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Abstract 

Within this work we present the synthesis and characterization of a pH-sensitive macroporous p(AAm-co-AA) 
hydrogel with an interconnected channel structure to enhance diffusion of aqueous solutions. The hydrogel is 
characterized by SEM and mercury porosimetry. Furthermore, the hydrogel is successfully integrated into 
piezoresistive microsensors measuring the hydrogel swelling due to pH changes. A response time reduction of about 
80% compared to sensors with conventional non-porous hydrogels is accomplished. 
© 2011 Published by Elsevier Ltd. 
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1. Introduction 

The rapidly expanding fields of biomedicine and biotechnology necessitate the development of new smart 
biocompatible, long-term stable sensor concepts for rapid, cost-effective detection of specific analytes 
like pH, glucose, proteins and many more [1]. Microdevices with integrated smart hydrogels into a 
MEMS platform show great potential to meet these requirements. However, hydrogel-based devices 
which employ hydrogels as chemo-mechanical transducers, and therefore, exploit the volume-phase 
transition, suffer from long response times due to diffusion-driven processes which primarily determine 
hydrogel swelling kinetics [2]. This is a serious drawback for the commercialization of hydrogel-based 
sensors [3]. In this paper we follow a promising route for the reduction of the characteristic response time, 
i.e. the introduction of an interconnected channel structure into the hydrogel network. Although, chemists 
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already proposed this route years ago [4], the utilization in real devices is surprisingly low and not yet 
reported for MEMS-based chemical microsensors. In this paper we present the synthesis and 
characterization of a pH-sensitive macroporous poly(acrylamide-co-acrylic acid)-hydrogel (p(AAm-co-
AA)) by free-radical copolymerization in the presence of a porogen, the linear polymer Polyethylene 
glycol (PEG). 

2. Experimental 

2.1. Hydrogel synthesis 

Non-porous poly(acrylamide-co-acrylic acid) p(AAm-co-AA): 1 g Acrylamide (AAm) and 0.3041 g 
Acrylic acid (AA) were dissolved in 2 g distilled water and mixed with an aqueous solution of 0.0544 g 
N, N, N’, N’-Tetramethylethylenediamine (TEMED) and 0.0197 g N, N’-Methylenebisacrylamide (BIS) 
in 1.5 g distilled water. The monomer mixture was filled in an ice-cooled three-necked flask. After 
stirring for 20 minutes under nitrogen atmosphere, a solution of 0.0865 g Sodium peroxodisulfate in 0.5 g 
distilled water was added to the monomer solution. The reaction solution was immediately filled in a 
cooled glass capillary. 

Porous poly(acrylamide-co-acrylic acid) p(AAm-co-AA): A solution of 1 g AAm, 0.3041 g AA, and 
0.4173 g Polyethylene glycol with molecular weight Mn = 6000 gmol-1 (PEG 6000) as the porogen, and 
2.5 g distilled water was mixed with a solution of 14 μl TEMED, 0.0282 g BIS, and 1 g distilled water. 
The monomer porogen mixture was filled in an ice-cooled three-necked flask. After stirring for 20 
minutes under nitrogen atmosphere, a solution of 0.0216 g Sodium peroxodisulfate in 0.5 g distilled water 
was added to the monomer porogen solution. The reaction solution was immediately filled in a cooled 
glass capillary. 

After 24 hours all hydrogel samples have been placed in distilled water for 5 days to remove 
uncrosslinked (sol) fractions and the porogen. The water has been refreshed everyday. 

2.2. Hydrogel characterization 

The synthesized and washed samples of porous and non-porous p(AAm-co-AA) have been freeze-
dried (in the water-swollen state), coated with platinum, and investigated with a “Zeiss Neon 40 EsB” 
Scanning Electron Microscope. 

Furthermore, mercury porosimetry was carried out for freeze-dried porous and conventional non-
porous hydrogels with a “Porosimeter 2000” (max. pressure 2000 bar) to determine the pore size and pore 
size distribution. For porosity analysis a contact angle θ =140°, a surface tension  χ = 480 dyn cm-1, and a 
mercury density ρHg = 13.545 gcm-3 (at 20.5 °C) have been considered. 

2.3. Piezoresistive microsensor 

The hydrogel-based piezoresistive microsensor is generally build up on two main components: (i) a 
piezoresistive pressure transducer (5.1 x 5.1 mm2) measuring the pressure due to hydrogel swelling, and 
(ii) the pH-sensitive p(AAm-co-AA) hydrogel layer (0.9 x 0.9 x 0.25 mm3). The hydrogel is confined in 
the chip cavity (380 μm deep) between a 20 μm thin silicon bending plate and a rigid support mounted on 
a modified TO8 package as schematically illustrated in Fig. 1. A detailed description of the sensor setup 
can be found in [4].
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Fig. 1: Schematic cross-sectional view of the piezoresistive chemical microsensor: 1 piezoresistors, 2 20 μm Si bending plate, 

3 p(AAm-co-AA) hydrogel layer, 4 electrical interconnect, 5 Si pressure sensor chip, 6 modified TO8 package, 7 fluidic inlet/outlet, 

8 analyte solution. 

3. Results 

3.1. Hydrogel characterization 

SEM analysis results clearly reveal that the utilization of PEG 6000 as a porogen leads to an open-
porous interconnected network structure (Fig. 2a). The characteristic intrusion curves of the mercury 
porosimetry (Fig. 2b) show a distinct difference which indicates the different network morphology. From 
the data of these curves the pore size distribution was calculated (Fig. 2c) using the Washburn equation. 
The analysis results of non-porous hydrogels show a wide distribution of pore sizes which results from 
the intrinsic interstices in the gel (nm-range), and pores due to freeze-drying (>10μm). In contrast, a 
narrow pore size distribution with a mean pore diameter of 3.3 μm was found for the porous hydrogel, 
which is perfectly confirmed by the SEM results. 

Fig. 2: Results of SEM analysis and mercury porosimetry measurements of non-porous (top) and porous p(AAm-co-AA) hydrogels 

(bottom); (a) SEM images (Magnification: 2000, scale bar 2μm), (b) Intrusion/Extrusion curves, (c) Pore size distribution calculated 

from the data of (b) by the Washburn equation.
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3.2. Sensor performance 

Fig. 3a shows the normalized time-dependent sensor output signal for a pH transition between pH 7 
and pH 5 for the conventional non-porous and the macroporous hydrogel. For the sensor using the 
macroporous hydrogel the equilibrium of the sensor signal is reached about 5 times faster compared to a 
sensor with non-porous hydrogel. The water loss during the shrinking process is also more pronounced 
for the macroporous hydrogel due to the higher water content at equilibrium because of the porous 
network structure (higher sensitivity). The sensor output signal for cyclic pH changes between pH 5 and 
pH 7 for the macroporous hydrogel (Fig. 3b) reveals a stable and reproducible sensor performance. 
  

  

                                               (a)         (b)
Fig. 3: Time-dependent normalized sensor output signal; (a) output signal of macroporous and non-porous p(AAm-co-AA) 

hydrogels for a pH change between pH 7 and pH 5, (b) normalized sensor output signal for cyclic pH changes between pH 5 and 

pH 7 for the macroporous hydrogel.

4. Conclusions 

Macroporous p(AAm-co-AA) hydrogels were synthesized by use of PEG 6000 as a porogen. A mean 
pore diameter of 3.3 μm was determined by mercury porosimetry and approved by SEM analysis. The 
macroporous hydrogel was integrated into a piezoresistive microsensor. A response time reduction of 
about 80% was observed compared to sensors with non-porous hydrogels. 
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