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Abstra
tStandard generalized materials are des
ribed by an elasti
 energy densityand a dissipation potential. The latter gives rise to the evolution equation (�owlaw) for the internal variables. The energeti
 formulation provides a very weak,derivative-free form of this �ow law. It is based on a global stability 
onditionand an energy balan
e. Using time-in
remental minimization problems, whi
hallow for the usage of the ri
h theory in the dire
t method of the 
al
ulus ofvariations, it is possible to establish general, abstra
t existen
e results as wellas 
onvergen
e for numeri
al approximations. Appli
ations to shape-memorymaterials and to magnetostri
tive or piezoele
tri
 materials are surveyed.1 Introdu
tionOn the me
hani
al side the theory of standard generalized materials was developedin the early 1970s, see [28, 64, 69, 81℄. The mathemati
s for these models wasstudied in parallel, but was mostly restri
ted to the 
ase of 
onvex potentials withappli
ations in small-strain elastoplasti
ity, 
f. [31, 65℄.The theory of rate-independent hysteresis operators advan
ed mu
h further, see [11,35, 36, 80℄, mainly in the �eld of s
alar-valued hysteresis operators. In parallel, themathemati
al theory of solid me
hani
s had major breakthroughs in the treatmentof �nite-strain elastostati
s [6, 13℄ and in the study of mi
rostru
tures in modernmaterials [7, 67℄.The theory presented here is lo
ated in a triangle that has its 
orners in the ri
harea of existing engineering models, in the theory of hysteresis models, and in themethods of 
al
ulus of variations that were derived for non
onvex material models.The major fa
t is that rate independen
e is still so 
lose to stati
s that very similarmethods 
an be employed. Nevertheless it allows us to study evolutionary e�e
tson slow times
ales.In Se
t. 2 we will present the theory of standard generalized materials and will showhow these models are linked to the so-
alled energeti
 formulation. In Se
t. 3 wesummarize the existen
e theory for energeti
 solutions developed in a quite abstra
tsetting, see [22, 43, 49℄.In Se
t. 4 we dis
uss the question of approximation of the energeti
 formulation.Based on abstra
t Γ-
onvergen
e ideas it is possible to derive 
onvergent results fornumeri
al approximations via �nite-element methods, see [37, 55℄. Moreover, ho-mogenization results are established, see [63℄. Finally, a relaxation result is presentedthat is due to [37, 57℄. 1



The �nal se
tion is devoted to a list of several appli
ations. The whole work wasinitiated through the need for a better understanding of the hystereti
 evolutionof mi
rostru
ture in shape-memory alloys [58, 60℄. In the Se
ts. 5.1 to 5.4 we re-port on the development of the analysis of di�erent models sin
e then. Furtherappli
ations o

ur in damage [20, 56℄, in delamination [34℄ and in brittle fra
ture[12, 15, 21℄. The modeling of ferroele
tri
 and magnetostri
itive materials also �tsinto this framework, see Se
ts. 5.5 and 5.6. Moreover, the theory of elastoplasti
ityshould be mentioned, sin
e it is one of the major driving for
es of the theory ofrate-independent pro
esses. The re
ent advan
es in this topi
 will be surveyed inanother arti
le of this volume, see [46℄.2 Modeling Materials with Internal Variables2.1 Standard Generalized MaterialsThis theory was developed in [28, 81℄ and has established a 
entral r�le in the areaof material modeling on the phenomenologi
al level, see [23, 26, 45℄ for some re
entreferen
es.We 
onsider an elasti
 body with referen
e domain Ω ⊂ Rd . The deformation
ϕ : Ω → Rd gives rise to the strain tensor F = ∇ϕ. We assume that the statein a material point x ∈ Ω is des
ribed by F ∈ Rd×d and a further variable z ∈ Zwhi
h is often 
alled internal variable. Here z may denote plasti
 variables, damage,magnetization, polarization or some phase indi
ator. The admissible set Z is ingeneral a submanifold (with boundary) of Rm for some m ∈ N.The material behavior is des
ribed by two 
onstitutive fun
tions, the stored-energydensity W = Ŵ (x, F, z) (also 
alled elasti
 potential) and the dissipation potential
R = R̂(x, z, ż). While W is the potential for the stress-strain relation, R is thepotential for the dissipational for
es versus the rate ż, viz.,

T = ∂
∂F
Ŵ (x, F, z) and fdiss = − ∂

∂ż
R̂(x, z, ż) .The time evolution of the material is now des
ribed by the quasistati
 elasti
 equi-librium

−div
(

∂
∂F
Ŵ (x,∇ϕ, z)

)
= fext plus bound. 
ond.and by the �ow law for the internal variable whi
h involves the thermodynami
ally
onjugated driving for
e XZ = − ∂

∂z
Ŵ (x, F, z), viz.,

−(fdiss +Xz) = 0 = ∂
∂ż
R̂(x, z, ż) + ∂

∂z
Ŵ (x,∇ϕ, z) .Rate independen
e means that R̂(x, z, ·) is homogeneous of degree 1. Then, ∂

∂ż
R̂has to be understood as the multi-valued subdi�erential of 
onvex analysis

∂żR̂(x, z, v) = { η ∈ T∗
zZ | ∀w ∈ TzZ: R̂(x, z, w) ≥ R̂(x, z, v)+〈η, w−v〉 } .2



To provide a mathemati
al framework we introdu
e F as the set of admissible de-formations, whi
h is typi
ally an a�ne subspa
e of some Sobolev spa
e W1,p(Ω,Rd)due to the Diri
hlet boundary 
onditions. Moreover, we let Z = L1(Ω, Z) for thefun
tion spa
e of admissible internal states. For the state spa
e Q = F × Z we set
q = (ϕ, z) and

E(t, q) =
∫
Ω
Ŵ (x,∇ϕ, z) dz −

∫
Ω
fext(t, x)·ϕ(x) dx ,

R(z, ż) =
∫
Ω
R̂(t, z(x), ż(x)) dx .Hen
e, the evolutionary problem takes the form

DϕE(t, ϕ(t), z(t)) = 0,

0 ∈ ∂żR(z(t), ż(t)) + DzE(t, ϕ(t), z(t)) .
(1)2.2 The Energeti
 FormulationIn general the manifold Z ⊂ Rm might be 
ompli
ated and the de�nition of żmight be nontrivial. Moreover, in rate-independent systems it is to be expe
ted thatsolutions develop jumps. Hen
e, it is desirable to �nd a weaker formulation avoidingderivatives. For this we introdu
e the dissipation distan
e D(x, ·, ·) : Z×Z → [0,∞]whi
h is asso
iated with the Finslerian dissipation metri
 R̂(x, ·, ·) : TZ → [0,∞],viz.,

D(x, z0, z1) = inf{
∫ 1

0
R̂(x, z̃(s), ˙̃z(s))ds | z̃∈C1([0,1], Z), z̃(0)=z0, z̃(1)=z1 } .On Z this indu
es the distan
e D with D(z0, z1) =

∫
Ω
D(x, z0(x), z1(x)) dx, and weare able to de�ne the dissipation along an arbitrary path z : [0, T ] → Z via

DissD(z, [s, t]) = sup{
N∑

j=1

D(z(tj−1), z(tj)) | N ∈ N, s ≤ t0 < t1 < · · · tN ≤ t } .For smooth paths is 
ompatible with the 
lassi
al dissipation
DissD(z, [s, t]) =

∫ t

s
R(z(τ), ż(τ)) dτ =

∫ t

s

∫
Ω
R̂(x, z(τ, x), ż(τ, x)) dx dτ .Our weak form of (1) is the energeti
 formulation involving the stability 
ondition(S) and the energy balan
e (E). A pro
ess q = (ϕ, z) : [0, T ] → F ×Z = Q is 
alledenergeti
 solution for (E ,D), if for all t ∈ [0, T ] we have(S) q(t) ∈ S(t)

def
= { q∈Q | E(t,q)<∞, ∀ q̃∈Q: E(t,q) ≤ E(t,q̃)+D(q,q̃) }(E) E(t, q(t)) + DissD(q, [0, t]) = E(0, q(0)) +

