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Abstract

The Lippmann equation is considered as universal relationship between interfacial
tension, double layer charge, and cell potential. Based on the framework of continuum
thermo-electrodynamics we provide some crucial new insights to this relation.

In a previous work we have derived a general thermodynamic consistent model for
electrochemical interfaces, which showed a remarkable agreement to single crystal experi-
mental data. Here we apply the model to a curved liquid metal electrode. If the electrode
radius is large compared to the Debye length, we apply asymptotic analysis methods and
obtain the Lippmann equation. We give precise definitions of the involved quantities and
show that the interfacial tension of the Lippmann equation is composed of the surface
tension of our general model, and contributions arising from the adjacent space charge
layers.

This finding is confirmed by a comparison of our model to experimental data of several
mercury-electrolyte interfaces. We obtain qualitative and quantitative agreement in the 2V
potential range for various salt concentrations.

We also discuss the validity of our asymptotic model when the electrode radius is
comparable to the Debye length.

1 Introduction

The interfacial phenomena of electrocapillarity, discovered by Lippmann a century ago[Lip75,
Lip73], is a key feature for investigations of the electrochemical double layer which forms at the
interface between two charged phases. Intensive experimental studies on mercury-aqueous
electrolyte interfaces carried out by Gouy [Gou03, Gou06a, Gou06b, Gou10] Frumkin [Fru28],
Grahame [Gra47], and others, lead to fundamental perceptions of the double layer. Experimentally
well and reproducible observed is the parabola shaped relationship between the interfacial tension
γ and some applied voltage U . However, there are some electrolyte specific deviations in this
relationship, which are yet only partly understood. The fundamental thermodynamic basis for this
effect is the Lippmann equation[BF01, BRGA02, NTA04], which states

d

dU
γ = Q , (1)

where U is the potential difference between metal and electrolyte, γ is interfacial tension, Q
is the double layer charge. This relation is widely recognized as a thermodynamic postulation,
which is, however, not tenable. Despite, a sharp definition of the quantities in (1) is not as obvious
as it might seem.

In this work we derive fundamental relations for interface between two adjacent, charged phases
based on continuum thermo-electrodynamics. We obtain general results, e.g. generalizations of
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(a) Electrocapillarity curves for various salts accord-
ing to Fig. 1 from [Gra47] (reprinted with permis-
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(b) Computed interfacial tension based on our
model.

Figure 1: Comparison between measured data of electrocapillarity curves and computations
based on our model.

the Young–Laplace equation for electrochemical interfaces, which are independent of the actual
material but rely exclusively on thermodynamic equilibrium assumptions and matched asymptotic
methods,

p+ − p− = 2kM γ . (2)

It turns out that the measurable interfacial tension γ actually consists of three contributions, i.e.
the surface tension γ

s
of the material surface S, and two boundary layer contributions γ̃± of

the respective phase. These contributions are structurally very different since they arise from
different thermodynamic theories, i.e. volume and surface thermodynamics. But knowledge of
this structural decomposition is crucial for a model based understanding of electrochemical
interfaces, and we derive the relation (1) with a detailed knowledge on γ and Q within this work.

For a liquid metal-electrolyte interface we obtain further explicit representations of the interfacial
contributions based on material functions for the respective phases. For example, we obtain for
the electrolytic boundary layer contribution the representation

γ̃E =

∫ UE

0

√
2ε0(1 + χ)(p+

S − pE)dU
′ (3)

where p+
S denotes the material pressure right at the interface, while pE denotes the bulk pressure.

This finding fits well to our recently derived model [DGL16, DGL14] of the double layer, where
the material pressure p is the crucial ingredient. Additionally, adsorbates contribute to the surface
tension γ

s
with constituent specific properties, i.e. the corresponding adsorption energy, which

explains the deviations in Fig. 1 for the various salts.

For several Hg/aqueous electrolyte solutions we provide numerical computations of the interfacial
tension based on our model and compare them to experimental data. Fig. 1 shows results of our
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model in comparison to the prominent measurements by Gouy and Grahame []. It is to emphasize
that our model allows thus for a quantitative and qualitative model based understanding of
electrocapillarity curves. In section 7 we discuss in detail several aspects of our model which
lead to the corresponding parameters used to predict the electrocapillarity curves in Fig. 1.

Motivation. We consider a liquid metal in contact with a liquid electrolyte. When a potential
is applied, in general a double layer forms at the interface S. In thermodynamic equilibrium the
electric field and the stress in the double layer is described by the coupled system of Poisson
equation and the momentum balance

div((1 + χ)ε0E) = nF [[(1 + χ)ε0E · ν]] = n
s

F (4)

div(Σ) = 0 [[Σ · ν]] = −2kMγ
s
ν −∇

s
γ
s
. (5)

HereE denotes the electric field, χ is the electric susceptibility, γ
s

is the surface tension, and Σ

is the total stress tensor, which is given by

Σ = −p1 + (1 + χ)ε0

(
E ⊗E − 1

2
|E|21

)
. (6)

The contribution of the electric field to the total stress is called the Maxwell stress. The double
bracket denotes the jump, i.e. difference, of the bulk quantities at the interface.

r
E

M
r

S Ω

Ω
M

E

r
S

Let us assume locally spherical symmetry. Using spherical coordinates (r, θ, ψ) with basis
vectors (er, eθ, eψ) the surface S is positioned at rS and E = Erer. The total stress tensor
reduces to

Σ = Σrrer ⊗ er + Σθθeθ ⊗ eθ + Σψψeψ ⊗ eψ (7)

with

Σrr = −p+ 1+χ
2
εE2

r , Σθθ = Σψψ = −p− 1+χ
2
εE2

r . (8)

The Poisson-momentum equation system reduce to

∂r(r
2(1 + χ)ε0Er) = r2nF , [[(1 + χ)ε0Er]] = n

s

F , (9)

∂rΣrr = −2
r
(1 + χ)ε0E

2
r , [[Σrr]] = − 2

rS
γ
s
. (10)

Let rE > rS a point in the electrolyte and rM < rS a point in the metal. Both points are
sufficiently far away from the interface. Further we assume that the mean curvature kM = −1/rS
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holds |kM r| ≈ 1 for r ∈ (rM , rE). Then we can integrate the bulk equations (9)1 and (10)1
with respect to r,

−(1 + χ)ε0

(
Er|M/E

rS
− Er|rM/E

)
= ±q̃M/E , (11)

Σrr|M/E
rS
− Σrr|rM/E = ±2kM γ̃

M/E . (12)

The new quantities are defined as

q̃M/E = ±
∫ rM/E

rS

nFdr , γ̃M/E = ±
∫ rM/E

rS

(1 + χ)ε0E
2
rdr . (13)

We denote the new quantities as boundary layer charge and boundary layer tension in the metal
and in the electrolyte phase.

The electric field vanishes few nanometers away form the interface . Hence, we can assume
Er|rM/E = 0 and therefore Σrr|rM/E = −p|rM/E . We obtain from the Poisson-momentum
system (9)–(10)

0 = n
s

F + q̃E + q̃M , (14)

p|rE − p|rM = 2kM

(
γ
s

+ γ̃M + γ̃E
)
. (15)

Equation (14) is the electroneutrality condition of the electrical double layer. The second result
(15) is quite remarkable. It states that the pressure across the entire electrical double layer is not
only dependent on the thermodynamic surface tension γ

s
, but also on the boundary layer tension

generated by electric field in the space charge layers. It seems thus appropriate to call

γ := γ
s

+ γ̃M + γ̃E (16)

interfacial tension of the electrical double layer.

