϕρ∗(η) for all η > 0 as τ → ∞ (recall
(22)).

4. Conversely, assume that ϕ(τ, η) → ϕρ∗(η) as τ →∞ for all η > 0. This implies,
using (22) and (31), that

τ +
1

2K∗ + 3
log

(
1− ϕ0

( η

λ(τ)

))
→ ρ

2K∗ + 3
log η + C (33)

as τ →∞ for all η > 0 and some constant C ∈ R. In particular, for η = 1 we
obtain

τ +
1

2K∗ + 3
log

(
1− ϕ0

( 1

λ(τ)

))
→ C (34)
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as τ → ∞ for all η > 0. This implies also that λ(τ) is indeed equivalent to
the choice in (27b). Subtracting (34) from (33) we �nd

1

2K∗ + 3
log

(
1− ϕ0

(
η

λ(τ)

)

1− ϕ0

(
1

λ(τ)

)
)
→ ρ

2K∗ + 3
log η + C (35)

as τ →∞ for all η > 0.
De�ne L(η) = (1−ϕ0(η))1/ρ

η
. Then (35) is equivalent to

log
(L

(
η

λ(τ)

)

L
(

1
λ(τ)

)
)
→ C

as τ → ∞ for all η > 0. Choosing η = 1 we �nd that this constant must be
zero and hence L is slowly varying.

4.3 Fast convergence of K(τ) for non-�at data

An important issue in the proof of convergence to a self-similar solution is establish-
ing convergence of K(τ). In general, we have yet very little control over K(τ). In
the following proposition, however, which relies on a simple comparison argument,
we show that K(τ) → 0 exponentially fast if the data are bounded above by 1− cxρ
for some ρ ∈ (0, 3/2).
Proposition 4.4. Assume that ψ0(x) ≤ 1 − cxρ for all x ∈ (0, 1) for some c > 0
and ρ ∈ (0, 3/2). Then there exists a C > 0 such

0 < K(τ) ≤ C

{
exp

(
τ
(
2− 3

ρ

))
3
4
< ρ < 3

2

exp
(−2τ

)
0 < ρ ≤ 3

4

.

Proof. Because of ψ ∈ [0, 1] the derivative ful�ls ∂τψ ≤ ψ4 − ψ2 and hence

ψ(τ, x) ≤ ψ̄(τ, x) ≡
(

1 +
1− ψ0(x)

3

ψ0(x)3
exp(3τ)

)−1/3

,

where ψ̄ is the solution of ∂τ ψ̄ = ψ̄4−ψ̄ with initial data ψ̄0(x) = ψ0(x). Furthermore
one can easily check that

ψ(τ, x)4 ≤ ψ̄(τ, x)4 ≤
(
1 + (1− ψ0(x)

3) e3τ
)−4/3

≤
(
1 +

(
1− (1− cxρ)3

)
e3τ

)−4/3

≤
(
1 + cxρe3τ

)−4/3
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By integrating Equation (10) one �nds ‖ψ(τ, ·)|1 = ‖ψ0|1 e−τ and by applying the
Cauchy-Schwarz inequality ‖ψ2(τ, ·)|1 ≥ ‖ψ0|21 e−2τ . Using the abbreviation a =
e−3τ/ρ the function θ(τ) can be estimated from above as follows

θ(τ) ≤
R 1
0 ψ̄(τ,x)4 dx

‖ψ0|21 e−2τ ≤ e2τ

‖ψ0|21

(∫ a

0
dx+

∫ 1

a
(1 + cxρe3τ )−4/3dx

)

=
exp

„
τ
(
2−3

ρ

)«

‖ψ0|21

(
1 +

∫ 1/a

1
(1 + cyρ)−4/3 dy

)

For ρ > 3/4 the integral converges, whereas for ρ ≤ 3/4 the integrand can be
bounded by a multiple of y4ρ/3 (depending on c) and hence it grows proportional to
exp(τ(3/ρ− 4)). Thus θ(τ) ≤ C exp

(
τ max(2− 3

ρ
,−2)

)
and in the same manner for

K(τ) = θ(1− θ)−1.

Corollary 4.5. Assume that ϕ0(η) ≤ 1 − cxµ for some 0 < µ < 3/2. Then there
exists a rescaling λ(τ) such that ϕ(τ, η) → ϕρ∗(η) for all η > 0 as τ →∞ if and only
if the data satisfy (27a) for some 0 < ρ ≤ µ.

Proof. This is a consequence of Theorem 4.3 and Proposition 4.4.

5 Numerical examples
Whether a solution ϕ(τ, η) of the time-dependent problem converges to a self-similar
solution is fully understood if ϕ0(η) ≤ 1 − cηρ for some c > 0 and 0 < ρ < 3/2. In
the general case, however, it is not clear under which conditions the associated K(τ)
converges, and if, whether it does so su�ciently fast. In order to shed some light
on this issue we present the results of numerical simulations in this section. They
con�rm the conjecture that convergence to the self-similar solution ϕρ∗ occurs if and
only if the data satisfy that 1− ϕ0 is regularly varying with power ρ.