∫ t

0
∂sE(s, q(s)) ds .Here ∂sE(s, q(s)) = ∂

∂s
E(s, q(s)) is 
alled the power of the external for
es and weimpli
itly assume that t 7→ ∂tE(t, q(t)) lies in L1((0, T )).In the 
ase that Q is a Bana
h spa
e, that E and R are Gateaux di�erentiableand that the energeti
 solution q lies in W1,1([0, T ],Q) it is easy to see that (S)3



implies DϕE(t, ϕ(t), z(t)) = 0 and O ∈ ∂żR(z(t), 0) + DzE(t, ϕ(t), z(t)). Moreover,di�erentiating (E) with respe
t to time yields DzE(t, ϕ(t), z(t))[ż(t)]+R(z(t), ż(t)) =
0 . This is exa
tly (1). In the 
ase that E(t, ·) is stri
tly 
onvex on the Bana
h spa
e
Q and that R does not depend on z, it is shown in [59℄ that (1) is in fa
t equivalentto (S) & (E). See also [19, 52℄ for more general results on this equivalen
e.However, as we are mostly interested in non
onvex models we will mainly fo
us onthe energeti
 formulation (S) & (E). Note that a signi�
ant simpli�
ation o

ursdue to the fa
t that (S) is a purely stati
 
ondition.2.3 Formulations that Minimize Lo
allyA major drawba
k of the energeti
 formulation is that (S) involves a global stability
ondition, while lo
al stability would be more physi
al. However, the word �lo
al�means that we need to spe
ify a topology in whi
h neighborhoods will be de�ned.One physi
al way of doing this is to 
onsider systems with small vis
osity and tostudy the limit of vanishing vis
osity,

0 = εA1ϕ̇+ DϕE(t, ϕ, z) ,

0 ∈ ∂R(z, ż) + εA2ż + DzE(t, ϕ, z) .A mathemati
al way of approa
hing the same problem is that of doing lo
al mini-mization in the asso
iated time-in
remental problem(IP)δloc qk ∈ Argmin{ E(tk, q̃) + D(qk−1, q̃) | q̃ ∈ Q, ‖qk−1−q̃‖ ≤ δ } ,where ‖·‖ denotes a suitable norm.It is shown in [18℄ that for the smooth �nite-dimensional situation the asso
iatedsolutions 
onverge, after an ar
length parameterization, to solutions of the followinglimit problem
0 ∈ ∂R‖·‖(z

′(s)) + DzE(t(s), z(s)) and 1 = t′(s) + ‖z′(s)‖ ,where R‖·‖(v) = R(v) for ‖v‖ ≤ 1 and ∞ else. Generalizations of this idea to thein�nite dimensional setting will be dis
ussed in [53℄.3 Analysis of the Energeti
 Formulation3.1 The Basi
 Abstra
t AssumptionsOur state spa
e Q = F × Z is 
onsidered to be the produ
t of two topologi
alspa
es F and Z, both of whi
h are assumed to be Hausdor�s
h. Throughout alltopologi
al notions like 
ompa
tness, 
losedness and (semi-)
ontinuity are meant inthe sequential sense. For 
onvergen
e we write Q→, F→ and Z→, respe
tively.4



We start with the assumptions on D : Z × Z → [0,∞]:
∀ z1, z2, z3 ∈ Z : D(z1, z3) ≤ D(z1, z2) + D(z2, z3) . (2)
D : Z × Z → [0,∞] is lower semi-
ontinuous . (3)For 
ompa
t K ⊂ Z and (zk)k∈N ⊂ K we have:
min{D(zk, z),D(z, zk)} → 0 =⇒ zk

Z→ z .
(4)For appli
ations in 
ontinuum me
hani
s it is essential to allow D to attain the value

+∞ and to be unsymmetri
, i.e., in general D(z1, z2) 6= D(z2, z1).An important abstra
t tool is a suitable generalization of Helly's sele
tion prin-
iple, 
f. [43℄. If the fun
tions zk : [0, T ] → K ⊂ Z with K 
ompa
t satisfy
DissD(zk, [0, T ]) ≤ C < ∞, then there exists a subsequen
e (kj)j∈N and a limitfun
tion z : [0, T ] → K ⊂ Z, su
h that for all t ∈ [0, T ] we have zkj

(t)
Z→ z(t) and

DissD(z, [0, T ]) ≤ lim infk→∞ DissD(zk, [0, T ]).For the energy fun
tional E the following assumptions proved to be useful:
∀ t ∈ [0, T ] ∀E ∈ R : { q ∈ Q | E(t, q) ≤ E } is 
ompa
t ; (5)
∃ cE0 ∈ R ∃ cE1 > 0 ∀ (t, q) ∈ [0, T ] ×Q with E(t, q) <∞ :

E(·, q) ∈ C1([0, T ],R) and |∂tE(s, q)| ≤ cE1 (E(s, q)+cE0 ) on [0, T ] ;
(6)

∀ ε > 0 ∀E ∈ R ∃ δ > 0 ∀ q with E(0, q) ≤ E :

|t1 − t2| ≤ δ =⇒ |∂tE(t1, q)−∂tE(t1, q)| ≤ ε ;
(7)

(
qk ∈ S(t), sup

k∈N

E(t, qk)<∞, qk
Q→ q

)
=⇒ ∂tE(t, qk) → ∂tE(t, q) . (8)The standard 
ondition (5) implies lower semi-
ontinuity and relative 
ompa
tnessof in�mizing sequen
es. The other 
onditions 
on
ern the power of external for
es

∂tE . Assumption (6) says that we are able to 
ontrol the work of the externalfor
es via the energy itself. The assumptions (7) and (8) 
on
ern 
ontinuity in
t and q. They are easily 
he
ked in the Bana
h spa
e setting if E has the form
E(t, q) = E0(q) − 〈ℓ(t), q〉 with ℓ ∈ C1([0, T ],Q∗).The �nal and 
ru
ial assumption 
ontrols the interplay of E and D:

∀ t ∈ [0, T ] : S(t) is 
losed in Q . (9)In most appli
ations of the present theory, the major work goes into establishing (9).There are a few abstra
t results that establish (9). For instan
e, if D is 
ontinuouson Z, then (9) 
an be easily derived using (5).The following lemma provides a more general 
ondition. We refer to [43, 55, 57℄ formore dis
ussion on ways to establish 
losedness of the stable set.5



Lemma 3.1. If for ea
h sequen
e (qk)k∈N in S(t) with qk Q→ q and ea
h q̃ ∈ Q̃ thereexists a re
overy sequen
e (q̃k)k∈N with q̃k Q→ q̃ su
h that
lim sup

k→∞

(
E(t, q̃k) + D(qk, q̃k) − E(t, qk)

)
≤ E(t, q̃) + D(q, q̃) − E(t, q)holds, then S(t) is 
losed.Proof: We start from qk ∈ S(t) with qk → q and have to show q ∈ S(t). Let q̃be an arbitrary test fun
tion. Then, by the assumption of the lemma there exist

q̃k, k ∈ N, with q̃k Q→ q̃. From qk ∈ S(t) we know 0 ≤ E(t, q̃k) + D(qk, q̃k) − E(t, qk)and hen
e the lim supk→∞ is nonnegative. We 
on
lude E(t, q̃)+D(q, q̃)−E(t, q) ≥ 0and obtain q ∈ S(t).3.2 The Existen
e ResultWe approa
h the time-
ontinuous formulation (S) & (E) by the following time-in
remental problem (IP). For a partition Π = {0 = t0 < t1 < · · · < tN = T} and agiven initial value q0 ∈ Q we let(IP)Π Find q1, q2, . . . , qn su
h that
qk ∈ Argmin{ E(tk, q̃) + E(qk−1, q̃) | q̃ ∈ Q } .By assumption (3) and (5) it is immediate that (IP)Π is solvable and we are able tode�ne the pie
ewise 
onstant interpolant

qΠ : [0, T ] → Q with qΠ(t) =

{
qj−1 for t ∈ [tj−1, tj) ,
qN for t = T .It is not di�
ult to see that the in
remental solution satis�es qΠ(tj) ∈ S(tj) for

j = 1, . . . , N and
E(tj, q

Π(tj)) + DissD(qΠ, [0, tj]) ≤ E(0, qΠ(0)) +
∫ tj
0
∂sE(s, qΠ(s)) ds .From this it is then possible to derive a priori estimates independent of Π for

E(t, qΠ(t)) and DissD(qΠ, [0, T ]). Helly's sele
tion prin
iple for the z-
omponentand the 
ompa
tness of the sublevels of E allow us then to 
onstru
t a 
onvergingsubsequen
e and to pass to the limit. The �nal result reads as follows. We refer to[22, 43, 49℄ for the proof.Theorem 3.2. Let Πk = {0 = tk0 < tk1 < · · · < tkNk
= T}, k ∈ N, be a sequen
e ofpartitions su
h that φ(Πk) = max{tkj −tkj−1 | j = 1, . . . , Nk} tends to 0. Let q0 ∈ S(0)be an initial 
ondition and qΠk : [0, T ] → Q be pie
ewise 
onstant interpolants ofthe solution of (IP)Πk