The interfacial tension γ serves as the candidate for the Lippmann equation (1). From measure-
ments we know that the charge Q in the Lippmann equation (1) is the electric charge of the
whole double layer. For an ideally polarizable electrode the double layer charge is given by

Q = q̃E +
∑
α∈ME

zαe0n
s
α , (17)

whereME is the set of electrolytic species. The voltage difference U between the electrode and
the electrolyte is defined as U = ϕ|rM − ϕ|rE . We will show in section 3 that the definitions of
the interfacial tension, charge and applied voltage approximately satisfy the Lippmann equation
(1) as well as the Young-Laplace equation (2) in the limit λ → 0, where λ is a dimensionless
parameter that controls the width of the boundary layers.

2 Thermodynamical consistent model for equilibrium state

We do not give a detailed derivation of the model here. Our modeling is based on the framework
of non-equilibrium thermodynamics [MR59, dM84, BD14] and its extensions to surfaces and
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the connection to electrodynamics [Mül85, Bed86]. A general model containing all relevant
ingredients for planar interface is provided in [DGM15], the general case for curved interfaces
can be found in [Guh15].

Setup. We consider an interface S dividing a domain Ω ⊆ R3 into the subdomains Ω+ and
Ω−. The normal ν to the interface S always points from Ω− to Ω+. For quantities defined in Ω+

or Ω− there will often be corresponding quantities on S. As a convention the same letters are
used for these quantities but the surface variables are indicated by a subscript s.

Jumps at interfaces. We introduce the boundary values and the jump of a generic function
u(x) in Ω± at the interface S as

u|±S = lim
x∈Ω±→S

u and [[u]] = u|+S − u|
−
S . (18)

In the case the function u is not defined in either Ω+ or in Ω−, we set the corresponding value in
(18) to zero.

Constituents. In each of the two domains Ω+ and Ω− and on the interface S, we consider
a mixture of several constituents. In Ω± we denote the constituents by Aα where α is taken
from some index setM±. For each constituent Aα in one of the subdomains Ω± we assume
there is a corresponding constituent present on the surface S, but in addition there may be some
constituents that are exclusively present on S. The index set for the constituents on S is denoted
byMS . A constituent Aα has the (atomic) mass mα and may be carrier of the charge zαe0,
where zα is the charge number and e0 is the elementary charge.

Thermodynamic state. In equilibrium, the thermodynamic state in each point x ∈ Ω± is
described by the number densities nα of the constituents, the temparature T and the electric
fieldE. The thermodynamic state of the interface S is characterized by the number densities n

s
α

of the interfacial constituentsa and the interfacial temperature T
s

.

In equilibrium the temperature T in both domains is constant and continuous at the interface S,
i.e. T

s
= T |±S , hence the temperature can be considered as a parameter here.

In equilibrium the electric field can be expressed in terms of the electrostatic potential by
E = −∇ϕ. We assume that the electrostatic potential is continuous at the interface such that
the Maxwell equation [[∇ϕ× ν]] = 0 is satisfied,

ϕ
s

= ϕ|−S = ϕ|+S . (19)

The new quantity ϕ
s

is called the electrostatic surface potential.
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General constitutive assumptions We assume in each subdomain Ω± a constant suscepti-
bility χ. To cover a wide range of materials we assume the free energy densities in Ω± and on S
are of the form

ρψ = ρψ̂(T, n0, . . . , nN)− χε0

2
|∇ϕ|2 , ρ

s
ψ
s

= ρ
s
ψ̂
s
(T
s
, n
s

0, . . . , n
s
NS) . (20)

The chemical potentials are then defined by

µα =
∂ρψ̂

∂nα
, µ

s
α =

∂ρ
s
ψ̂
s

∂n
s
α

. (21)

By means of the Gibbs-Duhem relation we introduce the material pressure and the surface
tension

p = −ρψ̂ +
N∑
α=0

nαµα , γ
s

= ρ
s
ψ̂
s
−

NS∑
α=0

n
s
αµ
s
α . (22)

Model equations and boundary conditions In equilibrium, the mass balances, momentum
balance and Maxwell’s equations in Ω± reduce to [DGM15, DGL16]

∇(µα + zαe0ϕ) = b for α ∈M± , (23a)

−(1 + χ)ε0∆ϕ = nF . (23b)

A direct calculation shows that the momentum balance results form the equation system above
and the Gibbs-Duhem relation (22)left

− div(Σ) = ρb , (23c)

where ρb is the force densities due to gravitation and Σ is the total stress tensor,

Σ = −p1 + (1 + χ)ε0(∇ϕ⊗∇ϕ− 1
2
|∇ϕ|21) . (23d)

The boundary conditions at S, which follow from surface balance equations, are [Mül85, Guh15]

µα
∣∣±
S

= µ
s
α for α ∈M± , (24a)

−[[Σ · ν]] = 2kM γ
s
ν + ρ

s
b
s

+∇
s
γ
s
, (24b)

[[∇ϕ · ν]] = n
s

F . (24c)

3 Reduced models for bulk and boundary layers

To derive a general Lippmann equation based on the rigorous thermodynamic model we need
to consider asymptotic limit of thin double layers, that can be described by the reduced models
summarized below.
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When two electrochemical systems are brought into contact it is well-known that narrow boundary
layer are formed adjacent to the contact surface. The width of the layers is in the order of the
Debye-length which for liquid electrolytes is usually in the range of nanometers. If the macroscopic
size Lref of the system is in the range of centimeters, one can introduce a small dimensionless
number λ to represent the Debye length as λLref . Since the solution of the above model (23)-
(24) depends on the relation between these different length scales, we add from now on an upper
index λ to all the functions.

3.1 Formal asymptotic analysis

We use the method of formal asymptotic analysis to derive a reduced model for a planar interface
in non-equilibrium. We refer to [DGM15] for a detailed description of the method. The basic
concept of the method is described below.

Let uλ be a generic function from our list of state variables in Ω±. We assume λ � 1 and
approximate uλ in the bulk by an outer expansion with respect to the small parameter

uλ = u(0) + λu(1) + λ2 u(2) + . . . (25)

where the newly introduced functions u(0), u(1), u(2), . . . still need to be determined. For a
function F of uλ the expansion is given by a Taylor series

F (uλ) = F (u(0)) + λF ′(u(0))u(1) +O(λ2) . (26)

We use the abbreviations F (0) = F (u(0)) and F (1) = F ′(u(0))u(1) for the leading and higher
order terms. In analogous way we introduce expansions of the state variables on surface and for
functions thereof.

If λ� 1, the boundary layer constitutes only a small portion of the domains Ω± and the outer
expansion does not necessarily have to be accurate inside the layers. Therefore we introduce
an additional inner expansion inside the layer, which is based on space coordinates that are
rescaled by λ in the normal direction. To distinguish between the two expansions in the bulk and
in the boundary layer, we denote the inner expansion by ũλ and write

ũλ = ũ(0) + λ ũ(1) + λ2 ũ(2) + . . . (27)

The two approximations have to be related by so called matching conditions which are detailed
in Sect. 4.4 below. While the variables in the inner expansion have to satisfy the boundary
conditions at S, for the outer expansion the role of the boundary conditions is taken by the
matching conditions. Nevertheless, a definition of boundary values and jumps analogous to (18)
can also be made for the variables of the outer expansion in the bulk, but we prefer to apply a
different notation here to highlight the interpretation as jumps over the complete double layer.
We denote the leading order parameterization of the interface S by I and define for a generic
function u(0) on the regions Ω±

u(0)|±I = lim
x→I±

u(0) and [[[u(0)]]] = u(0)|+I − u
(0)|−I . (28)
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An equivalent definition holds for the higher order u(1). By the formal asymptotic analysis carried
out in Sect. 4 it is possible to derive model equations for the variables of the inner and the
outer expansions with boundary conditions for the bulk variables that incorporate all double layer
information in a consistent way. Here we summarize the results.