5.1 Initial data with ρ < 3/2

In order to test our numerical scheme we consider �rst the regime which is covered
by our results in Section 4. First we investigate the convergence rate of K(τ) with
initial data ϕ0(η) = 1− ηρ with 1/2 ≤ ρ < 3/2.
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Figure 2: K(τ) for solutions of ϕ(τ, η) with initial data ϕ0(η) = 1− ηρ

For ρ < 3/2 we know thatK(τ) converges to zero exponentially fast, whereK decays
at least as K(τ) ≤ C exp

(
max(2 − 3/ρ,−2)

)
. In Figure 2 the actual convergence

rates (solid lines) are compared with this bound (dashed lines) and we found that
K(τ) actually converges with the predicted rate.
Since K(τ) converges exponentially fast, ϕ converges to a self-similar solution if
and only if 1− ϕ0 is regularly varying at zero. We present three examples for such
behaviour, namely for initial data

ϕ0(η) = 1 + η(log(η)− 1), (36a)
ϕ0(η) = 1− η

(
sin(log η) + 2

)
, (36b)

ϕ0(η) = 1− η. (36c)

While 1− ϕ0 in (36a) and (36c) is regularly varying, this is not the case for (36b).
Corresponding to our theoretical results Figure 3 shows convergence for (36a) and
non-convergence for (36b). In addition, Figure 4 indicates that the rate of conver-
gence |ϕ− ϕ∗| as τ →∞ is faster for the example (36c), which is supported by the
fact that the rescaled solution (dotted curves) tend to be closer to the exact solution
(full line) for comparable times τ in Figure 3 (top) and Figure 4.

5.2 Initial data ρ > 3/2

For ρ < 3/2 convergence K(τ) → 0 is known due to Proposition 4.4. Now we
present three more examples where ρ = 2. Qualitatively similar results are obtained
for other ρ > 3/2. This part indicates in which cases one can expect convergence of
K(τ) and what the limit and the rate of convergence will be.
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Figure 3: ϕ(τ, η) at various times showing convergence for (36a) (left), but no con-
vergence due to oscillations in (36b) (right); The full line shows the self-similar
solution with n = 1 and K∗ = 0 and the scaling a(τ) is such that ϕ(τ, 1/2) = 1/2
at all times.
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Figure 4: ϕ(τ, η) at various times showing convergence for initial data (36c); com-
pared to (36a) the convergence-rate |ϕ− ϕ∗|∞ as τ →∞ seems faster
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We choose

ϕ0(η) = 1 + η2(log(η)− 1) (37a)
ϕ0(η) = 1− η2

(
sin(log η) + 2

)
(37b)

ϕ0(η) = 1− η2 (37c)

We expect convergence for (37a) and (37c) and no convergence for (37b). In addition
we show the convergence-rates for K(τ) in these three cases.
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Figure 5: ϕ(τ, η) at various times showing convergence for (37a) (left), but no con-
vergence due to oscillations in (37b) (right); The full line shows the self-similar
solution with ρ = 2, the scaling a(τ) is such that ϕ(τ, 1/2) = 1/2 at all times.
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Figure 6: ϕ(τ, η) for initial data (37c); compared to (37a) the convergence-rate seems
faster
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Figure 7: While there is convergence for all initial data (even not regularly varying
ones) in case (36a-36c) (left), there is fast convergence for (37c), convergence for
(37a) and no convergence for (37b) (right)

A closer look reveals that convergence for (37c) is exponentially fast, while for (37a)
it is much slower.

6 Conclusions
We studied the structure of inertialess thin-�lm rupture, where van-der-Waals forces
and viscosity are the dominant driving forces. For a simpli�ed model we established
for each ρ > 0 the existence of a self-similar solution. In terms of the stretching
variable ϕ each of them is characterized by its behaviour near the singularity, i.e.
by a number ρ such that

ϕρ∗(η) = 1− cηρ + o(ηρ)

and by a corresponding value of Kρ
∗ . The solution is unique up to a rescaling of the

spatial scale by a constant.
The main purpose of this paper was to rigorously study convergence to these self-
similar solutions. For ρ ∈ (0, 3/2) where Kρ

∗ = 0, we can completely characterize
their domains of attraction. It turns out that for given data ϕ0 there exists a
spatial rescaling λ such that the solution converges to ϕρ∗ if and only 1 − ϕ0 is
regularly varying at zero with power ρ. In original variables the spatial rescaling is
asymptotically equivalent to (t∗ − t)−βL((t∗ − t)−β) with β = β(ρ) ∈ (1/3,∞) and
for a slowly varying function L given by the data. It is worth pointing out that this
corresponds to a pure power law only if L(s) ∼ const as s→∞ which is the case if
and only if the data behave like an exact power law at the origin.
We can prove the result described above for all ϕρ∗ under the assumption that K
converges to Kρ

∗ su�ciently fast. It is easy to prove by a comparison principle that
this is true for ρ < 3/2, for ρ > 3/2 a proof is still lacking. Numerical simulations
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indicate that this convergence is satis�ed if and only if the data are regularly varying.
This is strikingly di�erent to the case ρ < 3/2 where K converges fast to Kρ

∗ = 0
whenever the data are bounded above by 1 − cηρ for some ρ < 3/2 independent of
whether they are regularly varying or not.
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