. Then there exists a subsequen
e qn = qΠkn and an energeti
solution q : [0, T ] → Q of (S) & (E) with q(0) = q0 su
h that for all t ∈ [0, T ] thefollowing holds 6



(i) zn(t)
Z→ z(t) ,(ii) E(t, qn(t)) → E(t, q(t)) ,(iii) DissD(qn, [0, t]) → DissD(q, [0, T ]) ,(iv) ∃ subsequen
e (N t

l )l∈N: ϕNt
l
(t)

F→ ϕ(t) for l → ∞ .Moreover, ∂tE(·, qn(·)) ∗
⇀ ∂tE(·, q(·)) in L∞((0, T )).The 
onvergen
e of the ϕ-
omponent o

urs only on t-dependent subsequen
es

(N t
l )l∈N. Hen
e, in general, we 
annot guarantee the measurability of the map-ping ϕ : [0, T ] → F . However, in [41, 42℄ it is shown that measurability 
an alsobe obtained by applying suitable results for measurable sele
tions of multi-valuedmappings.3.3 Results Based on ConvexityThe abstra
t result of the previous se
tion 
an be improved if additional propertiesare available. We now assume thatQ is a Bana
h spa
e, su
h that 
onvexity methods
an be used. In general, one should distinguish three di�erent spa
es X, Y and Z.The spa
e Z is the one that provides 
oer
ivity of the dissipation distan
e, i.e.,

∀ q0, q1 ∈ Q : D(q0, q1) ≥ ‖q1 − q0‖Z . (10)The spa
e Y measures the uniform 
onvexity of Jt,q : q̃ 7→ E(t, q̃)+D(q, q̃):
∀ q0, q1 ∈ Q : Jt,q

(
1
2
(q0+q1)

)
≤ 1

2
(Jt,q(q0)+Jt,q(q1)) − α

2
‖q0−q1‖2

Y (11)for some α > 0. Finally, X relates to the 
oer
ivity of E , i.e.,
∀ q ∈ Q : E(t, q) ≥ g(‖q‖X) (12)for some g ∈ C0([0,∞),R) with g(t) → ∞ for t→ ∞.The abstra
t results of Se
t. 3.2 immediately imply that any solution of (S) & (E)satis�es

q = (ϕ, z) ∈ L∞([0, T ], X) and z ∈ BV([0, T ], Z) .For a proof of the following result we refer to Theorem 3.4 in [49℄.Proposition 3.3. Assume that E and D satisfy the joint 
onvexity 
ondition (11)for some α > 0 and that there exists CY > 0 su
h that
∀ t ∈ [0, T ] ∀ q0, q1 ∈ Q : |∂tE(t, q0)−∂tE(t, q1)| ≤ CY ‖q0−q1‖Y .Then, every solution q of (S) & (E) satis�es

∀ t1, t2 ∈ [0, T ] : ‖q(t1)−q(t2)‖Y ≤ CY

α
|t1−t2| .7



As a typi
al example we 
onsider the 
ase Q = Z = X with
X = H1(Ω) , D(z0, z1) =

∫
Ω
|z0(x) − z1(x)| dx ,

E(t, z) =
∫
Ω
W (∇z(x)) + α

2
|z(x)|2 − fext(t, x)z(x) dx ,with α > 0, fext ∈ C1([0, T ],L2(Ω)) and W : Rd → [0,∞), where W is 
onvex and
oer
ive, i.e., W (A) ≥ c|A|2 − C for some C, c > 0 and all A ∈ Rd. Then, we may
hoose Z = L1(Ω) and Y = L2(Ω).In su
h situations it is possible to de�ne q̇(t) almost everywhere, sin
e jumps, whi
hare allowed in the energeti
 formulation, 
an no longer o

ur. Hen
e, it is possibleto study the lo
al subdi�erential formulation (1) instead. Using q = (ϕ, z) ∈ X = Qand R(z, v) = limε→0

1
ε
D(z, z + εv) we write (1) in the 
ompa
t form

X∗ ∋ 0 ∈ ∂vR(q(t), q̇(t)) + ∂qE(t, q(t)) a.e. on [0, T ] . (13)This equation is 
alled a doubly nonlinear equation and it relates to evolutionaryquasi-variational inequalities (
f. [10℄). We refer to [52, 59℄ for exa
t 
onditionswhi
h guarantee the equivalen
e between (S) & (E) and (13).The latter work 
ontains also a general existen
e result for Lips
hitz 
ontinuoussolutions to (13). Under quite severe additional assumptions it is even possibleto prove uniqueness, see [10, 52, 59℄. However, these assumptions are rarely metin material models ex
ept for very simple 
ases like linearized elastoplasti
ity withquadrati
 hardening, see [29, 31, 65℄. Other uniqueness results are dis
ussed in[61, 62℄ for piezoele
tri
ity and in [4℄ for an isotropi
 model for shape-memory alloys,see also Se
t. 5.4 Approximation, Γ-Limits and RelaxationIn several 
ir
umstan
es it is desirable to 
onsider sequen
es of fun
tionals (Ek)k∈Nand (Dk)k∈N whi
h 
onverge to limit fun
tionals E∞ and D∞, respe
tively, in asuitable sense. The main question is whi
h type of 
onvergen
e guarantees thatlimits q : [0, T ] → Q of solutions qk : [0, T ] → Q for (Ek,Dk) are solutions for
(E∞,D∞).Typi
al appli
ations of this idea o

ur for

• numeri
al approximations with Ek(t, q) = E∞(t, q) for q ∈ Qk ⊂ Q and ∞otherwise, where ea
h Qk is a �nite-dimensional subspa
e of Q su
h that Qk ⊂
Qk+1 and ⋃

k∈N
Qk is dense in Q.

• problems with singular perturbations (like sharp interfa
e models) or withpenalization terms
• 
onstant sequen
es Ek = E1,Dk = D1, where E1(t, ·) and D1(·, ·) are not lowersemi-
ontinuous and di�er from their Γ-limits E∞ and D∞.8



The latter point relates to relaxations of rate-independent evolution whi
h is animportant topi
 in material modeling. It is a tool for deriving evolution equationsfor mi
rostru
tures. We refer to [14, 48, 51, 60, 79℄ for dis
ussions of this topi
.Here we present the theory originating from [37℄. In [57℄ the abstra
t version wasdeveloped and in [55℄ it is applied to numeri
al approximation in several materialmodels. The following version is a simpli�ed version of the one developed in [57℄.4.1 Γ-Convergen
e of Rate-Independent SystemsWe let N∞ := N ∪ {∞} and state �rst the 
onditions on the dissipation distan
es
(Dk)k∈N∞

. Ea
h Dk, k ∈ N∞, is a pseudo distan
e on Z, i.e.,
∀ zj ∈ Z : Dk(z1, z1) = 0 and Dk(z1, z3) ≤ Dk(z1, z2) + Dk(z2, z3) . (14)To obtain solutions of in
remental problems we impose that

∀ k ∈ N∞ : Dk : Z × Z → [0,∞] is lower semi-
ontinuous . (15)The limit distan
e D∞ must be positive in the following senseFor 
ompa
t K ⊂ Z and (zk)k∈N ⊂ K we have:
min{D∞(zk, z),D∞(z, zk)} → 0 =⇒ zk

Z→ z .
(16)Finally, D∞ must be bounded from above by the Γ-liminf of (Dk)k∈N, i.e.,

(
zk

Z→ z and z̃k
Z→ z̃

)
=⇒ D∞(z, z̃) ≤ lim inf

k→∞
Dk(zk, z̃k) . (17)Next we state the 
onditions on the energy fun
tionals. We start with the 
ompa
t-ness of the sublevels:

∀ t ∈ [0, T ] ∀E ∈ R :(i) ∀ k ∈ N∞ : { q ∈ Q | Ek(t, q) ≤ E } is 
ompa
t ,(ii) ⋃
k∈N

{ q ∈ Q | Ek(t, q) ≤ E } is relatively 
ompa
t . (18)The next three 
onditions provide suitable 
ontinuity properties of the powers ∂tEk(·, ·)of the external for
es.
∃ c0, c1 > 0 ∀ k ∈ N∞ ∀ (t, q) ∈ [0, T ] ×Q with Ek(t, q) <∞ :

Ek(·, q) ∈ C1([0, T ]) and |∂tEk(s, q)| ≤ c1(Ek(s, q)+c0) on [0, T ] ;
(19)