3.2 Constant leading order bulk quantities

The general constitutive assumptions are analogous to (20)–(22) above. In leading order the free
energy density simplifies to

ρψ(0) = ρψ̂(0)(T, n
(0)
0 , . . . , n

(0)
N ) . (29)

In each of the subdomains Ω± we have constant number densities n(0),±
α and a constant

electrostatic potential ϕ(0),±. Hence, there is a well defined electric potential difference over the
interface I . For species which are defined in both domains Ω+ and Ω− the electrochemical
potential is continuous at I , i.e.

[[[µ(0)
α + zαe0ϕ

(0)]]] = 0 at I for α ∈M+ ∩M− . (30)

Moreover, the jump condition

[[[p(0)]]] = 0 at I (31)

implies that in leading order the pressure p(0) is constant in Ω. Thus gravitation and surface
tension have to be considered as higher order effects.

3.3 Surface and boundary layer equations of the leading order

Given the input data ϕ(0),± and n(0),±
α from the leading order problem, we can determine the

surface number densities n
s

(0)
α and the surface electrostatic potential ϕ

s

(0) as well as ϕ̃(0), ñ(0)
α in

the boundary layers.

Surface. The number densities n
s
α and ϕ

s

(0) are determined by

µ(0),±
α + zαe0ϕ

(0),± = µ
s

(0)
α + zαe0ϕ

s

(0) at I for α ∈M± , (32a)

0 = n
s

F,(0) + q̃+ + q̃− at I , (32b)

where the boundary charges are defined as functions of boundary layer quantities,

q̃± = ±
∫ ±∞

0

ñF,(0) dx . (33)
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Boundary layer. In the boundary layer we only have to solve differential equations in one
space dimension which we denote by z, i.e.

∂z(µ̃
(0)
α + zαe0ϕ̃

(0)) = 0 , for α ∈M± , (34)

−(1 + χ)ε0∂zzϕ̃
(0) = ñF,(0) , (35)

with boundary conditions

lim
z→±∞

ñ(0)
α = n(0),±

α , for α ∈M± , (36)

lim
z→±∞

ϕ̃(0) = ϕ(0),± , and ϕ̃(0)|±z=0 = ϕ
s

(0) . (37)

We see that ϕ
s

(0) is independent of the space coordinates and thus there is a well defined

potential difference between the surface and each of the bulk domains Ω± in leading order.

In the boundary layer the momentum balance has the representation

∂zp̃
(0) + ñF,(0)∂zϕ̃

(0) = 0 . (38)

We define the quantities

γ̃± = ±
∫ ±∞

0

(1 + χ)ε0|∂zϕ̃(0)|2 dx (39)

as boundary layer tensions. The meaning of this definition becomes accessible in the following
section.

3.4 Higher order bulk and surface model

The variables in first order are the electrostatic potential ϕ(1) and the number densities n(1)
α .

They are related to the chemical potentials as µ(1)
α =

∑
β(∂µα

∂nβ
)(0)n

(1)
β . The governing equations

in Ω± are

∇(µ(1)
α + zαe0ϕ

(1)) = b for α ∈M± , (40a)

0 = nF,(1) . (40b)

From these equations and the Gibbs-Duhem equation in the first order, the momentum balance
follows as

∇p(1) = ρ(0)b . (41)

Thus, due to gravitation the pressure as well as the electrochemical potentials are not constant
in the first higher order.

The boundary conditions at the thin double layer interface I are

[[[µ(1)
α + zαe0ϕ

(1)]]] = 0 for α ∈M+ ∩M− , (42a)

[[[p(1)]]] = 2k
(0)
M (γ

s

(0) + γ̃+ + γ̃−) , (42b)

where γ(0) is the surface tension given by the Gibbs-Duhem equation (22)right in the leading order
and the boundary layer tensions γ̃± are defined in (39).
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3.5 Lippmann equation

Based on the reduced models of the preceding sections, the Lippmann equation is derived in
Sect. (5), here we give a definition of the involved quantities and state the result.

According to (31), the pressure in leading order is continuous across the double layer. Thus the
first relevant contributions have to be of higher order. In the first order, the jump of the pressure is
given by the Young-Laplace-equation (42b), where the interfacial tension γ of the reduced model
is composed of the thermodynamic surface tension γ

s

(0) and two electromagnetic contributions

γ̃±, viz.

γ = γ
s

(0) + γ̃+ + γ̃− . (43)

Because the electric potential in Ω± in leading order is independent of the space variable, there
is a well defined potential difference

U = ϕ(0),+ − ϕ(0),− . (44)

While the complete double layer is electric neutral, cf. (32b), there is the reasonable definition of
the electric charge of the double layer, cf. [DGL16]

Q =
∑
α∈M−

zαe0n
s

(0)
α + q̃− . (45)

In the case where no surface reactions are considered and on the basis of the underlying
asymptotic analysis for the derivation of the reduced models, we get with the above definitions
the Lippmann-equation

d

dU
γ = Q . (46)

4 Derivation of the reduced models

4.1 Summary of model equations in dimensionless form

We introduce scaling constants Lref , nref and mref that are related to characteristic length,
particle density and molecular weight in the system and introduce a characteristic surface particle
density n

s

ref on the interface S. The scaling generates the dimensionless numbers

λ =

√
ε0kT

e2
0n

ref (Lref )2
, λδ =

n
s

ref

nrefLref
. (47)

The length λLref is related to the well known Debye length which controls the width of the
boundary layers. Then, the dimensionless version of the model equations reads

∇(µα + zαϕ) = λb for α ∈M± , (48a)

−λ2(1 + χ)∆ϕ = nF. (48b)
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The dimensionless jump conditions on the interface S are represented by(
µα + zαϕ

)∣∣±
S

=
(
µ
s
α + zαϕ

s

)
for α ∈M± , (49a)

[[pν − (1 + χ)λ2(∂νϕ∇ϕ− 1
2
|∂νϕ|2ν)]] = λδ(2kM γ

s
ν + λρ

s
b
s

+∇
s
γ
s
) , (49b)

−[[λ(1 + χ)∂νϕ]] = δn
s

F . (49c)

Pressure and surface tension are given by

p = −ρψ +
N∑
α=0

nαµα , γ
s

= ρ
s
ψ
s
−

NS∑
α=0

n
s
αµ
s
α . (50)

and the momentum balance can be recovered from (48a) and (50), i.e.

∇p+ nF∇ϕ = λρb . (51)

4.2 Formal asymptotic expansion and bulk equations

Leading order. From (48) we can directly read off the leading order bulk equation in Ω±

∇(µ(0)
α + zαϕ

(0)) = 0 for α ∈M± , (52a)

0 = nF,(0) . (52b)

As a consequence we see that ϕ(0) and all n(0)
α are constant in each of the subdomains Ω±.

Since nF,(0) = 0, the momentum balance simplifies to

∇p(0) = 0 (53)

and thus also the pressure is constant in each of the subdomains Ω±.

Higher order. The bulk equations in the orderO(λ) are

∇(µ(1)
α + zαϕ

(1)) = b , (54a)

0 = nF,(1) . (54b)

and the momentum balance in higher order can be recovered as

∇p(1) = ρ(0)b . (55)

4.3 Expansion of surface and boundary layers

Locally, points on the interface S can be represented as r(s1, s2). The partial derivatives ∂1r
and ∂2r define the tangential vectors τ1 and τ2, respectively, which we assume to be orthogonal.
In a neighborhood U of a smooth surface S, the distance function is well defined. Each point
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x ∈ U has a representation x = r+ zν, where z is the distance to S. For a generic variable u
defined on U , we introduce rescaled inner variable ũ by defining

ũ(s1, s2, z) = u(r(s1, s2) + λzν) . (56)

ũ = ũ(0) + λ ũ(1) +O(λ2) . (57)

Moreover, we assume that the parameterization and the normal can be expanded as

r(s1, s2) = r(0)(s1, s2) + λr(1)(s1, s2) +O(λ2) , (58a)

ν(s1, s2) = ν(0)(s1, s2) + λν(1)(s1, s2) +O(λ2) , (58b)

Transformation of derivatives The rescaling in normal direction leads to the following relations
for the derivatives, cf. [DGK14]:

∇u = λ−1∂zũν + |τ1|−2∂1ũ τ1 + |τ2|−2∂2ũ τ2 +O(λ) , (59a)

div(u) = λ−1∂zũ · ν + divτ (ũ) +O(λ) , (59b)

−∆u = −λ−2∂zzũ− λ−12kM∂zũ+O(1) , (59c)

where divτ denotes the surface divergence. If S does not depend on λ, theO(λ) terms in (59a)
and (59b) vanish.