∀ ε > 0 ∀E > 0 ∃ δ > 0 ∀ k ∈ N∞ ∀ q ∈ Q with Ek(0, q) ≤ E :

|t1−t2| ≤ δ =⇒ |∂tEk(t1, q)−∂tEk(t2, q)| ≤ ε ;
(20)

(
qk

Q→ q and sup
k∈N

Ek(t, qk) <∞
)

=⇒ ∂tEk(t, qk) → ∂tE(t, q) . (21)9



The �nal 
ondition on (Ek)k∈N∞

on
erns the Γ-liminf, namely

qk
Q→ q =⇒ E∞(t, q) ≤ lim inf

k→∞
Ek(t, qk) . (22)The 
ru
ial 
ondition that 
onne
ts the 
onvergen
es of Dk to D∞ and Ek to E∞involves the sets of stable states. For k ∈ N∞ we have

Sk(t)
def
= { q ∈ Q | Ek(t, q) <∞ and ∀ q̃ ∈ Q : Ek(t, q) ≤ Ek(t, q̃) + Dk(q, q̃) }and ask for the upper semi-
ontinuity Limsupk→∞ Sk(t) ⊂ S∞(t), i.e.,

(
qkℓ

∈ Skℓ
(t) and qkℓ

Q→ q for kℓ → ∞
)

=⇒ q ∈ S∞(t) . (23)In typi
al appli
ations in 
ontinuums me
hani
s it is hard to establish this 
ondition.On the abstra
t level it is possible to provide su�
ient 
onditions. For instan
e, wesay that E∞ is the Γ-limit of (Ek)k∈N if (22) holds and if for all q̃ ∈ Q there exists are
overy sequen
e (q̃k)k∈N su
h that
q̃k

Q→ q̃ and E∞(t, q̃) ≥ lim sup
k→∞

Ek(t, q̃k) . (24)A similar notion of Γ-limit holds for (Dk)k∈N.It is shown in [57℄ that in general (23) does not hold if Ek Γ-
onverges to E∞ and
Dk Γ-
onverges to D∞. Even more, the following theorem may be false. The nextlemma gives a positive result.Lemma 4.1. If E∞ = Γ-limk→∞Ek, i.e., (22) and (24) hold, and if Dk 
onverges
ontinuously to D∞, i.e.,

(
zk

Z→ z and z̃k
Z→ z̃

)
=⇒ Dk(zk, z̃k) → D∞(z, z̃) , (25)then (23) holds.Proof: Let qk = (ϕk, zk) ∈ Sk(t) be given su
h that qkℓ

Q→ q. Moreover, let q̃ bearbitrary. Then there exists a re
overy sequen
e q̃k = (ϕ̃k, z̃k) satisfying (24). Using(25) we 
on
lude
E∞(t, q) ≤ lim infℓ→∞ Ekℓ

(t, qkℓ
)

≤ lim infℓ→∞

(
Ekℓ

(t, q̃kℓ
)+Dkℓ

(qkℓ
, q̃kℓ

)
)

= E∞(t, q̃) + D∞(q, q̃) .Here we use �rst (22), next qk ∈ Sk(t) and last (24) and (25). Sin
e q̃ ∈ Q wasarbitrary, we have q ∈ S∞(t).The following result is 
on
erned with the so-
alled in
remental problem (IP)k. Forthis 
hoose a sequen
e (Πk)k∈N of partitions with Πk = {0 = tk0 < tk1 < . . . < tkNk
=

T} and �neness φ(Πk) = max{ tkj − tkj−1 | j = 1, . . . , Nk }:10



(IP)k Given qk
0 ∈ Q, �nd iteratively

qk
j ∈ Argmin{ Ek(t

k
j , q̃) + Dk(q

k
j−1, q̃) | q̃ ∈ Q }.Existen
e of solutions follows easily from (15) and (18). We de�ne the 
onstantinterpolants qk : [0, T ] → Q via

qk(t) = qk
j−1 for t ∈ [tkj−1, t

k
j ) and qk(T ) = qk

Nk
.Theorem 4.2. Let the 
onditions (14) to (23) hold and let the partitions Πk, k ∈ N,satisfy φ(Πk) → 0 for k → ∞. Moreover, assume

qk
0 ∈ Sk(0), qk

0
Q→ q0, and Ek(0, q

k
0) → E∞(0, q0) .Choose any sequen
e (qk)k∈N of 
onstant interpolants of solutions to (IP)k. Then,there exists a solution q : [0, T ] → Q of (S) & (E) asso
iated with (E∞,D∞) and

q(0) = q0 and a subsequen
e (qkℓ
)ℓ∈N su
h that for all t ∈ [0, T ] the following holds:(i) Ekℓ

(t, qkℓ
(t)) → E∞(t, q(t)),(ii) DissDkℓ

(qkℓ
, [0, t]) → DissD∞

(q, [0, t]),(iii) zkℓ
(t)

Z→ z(t),(iv) ∃ subsequen
es (Kt
n)n∈N of (kℓ)ℓ∈N : ϕKt

n
(t)

F→ ϕ(t) for n→ ∞.Moreover, we have ∂tEkℓ
(·, qkℓ

(·)) ∗
⇀ ∂tE∞(·, q(·)) in L∞([0, T ]).4.2 Relaxation in Case of Missing Lower Semi-ContinuityIn appli
ations it may o

ur that for me
hani
ally given fun
tionals E and D it isnot possible to 
hoose a spa
e Q, su
h that the sublevels of E are 
ompa
t. Inparti
ular, the time-in
remental problems (IP)Π may not be solvable be
ause of themissing lower semi-
ontinuity, whi
h has its me
hani
al 
ounterpart in the formationof mi
rostru
ture. In su
h situations it is desirable to �nd suitable relaxations,whi
h allow for the 
al
ulation of suitable e�e
tive quantities asso
iated with thesemi
rostru
tures. For rate-independent systems this question was �rst addressed in[60℄, where the separate relaxation E∞ = Γ-limE and D∞ = Γ-limD, and furtherdeveloped in [14, 20, 48, 57, 79℄. Of 
ourse, in the 
ase of a 
onstant sequen
e the

Γ-limit is simply the lower semi-
ontinuous hull.In [48, 57, 60℄ it is suggested to study the approximate in
remental problem(AIP)Π,α

Given q0 ∈ Q, �nd iteratively q1, q2, . . . , qN su
h that
E(tj, qj) + D(qj−1, qj)

≤ (tj−tj−1)α + infeq∈Q E(tj, q̃)+D(qj−1, q̃).For α > 0 this problem always has solutions and the question arises as to how thesolutions behave for α → 0 and for smaller and smaller time steps.11



Choose sequen
e (Πk)k∈N and (αk)k∈N with 0 < αk → 0 and φ(Πk) → 0. Then,wor ea
h k ∈ N a solution of (AIP)Πk ,αk
exists and de�nes a pie
ewise 
onstantinterpolant qk : [0, T ] → Q. In [57℄ it is shown under general abstra
t 
onditionsthat the interpolants 
ontain a 
onvergent subsequen
e in the sense above and thatthe limit q : [0, T ] → Q is an energeti
 solution for the Γ-limit potentials E∞ and

D∞. One simple su�
ient 
ondition is that D is already 
ontinuous, whi
h implies
D∞ = D.Another abstra
t relaxation result is derived in [51℄. It uses a kind of ellipti
 regu-larization of the subdi�erential in
lusion (13). We 
onsider a sequen
e of fun
tionals

Ik,δ(q) =
∫ T

0
e−t/δ(Rk(q̇(t)) + 1

δ
Ek(t, q(t))) dt ,where again ea
h Rk : Q→ [0,∞] is 
onvex, lower semi-
ontinuous and 1- homoge-neous. If Rk and Ek were smooth, the Euler-Lagrange equation reads

δD2Rk(q̇)[q̈] = DRk(q̇) + DqEk(t, q) ,whi
h in the formal limit δ → 0 
onverges to (13).Using the 1-homogeneity of Rk it is proved in [51℄ that minimizers q : [0, T ] → Q of
Ik,δ satisfy the δ-independent energy balan
e

Ek(t, q(t)) +
∫ t

0
Rk(dq) = Ek(0, q(0)) +

∫ t

0
∂sEk(s, q(s)) ds .As in Se
t. 3.2 this implies a priori bounds independent of δ > 0 and of k, if (19) isused. Fixing δ > 0 and letting k → ∞, we obtain a Γ-limit I∞,δ in the form

I∞,δ(q) =
∫ T

0
e−t/δ

(
R∞(q̇(t)) + 1

δ
E∞(t, q(t))