Equations in inner variables The model equations in inner variables read

(∂zµ̃α + zα ∂zϕ̃) +O(λ2) = 0 , (60a)

(∂1,2µ̃α + zα ∂1,2ϕ̃) +O(λ) = 0 , (60b)

−(1 + χ)(∂zzϕ̃+ λ 2kM∂zϕ̃) +O(λ2) = ñF . (60c)

The dimensionless jump conditions on the interface S are represented by(
µ̃α + zαϕ̃

)∣∣±
S

=
(
µ
s
α + zαϕ

s

)
(61a)

[[p̃− 1+χ
2
|∂zϕ̃|2]] = λ δ 2kM γ

s
+O(λ2) , (61b)

−[[(1 + χ)∂zϕ̃∂1,2ϕ̃]] = δ∂1,2γ
s

+O(λ) , (61c)

−[[λ(1 + χ)∂zϕ̃]] = δλn
s

F +O(λ2) . (61d)

Also in the layers we can recover the momentum balance from (60) and the Gibbs-Duhem relation

(∂zp̃+ ñF ∂zϕ̃) +O(λ2) = 0 , (62)

(∂1,2p̃+ ñF ∂1,2ϕ̃) +O(λ) = 0 , (63)
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Leading order system. After solving the inner and the outer problem, it turns out that the inner
tangential equations (60b), (63) and the surface equations (61c) do not contribute any additional
independent information. Thus they are omitted here. The remaining inner equations in leading
order read

∂z(µ̃
(0)
α + zα ϕ̃

(0)) = 0 , (64a)

∂zp̃
(0) + ñF,(0)∂zϕ̃

(0) = 0 , (64b)

−(1 + χ)∂zzϕ̃
(0) = ñF,(0) . (64c)

In particular, the inner electrochemical potentials are constant in leading order. The jump condi-
tions in leading order are (

µ̃(0)
α + zαϕ̃

(0)
)∣∣±
z=0

= µ
s

(0)
α + zαϕ

s

(0) , (65a)

[[p̃(0) − 1+χ
2
|∂zϕ̃(0)|2]] = 0 , (65b)

−[[(1 + χ)∂zϕ̃
(0)]] = δn

s

F,(0) . (65c)

Higher order. As in the leading order, the inner tangential equations and the surface equations
can be omitted. The remaining first order of the equation system (60) is

∂z(µ̃
(1)
α + zα ϕ̃

(1)) = 0 , (66a)

∂zp̃
(1) + ñF,(0)∂zϕ̃

(1) + ñF,(1)∂zϕ̃
(0) = 0 , (66b)

−(1 + χ)
(
∂zzϕ̃

(1) + 2kM ∂zϕ̃
(0)
)

= ñF,(1). (66c)

We see that the electrochemical potentials in the layers are also constant in the first order. The
higher order jump conditions for the chemical potentials and the pressure are(

µ̃(1)
α + zαϕ̃

(1)
)∣∣±
z=0

=
(
µ
s

(1)
α + zαϕ

s

(1)
)

(67a)

[[p̃(1) − (1 + χ)∂zϕ̃
(0)∂zϕ̃

(1)]] = δ 2k
(0)
M γ

s

(0) . (67b)

4.4 Matching of inner and outer expansions

Inner and outer expansions are related by so called matching conditions. In [CF88, Peg89]
the matching conditions are formally achieved by inserting the corresponding expansions into
the left and right hand sides of (58) and subsequent comparison of powers of λ. The result is,
cf. [DGK14]:

ũ(0)(z)− u(0),±(r(0)) = o(1/|z|) , (68a)

∂zũ
(0)(z) = o(1/|z|) , (68b)

and for the terms in higher order we get

ũ(1)(z)− z ∂νu(0),±(r(0))− u(1),±(r(0)) = o(1/|z|) , (69a)

∂zũ
(1)(z)− ∂νu(0),±(r(0)) = o(1/|z|) , (69b)

Whenever a variable is constant inside the layer, we get by the matching conditions a relation of
the boundary values from the outer expansion to the boundary values of the inner variables at S.
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Leading order Since the inner electrochemical potentials are constant according to (64a) the
matching conditions can be used to relate the electrochemical potentials of the outer expansion
to the boundary values of (65a), viz.

µ(0)
α |±I + zαϕ

(0)|±I = µ
s

(0)
α + zαϕ

s

(0) . (70)

Using the momentum balance equation (64b) and the Poisson equation (64c) we can rewrite the
jump condition (65b) into

p(0)|+I = p(0)|−I . (71)

Higher order bulk We introduce the boundary layer charges and boundary layer tension in the
layers as

q̃± = ±
∫ ±∞

0

ñF,(0) dx , γ̃± = ±
∫ ±∞

0

(1 + χ)(∂zϕ̃
(0))2 dz . (72)

Integration of (64c) and the matching condition for ∂zϕ̃(0) show that the jump condition (65c) can
be written in the form

0 = n
s

F,(0) + q̃+ + q̃− . (73)

From Poisson equations (64c) and (66c) at leading and higher order we get

∂zp̃
(1) + ñF,(0)∂zϕ̃

(1) + ñF,(1)∂zϕ̃
(0)

= ∂zp̃
(1) − (1 + χ)∂z

(
∂zϕ̃

(0)∂zϕ̃
(1)
)
− 2k

(0)
M (1 + χ)(∂zϕ̃

(0))2 . (74)

Thus the momentum balance (66b) can be rewritten as

∂zp̃
(1) − (1 + χ)∂z

(
∂zϕ̃

(0)∂zϕ̃
(1)
)

= 2k
(0)
M (1 + χ)(∂zϕ̃

(0))2 . (75)

Integration form z = 0 to ±∞ yields

p(1)|±I −
(
∂zp̃

(1) − (1 + χ)∂z
(
∂zϕ̃

(0)∂zϕ̃
(1)
))∣∣∣±

z=0
= ±2k

(0)
M γ̃± , (76)

where we have used the matching conditions (68b)/(69a) and the bulk equation (53). Now, we
can write the jump condition (67b) as

p(1)|+I − p
(1)|−I = 2k

(0)
M (γ

s

(0) + γ̃+ + γ̃−) . (77)

Finally, due to the constancy of the inner electrochemical potentials we can relate the electro-
chemical potentials of the outer expansion to the boundary values at S by

µ(1)
α |±I + zαϕ

(1)|±I = µ
s

(1)
α + zαϕ

s

(1) . (78)
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5 Derivation of the Lippmann equation

For the following derivation it is important to keep in mind, that within the leading order bulk
system in Ω± the electric potential is constant ϕ(0),± such that there is a well defined potential
difference across the interface I

U := ϕ(0),+ − ϕ(0),− . (79)

Moreover, the number densities n(0),±
α and hence µ(0),±

α are constant in Ω± and independent of
U . Finally, the pressure is constant in Ω and we denote pref = p(0).

Surface contribution From Gibbs-Duhem and global electroneutrality we infer

d

dU
γ
s

(0) =
d

dU
ρ
s

(0)ψ̂
s

(0)
−
∑
α∈MS

d

dU
(n
s

(0)
α µ

s

(0)
α ) = −

∑
α∈MS

n
s

(0)
α

d

dU
µ
s

(0)
α (80)

= −
∑
α∈MS

n
s

(0)
α

d

dU
(µ
s

(0)
α + zαe0ϕ

s

(0))− (q̃+ + q̃−)
d

dU
ϕ
s

(0)

We reformulate the electrochemical potentials in terms of bulk variables as

d

dU
γ
s

(0) = −
∑
α∈M±

n
s

(0)
α

d

dU
(µ(0),±

α + zαe0ϕ
(0),±)− (q̃+ + q̃−)

d

dU
ϕ
s

(0) (81)

The bulk chemical potentials µ(0),±
α are independent of U and using the global electroneutrality

once more, we infer

d

dU
γ
s

(0) = −
∑
α∈M−

zαe0n
s

(0)
α

d

dU
ϕ(0),− +

( ∑
α∈M−

zαe0n
s

(0)
α + q̃+ + q̃−

)
d

dU
ϕ(0),+

− (q̃+ + q̃−)
d

dU
ϕ
s

(0)

=
∑
α∈M−

zαe0n
s

(0)
α

d

dU
(ϕ(0),+ − ϕ(0),−) + (q̃+ + q̃−)

d

dU
(ϕ(0),+ − ϕ

s

(0)) . (82)

With the definition (79) we get the result

d

dU
γ
s

(0) =
∑
α∈M−

zαe0n
s

(0)
α +

(
q̃+ + q̃−

) d

dU
(ϕ(0),+ − ϕ

s

(0)) . (83)

Boundary layer contributions. Because the leading order electrochemical potentials are
constant in the layers, i.e.

µ̃(0)
α = µ(0),±

α − zα(ϕ̃(0) − ϕ(0),±) , (84)
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we see from Gibbs-Duhem relation that p̃(0) can be expressed as a function of ϕ̃(0) − ϕ(0),±.
Then, from the momentum balance and Poisson equation we conclude

p̃− pref = (1 + χ)∂z(ϕ̃
(0))2 . (85)

Assuming monotonicity of ϕ̃(0), we get an differential equation for ϕ̃(0) of the form

∂zϕ̃
(0),± = (1 + χ)F±(ϕ̃(0) − ϕ(0),±) , (86)

where the function F± depends on the subdomain. Then, we can rewrite the boundary layer
tension γ̃± as

γ̃± = ±
∫ ±∞

0

(∂zϕ̃
(0))2 dz = ±

∫ ϕ̃(0)(±∞)

ϕ̃(0)(0)

F (ϕ̃− ϕ(0),±) dϕ̃ (87)

= ±
∫ ϕ(0),±

ϕ
s

(0)

F±(ϕ̃− ϕ(0),±) dϕ̃

We define U± := ϕ(0),± − ϕ
s

(0) and differentiate with respect to U± to get

d

dU±
γ̃± = ± d

dU±

∫ 0

−U±
F (ϕ̃) dϕ̃ (88)

= ∓F (−U±) = ∓F (ϕ
s

(0)) = ∓(1 + χ)∂zϕ̃
(0)(0)

We use the Poisson equation

d

dU±
γ̃± = ±

∫ ±∞
0

(1 + χ)∂zzϕ̃
(0) dz = ∓

∫ ±∞
0

ñF dz = −q̃± . (89)

Since U = U+ − U− we have U± = U∓ ± U and dU−

dU
= dU+

dU
− 1 and deduce

d

dU
(γ̃+ + γ̃−) =

dU+

dU

d

dU+
γ̃+ +

dU−

dU

d

dU−
γ̃− (90)

= −dU
+

dU
q̃+ −

(dU+

dU
− 1
)
q̃− = q̃− − (q̃+ + q̃−)

dU+

dU
.

Putting together (83) and (90) we finally conclude

d

dU
(γ
s

+ γ̃+ + γ̃−) =
∑
α∈M−

zαe0n
s
α + q̃−. (91)

6 Electrocapillary of the metal-electrolyte interface

We consider now the interface between a liquid metal and a liquid electrolyte. First we state
and explain the material functions for the metal, the electrolyte and the surface, where the
chemical potentials are derived from material specific free energy densities of the respective
phase[DGL16]. Based on this material functions we obtain representations of the boundary layer
and surface charges and their contributions to the interfacial tension. In section 7 we apply our
model to several Hg|aqueous electrolyte interfaces and compare our results to experimental
data.
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Notation. By convention the metal occupies the domain Ω+ = ΩM and in the following we
use the index M instead of + to denote quantities in the metal. According to this definition the
electrolyte occupies the domain Ω− = ΩE and we denote all electrolytic quantities with an index
E. Further we omit the labeling with (0) and (1) of the leading and higher order and the tilde to
distinguish between bulk and boundary layer.

We denote the potential difference in the leading order between metal-surface and electrolyte-
surface as

UM = ϕM − ϕ
s

and UE = ϕ
s
− ϕE , (92)

and the boundary layer charges as

QM
BL =

∫ +∞

0

nF dz and QE
BL =

∫ 0

−∞
nF dz . (93)

6.1 Specific material model

The material functions given in this section are derived in detail in [DGL16]. We briefly summarize
the results.

Metal The metal is modeled as mixture of metal ions denoted by M and valence electrons
e−, with respective number densities nM and ne. We consider the metal as an incompressible
mixture, leading to the incompressibility constraint nMvRM = 1, where vRM denotes the partial
volume of a particle. For the chemical potentials we have

µM = ψRM + vRMpM and µe =

(
3

8π

)2/3
h2

2me

n2/3
e , (94)

where µe is equal to the Fermi level of the considered metal. Note that pM in (94) is the metal
ion partial pressure which is related to the total material pressure p via

p = pe + pM and pe =
2

5

(
3

8π

)2/3
h2

2me

n5/3
e . (95)

For the metallic boundary layer charge we obtain the representation

Q̂M
BL = − sgn(UM)

√
2ε0(1 + χM)e0nM

(
UM − 2

5

µMe
e0

(
1−

(
1− e0

µMe
UM
) 5

2

))
. (96)

Here, nM denotes the density of metal (ions), µMe the bulk chemical potential (or Fermi level) of
the electrons, and UM the potential drop within the metal boundary layer. For the boundary layer
tension of the metal we obtain thus

γ̂MBL =

UM∫
0

√
2ε0(1 + χM)e0nM

(
U ′ − 2

5

µMe
e0

(1− (1− e0

µMe
U ′)

5
2 )

)
dU ′, (97)

which is a strictly positive for UM > 0.
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Figure 2: Sketch of the mixture constituents in the volume and on the surface. Anions and
cations are particles which are composed from a center ion and a surrounding solvation shell of
bounded and oriented solvent molecules. In addition there may be free solvent molecules and
unoccupied sites on the surface.

Electrolyte. We consider the electrolyte as incompressible liquid mixture of constituents
Aα, α = 0, 1, . . . , N with mole densities nα. By convention A0 denotes the solvent, while
Aα, α = 1, . . . , N are ionic as well as undissociated species. For all constituents vRα is the
partial volume and yα the respective mole fraction. The incompressibility states

n
N∑
α=0

vRα yα = 1 with yα =
nα
n

and n =
N∑
β=0

nβ, (98)

The chemical potentials of the electrolytic constituents in the incompressible limit is

µα = gRα + vRα (p− pR) + kBT ln(yα) , α = 0, 1, . . . , N , (99)

with reference Gibbs free energy gRα = ψRα + vRα p
R. Note that due to the solvation effect several

solvent molecules are bound in the solvation shell of the ionic constituents (cf. figure 2), which
implies vR0 � vRα .