)
dt ,if E∞ = Γ-limk→∞ Ek and Rk 
onverges 
ontinuously to R∞. Finally, under theseassumptions it is shown that for minimizers qk,δ : [0, T ] → Q the a

umulationpoints for k → ∞ and δ → 0 are in fa
t solutions of the energeti
 formulation (S)and (E) asso
iated with E∞ and D∞ : (q, q̃) 7→ R∞(q̃ − q).4.3 Numeri
al Spa
e Dis
retizationWe indi
ate one of the main appli
ations of the Γ-
onvergen
e results. Consider are�exive Bana
h spa
e Q equipped with its weak topology. This spa
e is approxi-mated by a nested sequen
e (Qk)k∈N of �nite-dimensional subspa
es su
h that theirunion is dense, viz., Qk ⊂ Qk+1 ⊂ Q and ∪k∈NQk = Q. Finally, assume that thefun
tionals E∞ = [0, T ]×Q → R∞ is strongly 
ontinuous and D∞ : Q×Q → [0,∞]is weakly 
ontinuous in addition to the assumption (2) to (9). Now de�ne the�nite-dimensional (spa
e) approximations via

Ek(t, q) =

{
E∞(t, q) for q ∈ Qk ,

∞ otherwise , Dk(q, q̃) =

{
D∞(q, q̃) for q, q̃ ∈ Qk ,

∞ otherwise .12



Then it is easy to see that the assumptions (14) to (22) are satis�ed. To establishthe upper semi-
ontinuity of the stable sets we pro
eed as follows. Starting from
qk ∈ Sk(t) with qk ⇀ q we need to show q ∈ S∞(t). For q̃ ∈ Q we 
hoose q̃k ∈ Qkwith q̃k → q (strongly). Then we have

0 ≤ Ek(t, q̃k) + Dk(qk, q̃k) − Ek(t, qk) = E(t, q̃k) + D(qk, q̃k) − E(t, qk) .Using strong 
ontinuity for E , weak 
ontinuity for D and weak lower semi-
ontinuityfor E we take the limsup of the last expression and �nd
0 ≤ lim sup

k→∞

(
E(t, q̃k)+D(qk, q̃k)−E(t, qk)

)
≤ E(t, q̃)+D(q, q̃)−E(t, q) ,whi
h is the desired stability result, sin
e q̃ is arbitrary.This theory is the basis for treating spatial dis
retizations of energeti
 formulations.In parti
ular, Theorem 4.2 guarantees that ea
h limit point of the joint spa
e-timedis
retization provides a true solution of (S) and (E).In [37℄ this numeri
al theory was developed for a model involving gradient Youngmeasures to des
ribe mi
rostru
tures in shape-memory alloys. A more systemati
treatment of di�erent aspe
ts of numeri
al spa
e dis
retizations as well as penal-izations or relaxations is given in [55℄. Using more regularity and 
onvexity as-sumptions full 
onvergen
e results, without 
hoosing subsequen
es, are establishedin [4℄. This is 
loser to the highly developed theory in linearized elastoplasti
ity, see[1, 29, 31, 78℄.5 Appli
ations to Material ModelsThe theory of rate-independent pro
esses �nds appli
ations in many areas. Thisin
ludes the theory of super
ondu
tivity [68, 76℄, dry fri
tion on surfa
es [2, 44, 75℄,delamination [34℄, damage [56℄ and brittle fra
ture [12, 15, 21℄. The latter threeareas involve appli
ations where the internal variable is a
tive only on submanifoldsof the elasti
 body. Here we restri
t ourselves to those situations where the internalvariable z is distributed throughout the body.The original driving for
e of this theory was the dynami
 problem of linearizedelastoplasti
ity, however, nowadays many other appli
ations o

ur in phase trans-formations in shape-memory materials, in magnetostri
tion, in piezo- or ferroele
-tri
ity, and in damage. Finite-strain elastoplasti
ity is another very a
tive area forrate-independent modeling. This will be surveyed in [46℄ of this volume.5.1 Shape-Memory MaterialsWe 
onsider an elasti
 body Ω ⊂ R

d in its referen
e 
on�guration, whi
h we assumeto have a Lips
hitz boundary. The deformation ϕ : Ω → Rd des
ribes the elasti
13
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h of the multis
ale stru
ture of a sequential laminate in a shape-memory alloy (left to middle). Mi
ros
opi
 view of laminates by Chu and James(right)behavior in the 
ase of large strains (also 
alled ��nite strain�), whereas the displa
e-ment u : Ω → Rd, x 7→ ϕ(x) − x, is used in the 
ase of small strains (also 
alled�in�nitesimal strain�). The elasti
 properties depend on the strain tensors ∇ϕ⊤∇ϕand ε(u) = 1
2
(∇u+ ∇u⊤), respe
tively.Sin
e the shape-memory e�e
t relies on the fa
t that these materials have severalphases, the 
orresponding stored-energy density (also 
alled stress potential) has amulti-well stru
ture, whi
h is usually given in the form

W (x,∇ϕ) = min{Wj(x,∇ϕ) | j = 1, . . . , N } .Here N is the number of (variants of) phases in
luding the austenite and the marten-sites. Ea
h Wj(x, ·) : Rd×d → [0,∞] is assumed to behave ni
ely in terms of lowersemi-
ontinuity and 
oer
ivity.However, W (x, ·) is in general not rank-one 
onvex, and hen
e formation of mi-
rostru
tures is to be expe
ted. This is 
ompatible with the physi
s, sin
e theshape-memory e�e
t relies heavily on formation of martensiti
 laminates (also 
alled�twinning�), see Fig. 1. We refer to [9, 71℄ for surveys on the mathemati
al modelingof mi
ros
tru
tures in shape-memory alloys.To des
ribe this mathemati
ally it is advantageous to use gradient Young measures,see [7, 9, 38, 39, 66℄ for the stati
 
ase and see [3, 27, 37, 48, 54, 71℄ for the evolutionof mi
rostru
tures. We will survey this work next. After that we will dis
uss severalmodels whi
h do not resolve the mi
rostru
ture but keep 
ertain volume fra
tionsor e�e
tive properties, see [23, 24, 25, 42, 58, 60, 77℄. Finally, we will indi
atehow these models may be generalized to in
lude the temperature as an additionalexternal parameter.5.2 Models Using Gradient Young MeasuresA gradient Young measure is a fun
tion over the physi
al domain Ω whi
h takesvalues in the set of probability measures on the set Rd×d of deformation gradients,namely
Prob(Rd×d) := { µ ∈ M(Rd×d) | µ ≥ 0,

∫
Rd×d 1µ(dA) = 1 } .14



However, the addition �gradient� means that only those measures are 
onsidered,that 
an be generated via a sequen
e of gradients of deformations.We say that a bounded sequen
e (ϕk)k∈N in W1,p(Ω,Rd) generates the gradientYoung measure µ : Ω → Prob(Rd×d) and write ∇ϕk
YM→ µ, if for all ψ ∈ C0

c(Ω×Rd×d)we have, for k → ∞,
∫
Ω
ψ(x,∇ϕk(x)) dx→

∫
Ω

∫
Rd×d ψ(x,A)µ(x, dA) dx .Su
h µ have the additional property ∫

Ω

∫
Rd×d(1+|A|)pµ(x, dA) dx < ∞, and wedenote the set of all these measures by

Gp(Ω) = p-integrable gradient Young measures .To model the hystereti
 behavior in shape-memory materials with the energeti
formulation dis
ussed in Se
t. 3 we need to introdu
e a phase indi
ator z : Ω → ZNwhere ZN is usually taken as the Gibbs simplex
ZN = { z ∈ R

N | zi ≥ 0,
∑N

i=1 zi = 1 } .The 
omponents zi of z ∈ ZN measure the volume fra
tion of phase i in a represen-tative volume element. For gradient Young measures we extra
t the phase fra
tionsvia a 
ontinuous mapping
ζ : Ω × R

d×d → ZNsu
h that ζ(x,A) = ej (unit ve
tor in RN), if W (x,A) = Wj(x,A) ≤ Wk(x,A) − δfor k 6= j. Here δ > 0 is a suitable 
onstant whi
h is assumed to be mu
h smallerthan the depth of the wells.Finally we introdu
e a dissipation distan
e D : ZN × ZN → [0,∞). It su�
es topres
ribe the values κj→k = D(ej, ek) > 0, su
h that the triangle inequality holds,i.e., κj→ℓ ≤ κj→k + κk→ℓ. Here κj→k denotes the energeti
 loss when the materialjumps from a phase ej into another phase ek. Then, D : ZN × ZN → [0,∞) isde�ned via the optimal transport problem
D(z, z̃) = min