We obtain from the boundary layer equations (34) in the leading order an implicit equation system
to determine the boundary layer charge

Q̂E
BL = − sgn(UE)

√
2ε0(1 + χ)(p− pE) and g(p, UE) = 0 (100)

with

g(p, UE) =
NE∑
α=0

yEαe
− zαe0
kBT

UE− vα
kBT

(p−pE) − 1 . (101)

Here yEα denotes the bulk mole fractions. Since g(p, UE) = 0 is not explicitly solvable, p =
p̂(UE) denotes a local solution of (100)2. We obtain thus the semi-explicit representation of the
electrolytic boundary layer tension

γ̂EBL :=

UE∫
0

√
2ε0(1 + χ)(p̂(U ′)− pE)dU ′. (102)

which is positive for UE > 0 and vanishes for UE = 0.
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Surface. The surface S is considered as mixture of the surface metal ions M, surface electrons
e−, and adsorbates Aα, α = 1, . . . , NS − 2, with respective surface number densities n

s
α.

Since we consider the adsorption to occur on certain adsorption sites, we introduce surface
vacancies via n

s
V = ωMn

s
M −

∑NS
α=0 ωαns α

. Here, ωα denotes the adsorption site of constituent

Aα. Quite similar to the volume phases we have an incompressibility constraint on the surface,
stating aRMn

s
M = 1 where aRM is the partial area of surface metal ions. The chemical potential of

the metal ions is

µ
s
M = ψ

s

R
M + ωMkBT ln y

s
V − aRMγ

s
with y

s
V =

n
s
V

ñ
and ñ =

NS−2∑
α=0

n
s
α, (103)

and of the adsorbates (α = 0, 1, . . . , NS)

µ
s
α = ψ

s

R
α + kBT ln y

s
α − ωαkBT ln y

s
V . (104)

We denote with γ
s

the surface tension, y
s
V the surface fraction of vacancies and y

s
α the surface

fraction of adsorbates. Note that we consider on the surface also a solvation effect, whereby
each adsorbed ion binds κ

s
α solvent molecules.

For the electrons we consider the surface chemical potential to be a constant, i.e. µ
s
e = µ

s

M
e.

Due to the adsorption equilibrium of the electrons on the metal surface we have the relation
UM = 1

e0

(
µMe − µ

s

M
e

)
, where µ

s

M
e is the surface chemical potential of the electrons. Since µMe as

well as µ
s

M
e are constant, the potential drop UM = ϕM − ϕ

s
is also constant.

The surface tension γ
s

can be rewritten as γ
s

= γ
s

M − γ
s

E which has some beneficial properties.

From the adsorption equilibrium of the metal ions we obtain a representation of γ
s

M, i.e.

γ
s

M = n
s

R
M∆gAM − zMn

s

R
Me0U

M, (105)

where n
s

R
M is the surface metal ion density, zM the ionic charge number, and ∆gAM = ψ

s

R
M − gRM

the constant adsorption energy of the metal ions. Form the surface equation (32a), we obtain
for the surface mole fraction y

s
α of the vacancies and adsorbates Aα, α = 0, 1, . . . , NS the

expressions

y
s
V = e

− aRM
kBT

γ
s

E

and y
s
α = yEα(yE0)

(κ
s
α−κα)

e
−∆gAα
kBT
− zαe0
kBT

UE− aRα
kBT

γ
s

E

. (106)

We denote with ∆gAα the (constant) adsorption energy and κ
s
α, κα the respective solvation

numbers of constituentAα . Note that (106) implies γ
s

E > 0. Further the side condition
∑

α y
s
α =

1 yields

y
s
V (γ

s

E) +

NS∑
α=0

y
s
α(γ

s

E, UE) = 1, (107)

which determines γ
s

E as a function of UE, i.e. γ
s

E = γ̂
s

E(UE).
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Interface. We have thus a representation of the interfacial tension γ as function of the potential
differences UE and UM,

γ = γM − γE with γM = γ
s

M + γ̂MBL = γ̂M(UM) and γE = γ
s

E + γEBL = γ̂E(UE) . (108)

Note that γMBL > 0 as well as γEBL > 0 and γ
s

E > 0. The boundary layer in the electrolyte as well

as the adsorption of electrolytic species can thus only lower the interfacial tension γ. Further,
since UM = const., the contribution

γM = γ
s

M + γMBL (109)

is also constant. Instead of ∆gAM as parameter of the model we can thus consider γM as
parameter, which is essentially the surface tension of the liquid metal-vacuum or air interface.

An representation of the double layer charge Q is obtained in a similar manner. The surface
charge n

s

F decomposes as n
s

F = Q
s

E +Q
s

M with

Q
s

E =

∑NS
α=1 zαe0y

s
α

aRV y
s
V +

∑NS
α=0 a

R
αy
s
α

(110)

and we obtain

Q = QE
BL +Q

s

E (111)

with representations QE
BL = Q̂E

BL(U
E) and Q

s

E = Q̂
s

E
(UE)[DGL16].

Applying a potential In an experiment the potential difference between the metal and some
reference electrode is measured [DGL16]. Therefore we have to express the the potential
difference between the metal and electrolyte U = UM + UE as a function of the measured cell
potential E between metal and reference electrode.

Let us consider a experimental setup with some reference electrode R, where the metal and
the reference electrode are connected via cables C1 and C2 to a voltmeter V which measures a
voltage E between its two identical, metallic plates V

s
1 and V

s
2. The electrochemical cell, including

measuring device and cables, may thus be written as

V
s

1 | C1 | M | E | R | C2 | V
s

2︸ ︷︷ ︸
E=ϕ

s
V1−ϕ

s
V2

. (112)

The measured cell potential E then corresponds to the surface potential difference between the
two plates of the voltmeter, i.e.

E = ϕ
s
V1 − ϕ

s
V2 . (113)
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Due to the continuity of electrochemical potential µe − e0ϕ of the electrons we have

E = UE + UR with UR = − 1

e0

(µ
s

M
e − µ

s

R
e)− UR,E (114)

where UR,E = ϕ
s

R − ϕE denotes the potential difference between bulk electrolyte and surface

potential of the reference electrode. We follow the classical assumption of an ideally non-
polarizable (reference) electrode [BRGA02], which states UR,E = const. Since µ

s

M
e is incorporated

in UR, we can consider UR as model parameter instead of µ
s

M
e.

6.2 Lippmann equation

Due to the constant potential difference UM and the simple relation (114) between the potential
difference UE and measured potential E the Lippmann equation (46) simplifies to

dγ

dE
= Q. (115)

This is the Lippmann equation which was very precisely confirmed by experimental measure-
ments. However, in contrast to common (surface) thermodynamic approaches, which actually
postulate the Lippmann equation (or a similar relationship), we derived it within the consistent
framework of non-equilibrium thermodynamics.

A further derivative with respect to E of the Lippmann equation leads to an important relation,
which is used to determine the differential capacity C from a interfacial tension measurement or
vice versa,

d2γ

d2E
= C . (116)

6.3 Electrocapillarity maximum and potential of zero charge

The Lippmann equation (115) shows that the electrocapillarity maximum E0 indeed corresponds
to the potential of zero charge, i.e.

dγ

dE

∣∣
E=E0 = 0 ⇔ Q

∣∣
E=E0 = 0 (with

d2γInt

dE2

∣∣
E0 > 0). (117)

However, since Q consists of two contributions, namely the boundary layer charge QE
BL and

the adsorbate surface charge Q
s

E, the condition Q = 0 actually implies QE
BL = −Q

s

E, i.e. a

balance between the adsorbate charge and the boundary layer charge. Note that the condition

Q = 0 with QE
BL = Q̂E

BL(E
0 − UR) and Q

s

E = Q̂
s

E
(E0 − UR) servers to determine E0. For

a non-adsorbing salt holds E0 − UR = 0 [DGL16], while for an adsorbing salt E0 depends
parametrically on the salt concentration, the adsorption energies ∆gAα , solvation numbers and
so on.
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7 Electrocapillarity of the Hg|aquous electrolyte interface

In this section we discuss several representative examples in order to provide a model based
understanding and interpretation of Fig. 1.

The following list provides a summary of the parameters arising in our model. A detailed discus-
sion of the model parameters is given in [DGL16] and an upcoming work.

Electrolyte Surface

Bulk particle densities nEα/
mol

L
Adsorption energy ∆gAα / eV

Solvent part. mol. volume vR0 =
1

55.5
/

L

mol
Metal part. mol. area aRM = 5.09 · 108/

cm2

mol

Temperature T = 298/K Reference potential UR = 0/V

Solvation number κα = z2
α · 45 Surface Solvation number κα,β

Ionic partial molar volumes vRα = (1 + κα)vR0 Partial molar areas aRα = (1 + κα,β)aRM

Dielectric susceptibility χE = 25 Metal interf. tension γM = 485.5 · 10−3/
N

m

Bulk pressure pE = 1/ atm

We discuss the following examples to investigate the impact of the respective parameter variation
on the electrocapillarity curve:

� adsorption energy of solvent (∆gA0 ),

� volume solvation number (κα),

� multi-valent salts (zα),

� dissociation degree (αd),

� bulk concentration dependency (nEα),

� adsorption energies of ions (∆gAα ),

The equation system in section 3.3 is used to compute numerically the interfacial tension with
respect to the applied potential for the respective example.

7.1 Adsorption energy of the solvent

Consider the interface between Hg and some inert gas (interface 1) as well as between water
and the same gas (interface 2). In the light of section XX, the interfacial tension of the two
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Figure 3: Plot of the relationship between ∆gA0 and the electrolyte tension γE according to the
equation system (122), (123)1 and (123)2.

interfaces writes as

γHg|gas = γHg − γgas and γwater|gas = γwater − γgas. (118)

Assuming that the γgas contribution remains equal for both interfaces, we obtain

γHg|water = γHg − γwater = γHg|gas − γwater|gas, (119)

which is the interfacial tension of a Hg|water interface. At 20◦C we have the following values[Jas72]

γHg|gas = 486.5 · 10−3/
N

m
, γwater|gas = 72.88 · 10−3/

N

m
(120)

which gives

γHg|water = 413.62 · 10−3/
N

m
(121)

and is in well agreement to the measured data γHg|water
measured = 415 · 10−3/ N

m [AG+67].

Next, assume for a moment that the adsorbate contributions of OH– and H+ are negligible
i.e. y

s
OH− = y

s
H+ = 0. Their contributions are separately discussed in section XX. Further,

reconsider the representation (102) of γEBL, which gives γ̂EBL(0) = 0. For a pure Hg|water interface
there is (at the potential of zero charge) only one contribution γE0 to the interfacial tension γ due
to adsorbed solvent molecules. The surface tension contribution γE0 satisfies

y
s

0 = yE0e
−∆gA0
kBT
− aR0
kBT

γE0 . (122)
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together with

y
s
V = e

− aRM
kBT

γE0 and y
s
V + y

s
0 = 1. (123)

The mercury ion surface density n
s

R
M is determined from n

s
M = n

2
3
M with nRM = 67.52/mol L−1

according to the density of mercury. We obtain hence for the partial molar area of mercury
aRM = (n

s
M)−1 = 5.09 · 108/ cm2

mol and in a similar manner for the solvent aR0 = 5.08 · 108/ cm2

mol .

Hence the number of surface sites of water is ω0 1. The interfacial tension contribution γ
s

E
0

is thus exclusively determined by ∆gA0 , i.e. γ
s

E
0 = f(∆gA0 ) (Fig. XX). We can choose ∆gA0

such that γE = 72.88 · 10−3/N m−1, which essentially determines the model parameter
∆gA0 = −0.032/ eV from an independent experiment, i.e. water|gas interface tension measure-
ments. This value is used for all upcoming examples of aqueous electrolyte mixtures.

7.2 Volume solvation number

Consider now some non-adsorbing salt AC which completely dissociates in anions A– and cations
C+. According to our model, each ion Aα binds κα solvent molecules in its solvation shell.
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Figure 4: Dependency of the interfacial tension γ on the solvation number κα for a completely
dissociated salt AC.

This is a crucial parameter for the interfacial tension value γ, or more precise, for the contribution
γEBL of the electrolytic boundary layer (see Fig. XX). In our validation study in the Ag|aqueous
electrolyte interface we determined κα = κ0 ≈ 45 for mono-valent ions. Since the solvation
effect arises from the microscopic interaction between the central ion and some polar solvent
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molecules, it is expectably that the solvation number depends κα depends on the charge number
zα. Several relationships are imaginable, e.g. κα = |zα| · κ0, κα = z2

α · κ0 or κα =
√
|zα| · κ0,

which are discussed in the next section on measurements of Na2SO4.

7.3 Charge number and dissociation degree

The charge numbers of the ionic compounds of some multi-valent salt also effects the electro-
capillarity curve.
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Figure 5: Comparison of the interfacial tension of multi-valent, completely dissociated salts.

Figure 5 displays the influence of multi-valent salts on the interfacial tension, where Na2SO4 is
considered as experimental example. In figure 5a we reflected the right and left branch of the
electrocapillarity curve on the dashed line, i.e. at the potential of zero charge. This clearly shows
that the interfacial tension is not symmetric w.r.t. to potential of zero charge. A comparison of this
measurement to our computations of multi-valent salts (Fig. 5b) explains this effect quite well if
one assumes complete dissociation of Na2SO4 in Na+ and SO4

2–. The best result is obtained
for κα =

√
|zα| · κ0 which is used in the further discussion. A detailed investigation of the

relationship between the solvation and charge number as well as a microscopic interpretation of
the relation

κα =
√
|zα| · κ0 (124)

will be given separately, since it is not scope of this work. It seems, however, quite reasonable that
the solvation number increases with the charge number and that this relation is not necessarily
linear.

When considering multi-valent ions, it is crucial to have detailed knowledge on the dissociation
degree of the corresponding salt. We find in the introductory electrocapillarity curves for example
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Ca(NO3)2, for which one could naively assume complete dissociation Ca(NO3)2 −−⇀↽−− Ca2+ +
2NO3

–. However, calcium nitrate does not necessarily dissociate in 2-valent calcium ions. Calcium
does react with hydroxide to form (dissolved) CaOH+, i.e. Ca2+ + OH– −−⇀↽−− CaOH+, which
changes the pH value of the solution. Additionally, the first dissociation step Ca(NO3)2 −−⇀↽−−
CaNO3

+ + NO3
– could be dominant in the dissolution of Ca(NO3)2, forming thus mainly mono-

valent cations CaNO3
+ and CaOH+.

In fact, electrocapillarity measurements provide some fascinating insights on the dissociation
degree of a multi-valent salt! If the electrocapillarity of is symmetric w.r.t. the potential of zero
charge, the charge numbers of the ionic species in solution are necessarily equal. For Ca(NO3)2

we find a symmetric behavior, which suggest the dissociation of Ca(NO3)2 −−⇀↽−− CaNO3
+ + NO3

–

instead of a (complete) dissociation Ca(NO3)2 −−⇀↽−− CaNO3
+ + NO3

–.
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Figure 6: Impact of the dissociation degree on the electrocapillarity curve.

Exemplarily consider AC2 which is assumed to dissociate completely into species A2–,AC–, C+.
However, there is a remaining dissociation degree αd ∈ [0, 1] of the reaction AC– −−⇀↽−− A2– + C+,
with αd = 1 meaning complete dissociation of AC2 in A2– and C+, while αd = 0 means complete
dissociation in AC– and C+. Figure 6 displays the impact of the dissociation degree on the
electrocapillarity curve. Expectably, the left branch remains unchanged since the bulk density
and valance number of the cations remains unchanged.