{ N∑
j,k=1

mjkκj→k

∣∣ mjk ≥ 0,
N∑

k=1

mjkej = z̃,
N∑

j=1

mjkek = z
}
.It is shown in Proposition 4.7 in [60℄, that there exists a 
onvex, 1-homogeneous

R : RN → [0,∞) su
h that D(z, z̃) = R(z̃ − z).With these notations we now formulate the fun
tion spa
es and the fun
tionals.We assume that Ω ⊂ Rd is a bounded domain with Lips
hitz boundary ∂Ω andthat ΓDir ⊂ ∂Ω is a set of positive surfa
e measure on whi
h we des
ribe Diri
hletboundary data. We let
F = { ϕ ∈ W1,p(Ω,Rd) | ϕ|ΓDir = ΦDir } × Gp(Ω) and Z = L1(Ω, ZN) .The state spa
e is Q = F × Z and a state 
onsists of a triple q = (ϕ, µ, z). Wefurther let Q0 = { (ϕ, µ, z) ∈ Q | ∇ϕ = id•µ, z = ζ•µ }, where �•� denotes the15




ontra
tion over A ∈ R
d×d but not over x ∈ Ω, i.e., (id•µ)(x) =

∫
Rd×d Aµ(x, dA)and (ζ•µ)(x) =

∫
Rd×d ζ(x,A)µ(x, dA). With the pres
ribed external volume andsurfa
e loadings

〈ℓ(t), ϕ〉 =
∫
Ω
fext(t, x)·ϕ(x) dx+

∫
ΓNeu

gext(t, x)·ϕ(x) da(x)we de�ne the energy-storage fun
tional
E(t, q) =

∫
Ω

∫
Rd×d

W (x,A)µ(x, dA) + ρ
2
|∇αz|2 dx− 〈ℓ(t), q〉 for q ∈ Q0 (26)and E(t, q) = +∞ for q = (ϕ, µ, z) ∈ Q\Q0. Here ρ > 0 and ∇αz, α > 0, denotes a(fra
tional) derivative, for instan
e for α ∈ (0, 1) we have

∫
Ω
|∇αz|2 dx =

∫
Ω

∫
Ω

|z(x)−z(ex)|2

|x−ex|d+2α dx dx̃ .This regularizing term allows us to 
hoose the strong topology in L1(Ω, ZN ) as thisspa
e is 
ompa
tly embedded into Wα,2(Ω,RN) for α > 0. Nevertheless, for α < 1/2the fun
tions in Wα,2(Ω,RN) may have jumps along smooth interfa
es su
h as thehabit plane between austenite and martensite.The dissipation distan
e is de�ned as
D(z, z̃) =

∫
Ω
D(x, z(x), z̃(x)) dx =

∫
Ω
R(x, z̃(x)−z(x)) dx . (27)Sin
e D is (strongly) 
ontinuous on Z the 
ru
ial 
losedness 
ondition (9) of thestable sets is easily obtained via Lemma 3.1 by taking q̃k = q̃.The following existen
e theorem is established in [37℄. The earlier version in [54℄ wasbased on the mu
h stronger assumption that E(t, (·, ·, z)) has a unique minimizer, butthis 
ondition is no longer needed be
ause of the abstra
t developments in [22, 49℄.Theorem 5.1. Let p ∈ (1,∞), α ∈ (0, 1), and ρ > 0. Assume that there exists

C > 0 su
h that for j = 1, . . . , N , we have
∀A ∈ R

d×d : 1
C
|A|P − C ≤Wj(x,A) ≤ C|A|P + C . (28)Further assume ℓ ∈ C1([0, T ],W1,p(Ω,Rd)∗) and that q0 ∈ S(0). Then, the energeti
formulation (S) and (E) asso
iated with E and D from (26) and (27), respe
tively,has a solution q : [0, T ] → Q0.The theory of Γ-
onvergen
e dis
ussed in Se
t. 4.1 
an also be used to show thatspa
e-time dis
retizations of the energeti
 formulation 
ontain subsequen
es whi
h
onverge to energeti
 solutions. For this we use triangulations Th of Ω. Moreover,we approximate gradient Young measures by sequential laminates of order κ ∈ N,see [3, 8, 38, 72℄ and Se
t. 5.4 in [48℄ for an introdu
tion. Fixing κ ∈ N we de�ne

Qh
κ as the spa
e of fun
tions q = (ϕ, µ, z) ∈ Q for whi
h ∇ϕ, µ and z are 
onstanton ea
h simplex and µ is a laminate of order at most κ. Using the penalizationparameter ε > 0 we let

Eh,ε(t, q) = E(t, q) + 1
ε

∫
Ω
|z−ζ•µ|2 dx for q ∈ Qn

κ with ∇ϕ = id•µ16
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0
∂sE(s, q(s)) dsand Eh,ε(t, q) = +∞ otherwise on Q.In [37℄ a fun
tion H : (0,∞) → (0,∞) with H(ε) → 0 for ε ց 0 is 
onstru
tedsu
h that the following holds: If (Πk)k∈N is a sequen
e of partitions of [0, T ] with

φ(Πk) → 0, if (Thk
) is a sequen
e of triangulations of Ω and if εk → 0 with hk ≤

H(εk), then the in
remental solutions qk asso
iated with (Ehk,εk
,D) on Qh

κ have asubsequen
e whi
h 
onverges to an energeti
 solution q : [0, T ] → Q for (E ,D).Figures 2 and 3 show results from a numeri
al simulation from [37℄ for a sampleof 4×4×9mm single-
rystal alloy of CuAlNi. It has a 
ubi
-to-orthorhombi
 phasetransition with one austenite and 6 variants of a martensite (i.e., N = 7).All phases are modelled by a Saint-Venant-Kir
hho� materialWj(x,A) = 1
2
(A⊤A−

Cj) : Cj : (A⊤A−Cj) + dj, where Cj ∈ R3×3
sym, Cj ∈ Lin(R3×3

sym), and dj are the exper-imentally measured values for ea
h j ∈ {1, . . . , 7} at a �xed temperature of 312K.The dissipation 
onstants D(ej , eℓ) are 
hosen to be 0.5MPa for transformationsbetween martensite and austenite or vi
e versa. Transformations between di�erentvariants of austenite are assumed to have mu
h lower dissipation thresholds.The dis
retization involves 180 tetrahedrons and se
ond-order laminates. This leadsto 20 degrees of freedom in ea
h element, whi
h lie in a nonlinear manifold withboundary (box 
onstraints). The minimization te
hnique for solving the highlynon
onvex in
remental problem is des
ribed in Se
t. 6.3 in [37℄.A mi
ros
opi
 model that does not allow for mi
rostru
ture and uses only purephases is developed and analyzed in [41, 42℄. It is based on the usage of an interfa
e17



energy that is proportional to the surfa
e of the interfa
es. We denote the set ofpure phases by PN = {e1, . . . , eN} ⊂ ZN ∈ RN and let Zpure = L1(Ω, PN ) equippedwith the strong L1-topology. The spa
e F of admissible deformations remains asabove, whereas the energy fun
tional E : [0, T ] ×Q → R∞ takes the form
E(t, ϕ, z) =

∫
Ω
Wj(x)(x,∇ϕ(x)) dx+ ρ

∫
Ω
|Dz| − 〈ℓ(t), ϕ〉 ,where j(x) = k ⇔ z(x) = ek and where ∫

Ω
|dz| denotes the total variation

∫
Ω
|Dz| def= sup{

∫
Ω
z·divψ dx | ψ ∈ C1(Ω,Rn×d), |||ψ(x)||| ≤ 1 on Ω } .The norm ||| · ||| on RN×d 
an be adjusted to anisotropies in Ω ⊂ Rd and to di�erentweights for the interfa
es between phases j and k, see [41, 42℄ for the details and forgeneralizations.Using the same dissipation distan
e D as above an existen
e theory as in Theorem5.1 
an be derived, sin
e BV(Ω) embeds 
ompa
tly into L1(Ω). The solution q =

(ϕ, z) : [0, T ] → Q now satis�es
ϕ ∈ L∞([0, T ],W1,p(Ω,Rd)) and
z ∈ BV([0, T ],L1(Ω, PN)) ∩ L∞

weak([0, T ],BV(Ω,RN )) .5.3 Mesos
opi
 ModelsOften it is not desirable or prohibitly 
ostly to 
al
ulate the evolution of the mi-
rostru
ture during the hystereti
 evolution pro
ess. If these details are not neededand if volume fra
tions or other e�e
tive quantities are su�
ient, then simpler mod-els may be used.If we only 
are about volume fra
tions, then the mixture fun
tion 
an be used todes
ribe the e�e
tive behavior of phase mixtures. Let Wj(x, ·) be given as above for
j = 1, . . . , N . For z ∈ ZN and A ∈ Rd×d we let

W(x,A, z) = inf
{ ∫

(0,1)d

WJ(y)(x,A+∇ψ(y)) dy
∣∣∣ J ∈ L1((0, 1)d, {1, ..., N}),

∫
(0,1)d

eJ(y) dy = z, ψ ∈ W1,∞
0 ((0, 1)d,Rd)

}where (0, 1)d is a mi
ros
opi
 representative volume element, J a mi
ros
opi
 phaseindi
ator, and ∇ψ mi
ros
opi
 �u
tuation of the gradient. In [40℄ W is also 
alled
ross-quasi
onvexi�
ation and in [25℄ the free energy of mixing.Unfortunately, in general situations it is almost impossible to 
al
ulate W expli
itly.Nevertheless W is 
ross-quasi
onvex and hen
e, for ea
h x ∈ Ω and A ∈ Rd×d, thefun
tion W(x,A, ·) : ZN → [0,∞) is 
onvex and, for ea
h x ∈ Ω and z ∈ ZN ,the fun
tion W(x, ·, z) : Rd×d → [0,∞) is quasi
onvex. Expli
it formulas are only18



available in dimension d = 1 or if ea
h Wj is quadrati
 with an elasti
 tensorindependent of j, viz.,
Wj(x,A) = 1

2
(ε(A) − εj(x)) : C(x) : (ε(A) − εj(x)) + dj(x)where ε(A) = 1

2
(A + A⊤ − 2I). Then,

W(x,A, z) =
∑N

j=1 zjWj(x,A) + wmix(x, z) ,where wmix(x, ek) = 0 and wmix(x, ·) : ZN → R is 
onvex. See [25, 47℄ for 
aseswhere wmix 
an be 
al
ulated or estimated e�
iently.The advantage of the mixture theory is that we are not for
ed to work with qua-si
onvexity. We are able to use poly
onvexity as well. Hen
e it is possible to useenergy densities that take the value +∞, as for instan
e in �nite-strain elasti
-ity where W (x,A) = +∞ for detA ≤ 0. Instead of 
ross-quasi
onvexity we mayuse 
ross-poly
onvexity, namely W(x, ·, ·) : Rd×d × ZN → [0,∞] is 
alled 
ross-poly
onvex, if there exists a fun
tion g(x, ·) : Rmd+N → [0,∞] that is 
onvex, lowersemi-
ontinuous and satis�es
W(x,A, z) = g(x,M(A), z) ,where M(A) ∈ R

md is the set of all minors.We now de�ne the state spa
e Q = F × Z for 
lassi
al fun
tions ϕ only, namely
F = { ϕ ∈ W1,p(Ω,Rd) | ϕ|ΓDir

= id } ⊂ W1,p(Ω,Rd)equipped with the weak topology. The stored-energy fun
tional takes the form
E(t, ϕ, z) =

∫
Ω

W(x,∇ϕ(x), z(x)) + ρ
2
|∇αz|2 dx− 〈ℓ(t), ϕ〉 . (29)For ρ > 0 and α > 0 we take Z = L1(Ω, ZN) equipped with the strong topology.Under suitable 
oer
ivity and (poly)quasi
onvexity assumptions on W(x, ·, z) it 
anthen be shown that the sublevels of E(t, ·) are 
ompa
t in Q, whi
h is our basi

ondition (5). In the 
ase ρ = 0, this is more di�
ult, sin
e Z then has to beequipped with the weak topology. Then, 
ross-(poly)quasi
onvexity is ne
essaryfor weak lower semi-
ontinuity of E . However, for the 
ase without regularization

(ρ = 0) the best we 
an hope for is that solutions for the in
remental problem (IP)Πexist. The passage to the limit of vanishing time in
rementals strongly relies on the
losedness 
ondition (9) for the stable sets whi
h, so far, 
annot be established in
ases without regularization.The following result is a slight variant of the existen
e results in [22, 41, 49℄.Theorem 5.2. Let p ∈ (1,∞), α, ρ > 0 and ℓ ∈ C1([0, T ],W1,p(Ω,Rd)∗). Moreover,let D be given as in Se
t. 5.2 and assume that E in (29) has 
ompa
t sublevelsin Q ⊂ W1,p(Ω,Rd)weak × L1(Ω, ZN )strong. Then, for ea
h stable initial state q0 =
(ϕ0, z0) ∈ Q there exists an energeti
 solution q = (ϕ, z) : [0, T ] → Q for (E ,D) with
ϕ ∈ L∞([0, T ],W1,p(Ω,Rd)) and z ∈ BV([0, T ],L1(Ω, ZN)) ∩ L∞([0, T ],Hα(Ω,RN)).19



The asso
iated numeri
al 
onvergen
e results are dis
ussed in [55℄. But all the abovemodels have the disadvantage that the solutions are not unique. Hen
e, it is notpossible to show that numeri
al solutions 
onverge.The next model goes ba
k to [77℄ and was further developed in [4, 5℄. This modelis based on the linearized strain tensor ε(u) = 1
2
(∇u + ∇u⊤) and the mesos
opi
transformation strain z ∈ Z = { A ∈ Rd×d | A = A⊤, trA = 0 }. The dissipation issimply a multiple of the L1-norm:

D(z, z̃) = R(z̃−z) =
∫
Ω
cd|z̃(x)−z(x)| dx .The energy fun
tional takes the form

E(t, u, z) =
∫
Ω
W (x, ε(u), z) + h(|z|) + ρ

2
|∇αz|2 dx− 〈ℓ(t), u〉 ,withW (x, ε, z) = 1

2
(ε−z):C:(ε−z). Again, the 
lassi
al model has no regularization,i.e., ρ = 0. The hardening fun
tion h : [0,∞) → [0,∞] equals
h(r) =

{
c1
√
δ2 + r2 + c2r

2 for r ∈ [0, r∗] ,
∞ otherwise ,in [5℄ and has δ = 0 in [77℄. In these 
ases it is easy to solve the in
rementalproblems (IP)Π in the spa
e Q = H1(Ω,Rd) × Hα(Ω, Z), for all α ≥ 0. However,for obtaining energeti
 solutions we again need ρ and α stri
tly positive, to make Dweakly 
ontinuous on Z = Hα(Ω, Z).A further variation is 
onsidered in [4℄, where h is repla
ed by a smooth, 
onvexfun
tion taking �nite values and growing at most quadrati
ally, e.g.,

h(r) = c1
√
δ2 + r2 + c2r

2 + c3
δ

max{0,r−r∗}4

r2
∗
+r2 .Then, for α ≥ d/6 it 
an be shown that E(t, ·) : H1(Ω,Rd) × Hα(Ω, Z) → R isthree-times di�erentiable and uniformly 
onvex. Hen
e, the theory of Se
t. 7 in[59℄ is appli
able. This allows us to 
on
lude uniqueness of the solutions as wellas strong 
onvergen
e of the solutions of the in
remental problem. In fa
t, the
onvergen
e rate is (φ(Πk))

1/2. In [4℄ also the 
onvergen
e of spatial dis
retizationwill be dis
ussed.5.4 Temperature-Indu
ed Phase TransformationThe original shape-memory e�e
t is based on 
ooling and heating to swit
h betweenmartensite o

urring in several variants and the single austenite phase. So far theenergeti
 formulation is only available for the isothermal 
ase and thus is suited forstress-indu
ed phase transformations only.There is at least one nonisothermal 
ase that 
an be treated via the energeti
 for-mulation as well, namely if the temperature �eld is given a priori independent of the20



solution to be 
al
ulated. This means that the deformation and phase transforma-tion pro
ess is so slow that all latent heat whi
h is either 
onsumed or generated viaphase transformation 
an be transported via heat 
ondu
tion into the environment.Thus, our model is based on a temperature dependent stored-energy densityW (x,A, z, θ)whi
h is assumed to satisfy
∃ cW3 ∈ R ∃ cW4 > 0 ∀x ∈ Ω ∀A ∈ Rd×d ∀ z ∈ ZN ∀ θ > 0 :

|∂θW (x,A, z, θ)| ≤ cW4 (W (x,A, z, θ)+cW3 ) .
(30)The given temperature pro�le θ should satisfy (log θ) ∈ C1([0, T ] × Ω), then theenergy potential, whi
h for simpli
ity is now without external for
ing, takes theform

E(t, ϕ, z) =
∫
Ω
W (x,∇ϕ(x), z(x), θ(t, x)) dxand the power asso
iated to the temperature 
hanges is