7.4 Salt concentration

Yet we have investigated the electrocapillarity curve for a fixed (equivalent) concentration of
0.1M. It is, however, well known that the interfacial tension is dependent on the electrolyte
concentration[Gou06a, Gou06b, Gou03]. Fig. 7 displays numerical solutions of our model for the
concentration range 0.0025− 0.1M of a completely dissociated, non-adsorbing salt AC.
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+0.4~o for 10 -I  mol kg -1 solutions, _+0.9~ for 10 -3 mol kg -1 solutions, 1~  
and 2~o for 10 -4 mol kg -1 solutions respectively at the p.z.c, and on the extreme 
cathodic side. Large relative standard deviations in the latter case are probably 
related to the instability of the counter electrode potential and to effects of the 
diffuse layer relaxation tailing after a delay of 5.8 ms. 

The electrocapillary curves resulting from integration of charge density 
potential curves are shown in Fig. 2 and Table 4. Good agreement is found 
between the calculated curves and direct measurements of surface tension for 10-1 
mol kg -1 solution. Such agreement is found on the negative branch for other 
solutions. It is worth stressing that for more dilute solutions than 10-1 tool kg-  ~ 
reliable results can only be obtained in a region restricted to 0 1000 mV v s .  NCE. 
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(a) Electrocapillarity curves for NaF solutions (Fig.
2 of [CDJH74]).
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(b) Parameter study of the salt concentration for a
mono-valent salt AC.

Figure 7: Salt concentration dependency of the electrocapillarity curve.

7.5 Adsorption energies

Several adsorption energies arise in our model for some arbitrary electrolytic mixture. These are
namely

� the adsorption energies ∆gAOH− and ∆gAH+ of protons and hydroxide ions,

� the adsorption energies of anions and the cation,

� and the adsorption energies of undissociated ionic compounds or other uncharged addi-
tives.
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impact on the electrocapillarity curve for a 0.1M
non-adsorbing salt AC.
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(b) Coverage of the mercury surface for ∆gA
OH− =

∆gAH+ = −0.3eV. Even though H+ and OH–

have relatively small bulk concentrations, i.e.
10−7mol L−1, adsorption starts at about ±0.3V.

Figure 8: Investigations on the adsorption of H+ and OH– on the mercury surface.
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cations anions

adsorptionI≠adsorptionN(C2H5)
+
4

(a) Measurement of the Hg|0.05MNa2SO4 inter-
face (a) and with cation adsorbing additives (b) and
anion adsorbing additives (c) (Fig. 36 of [VBHT67],
Data by Gouy [Gou06a, Gou06a, Gou06b]).

 

 

In
te

rf
ac

ia
l
te

ns
io

n
γ

/
10
−

3
N

m
−

1
]

Potential E (vs. UR) /V

0.1M Na2SO4 +0.001M AC (A− adsorbing)
0.1M Na2SO4 +0.001M AC2 ( C+ adsorbing)
0.1M Na2SO4

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
300

350

400

450

(b) Computation of mercury|0.05MNa2SO4 (blue)
with cation (yellow) and anion (cyan) adsorbing
additives.

Figure 9: Comparison of the interfacial tension for adsorbing cation and anion additives.

Adsorption of protons and hydroxide ions We investigate first the adsorption energies of
∆gA

OH− and ∆gAH+ . We assume that for pure water the potential of zero charge (for UR = 0)
is equal to zero, which implies that if OH– and H+ adsorb on the metal surface, their surface
concentrations are equal and thus necessarily ∆gA

OH− = ∆gAH+ . Figure 8a displays the impact
of the OH– and H+ adsorption on the electrocapillarity. A detailed chemical based discussion on
the adsorption energies of protons and hydroxide ions is not subject of this work. We rather show
the impact of H+ and OH– adsorption on the electrocapillarity. Since one would expect a slight
adsorption of H+ and OH– on the mercury surface, we choose ∆gA

OH− ≈ −0.3eV which ensures
the adsorption in a reasonable potential range (see the coverage computation in Fig. 8b). All
computations throughout this work were performed with the value ∆gA

OH− = ∆gAH+ = −0.3eV.
Note, however, that this is a metal specific quantity and could be very different for other materials.

Adsorption of ions Next we discuss the adsorption of anions and cations. Specific adsorption
of anions shifts the potential of zero charge in negative direction, while for cations it is shifts
positive. Fig. 9 shows a comparison between the data of K. Vetter[VBHT67] and a computation
of our model.

The computation of Fig. 9b is based on the parameters ∆gAC+ = −0.65/ eV (while ∆gAA2− =
1eV, no anion adsorption) for the yellow curve and ∆gAA− = −0.65/ eV (while ∆gAC+ = 1eV,
no cation adsorption) for the cyan curve.

Comparing our results with the measurements of K. Vetter (Fig. 9a) shows (i) a quite good
qualitative and quantitative agreement. The unsymmetric behavior w.r.t. the potential of zero
charge originates from the multi-valent anions SO4

2– (c.f. section 7.3).
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Figure 10: Parameter study of the anion adsorption energy ∆gAα and its impact on the electro-
capillarity curve.

We provide finally a parameter study of the adsorption energy ∆gAα of the mono-valent anion of a
0.1M AC mixture. This is considered as representative example for salts having the same cation
but different anions, e.g. KCl, KI,KOH. Expectably, if we decrease the adsorption energy ∆gAα ,
adsorption occurs earlier w.r.t. the potential of zero charge of a non-adsorbing salt. Additionally
we clearly find the contribution of the ionic adsorbates on the value of the electrocapillary
maximum. With respect to the introductory example we choose

∆gCl− = −0.4eV, ∆gBr− = −0.5eV, ∆gI− = −0.6eV (125)

while the anions SO4
2– and NO3

– do not adsorb (i.e. ∆gCl− > 1eV). We already showed that
the surface solvation is dependent on the specific constituent[DGL16], and we employ here

κ
s

Cl− = 20, κ
s

Br− = 15, κ
s

I− = 10. (126)

Origin of the various surface solvation numbers is probably the partial charge transfer [SG14],
which is, however, discussed in an independent work. Together with the parameters given in the
overview of 7, these parameters served to compute the electrocapillarity curves of Fig. 1b.

8 Summary

Within this work we derive in detail the thermodynamic relations which explain the electrocapillar-
ity effect. Rather than postulating the Lippmann-equation, we derive it based on non-equilibrium
thermodynamics and matched asymptotic methods. This procedure was performed for some gen-
eral interface between two charged phases. For the specific example of the liquid metal-aqueous
electrolyte interface we provide explicit material functions which allow for the computation of
the interfacial tension. Our model shows a remarkable qualitative and quantitative agreement to
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experimental data and it should be considered as the very basis of a model based understanding
of electrocapillarity curves. Detailed investigations on the various equilibrium parameters arising
in our model were carried out in order to provide insight on the respective dependency.

A Appendix

A.1 Rescaling to dimensionless variables

x→ Lrefx mα → mrefmα nα → nref nα

ϕ→ kT
e0
ϕ b→ kT

mref Lref λb

ρψ → nref kT ρψ µα → kTµα

Σ→ nref kT Σ p→ nref kT p

Table 1: Substitution in the bulk regions Ω±.

kM → 1
Lref kM n

s
α → n

s

ref n
s
α b

s
→ kT

mref Lref λb
s

ρ
s
ψ
s
→ kTn

s

ref ρ
s
ψ
s

µ
s
α → kTµ

s
α γ

s
→ n

s

ref kTγ
s

Table 2: Substitution on the interface S.

Discussion of the dimensionless numbers. We assume a number density nref which corre-
sponds to a 0.1 molar aqueous solution. The characteristic number densities for the surfaces
n
s

ref are given by typical spacing of the crystal lattice of a metal.

nref = 6.022 · 1025 m−3 , n
s

ref = 7.3 · 1018 m−2 . (127)

Given a characteristic length of the macroscopic system

Lref = 10−2m (128)

At room temperature T = 298.15 K and with the standard gravity of Earth g = 9.81ms−2, we
get the dimensionless numbers

λ ≈ 1.54 · 10−8 , λδ ≈ 1.21 · 10−5 , λ|b| ≈ 2.38 · 10−8 . (129)
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