∂tE(t, ϕ, z) =
∫
Ω
∂θW (x,∇ϕ(x), z(x), θ(t, x))∂tθ(t, x) dx .Using (30) it is easy to establish the 
ondition (6) and, under suitable additionalassumptions, the 
onditions (7) and (8) hold as well. In [50℄ we will provide thedetailed assumptions for a full existen
e theory.5.5 Poling Indu
ed Piezoele
tri
ityMultifun
tional materials derive their fun
tionality from the 
ombination of severalproperties su
h as elasti
ity, polarizability, and magnetizability. For su
h materialsthe polarization p or the magnetization m may be 
onsidered as the variable z usedabove. However, in addition we have to take the relevant version of the Maxwellequation into a

ount.In the quasi-stati
 setting either the ele
tri
 or the magneti
 �eld vanishes su
hthat we obtain two 
learly distinguished 
ases, whi
h are dual in a 
ertain sense.Throughout we will restri
t to the 
ase of small strains, sin
e otherwise the Maxwellequations have to be solved in the deformed 
on�guraton, see the referen
es at thebeginning of Se
t. 5.6.The ele
tri
 �eld E and the diele
tri
 displa
ement D are de�ned on all of Rdwhereas the polarization P : Ω → Rd on the body only. These �elds are related bythe 
onstitutive relation

D = ε0E + P in Ω and D = ε0E in R
d\Ω .The redu
ed Maxwell equations are

divD = 0 and curl(E − Eext(t, ·)) = 0 in R
d , (31)where curl Ẽ = ∇Ẽ − (∇Ẽ)⊤. We will implement these equations as part of theenergeti
 formulation. 21



We 
onsider the displa
ement u : Ω → R
d and the diele
tri
 displa
ement D asvariables in the spa
e

F = H1
ΓDir

(Ω,Rd) × L2
div(R

d,Rd)with L2
div(R

d,Rd) = {D ∈ L2(Rd,Rd) | divD = 0 } .The internal variable p ∈ Z = H1(Ω,Rd) is the remanent polarization. For q =
(u,D, p) ∈ Q = F × Z and t ∈ [0, T ] the energy potential E is de�ned via

E(t, q) =
∫
Ω
W (x, ε(u), p)− 1

ε0
D·P (x, ε(u), p)+ρ

2
|∇p|2 dx

+
∫

Rd
1

2ε0
|D|2 dx− 〈ℓ(t), (u,D)〉where the external for
ing o

urs via me
hani
al volume and surfa
e loadings andvia an external ele
tri
 �eld

〈ℓ(t), (u,D)〉 =
∫
Ω
fext(t)·u dx+

∫
ΓNeu

gext(t)·u da +
∫

Rd Eext(t)·D dx .The ele
tri
 �eld is the dual variable to the diele
tri
 displa
ement D, i.e.,
E = 1

ε0
(D−P (x, ε(u), p)) in Ω and E = 1

ε0
D in Rd\Ω . (32)The polarization is given as a 
onstitutive fun
tion and poling indu
ed piezoele
-tri
ity means that the piezoele
tri
 tensor ∂εP does not vanish.Following [32, 70℄ the dissipation distan
e is the Legendre transform of the so-
alledswit
hing fun
tion, namely

D(p, p̃) = R(p̃− p) =
∫
Ω
R(x, p̃(x) − p(x)) dxfor some Caratheodory fun
tion R : Ω × Rd → [0,∞) with R(x, ·) being 
onvexand 1-homogeneous. Under the assumption that W (x, ·, ·, p) : Rd×d

sym × Rd → R is
onvex and that W satis�es suitable upper and lower bounds, it is now straightforward to prove the existen
e of energeti
 solutions (u,D, p) : [0, T ] → Q with
(u,D) ∈ L∞([0, T ],F) and p ∈ BV([0, T ],L1(Ω,Rd)) ∩ L∞([0, T ], H1(Ω,Rd)).To see the 
ompatibility with the Maxwell equations (31) we note that the stability
ondition (S) implies that for all t ∈ [0, T ] we have

DDE(t, u(t), D(t), p(t))[D̂] = 0 for all D̂ ∈ L2
div(R

d,Rd) .In Proposition 2.1 of [61℄ it is shown that the latter relation is equivalent to theMaxwell equations (31), if the de�nition (32) is used.Moreover, in that work additional 
onditions are dis
ussed whi
h imply also unique-ness of solutions. For this the uniqueness theory of Se
t. 7 in [59℄ is employed.However, the resulting 
onditions seem very restri
tive.
22



5.6 Magnetostri
tive MaterialsWe summarize the theory of [17℄ whi
h is based on small-strain elasti
ity, see also[55℄. For the mu
h more 
ompli
ated 
onstitutive theory in the 
ase of �nite-strainelasti
ity we refer to [16, 30℄ and for some analysis for the stati
 problem withse
ond-order regularization of the deformation we refer to [74℄. For small strain-models in
luding mi
rostru
ture via Young measure (like in Se
t. 5.2) we refer to[72, 73℄.In analogy to the 
ase of polarizable materials we use the magnetizationm : Ω → Rdas an internal variable. Usually the saturation assumption |m(x)| = msat > 0 isadded whi
h we impose by letting Z = { m ∈ Rd | |m| = msat }. The magneti
indu
tion B : Rd → Rd and the magneti
 �eld H : Rd → Rd are related via the
onstitutive law
B = µ0(H +m) in Ω and B = µ0H in R

d\Ω .In this quasistati
 setting Maxwell's equation redu
es to
divB = 0 and curlH = 0 in R

d . (33)We 
hoose F = H1
ΓDir

(Ω,Rd) × L2
div(R

d,Rd) equipped with the weak topology and
Z = L1(Ω, Z) with the strong topology. The energy potential reads

E(t, u, B,m) =
∫

Ω
W (x, ε(u), m)−B·m+ρ

2
|∇m|2 dx

+
∫

Rd
1

2µ0
|B|2 dx− 〈ℓ(t), (u,B)〉with an external for
ing of the form

〈ℓ(t), (u,B)〉 =
∫
Ω
fext(t)·u dx+

∫
ΓNeu

gext(t)·u da +
∫

Rd Hext(t)·B dx .The parameter √ρ relates to the ex
hange length, whi
h determines the s
alings forthe width of domain walls. The dissipation distan
e may be 
hosen via an arbitrarydistan
e D(x, ·, ·) on Z = msatS
d−1, e.g.,

D(x,m, m̃) = c1 arccos
(

m· em
m2

sat

)
+ c2|ê·(m−m̃)|where ê is an �easy� axis and c2 = 0 in the isotropi
 
ase. We let D(m, m̃) =∫

Ω
D(x,m(x), m̃(x)) dx.Using the standard 
oer
ivity assumptions onW : Ω×Rd×d

sym×Z → [0,∞), 
onvexityin ε(u) and 
ontinuity in m ∈ Z it is standard to show that E(t, ·) : Q = F ×Z → Ris lower semi-
ontinuous with 
ompa
t sublevels. Moreover D : Z × Z → [0,∞) is
ontinuous in the strong L1-topology (or in the weak H1-topology). Thus, existen
eof energeti
 solutions for (E ,D) 
an be easily obtained from Theorem 3.2.Sin
e the magneti
 �eld H is the dual variable to B,
DBE(t, u(t), B(t), m(t))[B̂] = 0 for all B̂ ∈ L2

div(R
d,Rd)23



is equivalent to (33) in the form
divB = 0 and curl( 1

µ0
B −Hext − χΩm) = 0 in Rd .It is more 
ommon to formulate the problem of magnetostri
tion in terms of thepotential U of the magneti
 �eld H , i.e., H = ∇U . In the above formulation wemay then repla
e B via

B = µ0(∇U +Hext(t) + χΩm) (34)in the energy E to arrive at
Ẽ(t, u, U,m) =

∫
Ω
W (x, ε(u), m)−µ0

2
|m|2−m·Hext(t) dx

+
∫

Rd

µ0

2
|∇U |2−µ0

2
|Hext(t)|2 dx− 〈ℓmech(t), u〉 .Note that the Euler-Lagrange equation for U does not supply the desired Maxwellequation

div(∇U +Hext(t, ·) + χΩm) = 0 in R
d . (35)Thus, to derive an energeti
 formulation in this situation the variable U has to betaken as a fun
tion of m ∈ L1(Ω, Z) and t ∈ [0, T ] via Hext(t, ·), namely U = U(t,m)being the solution of (35).Instead of simply repla
ing B by the 
orresponding variable, we might as well per-form a partial Legendre transform su
h that W̃ (f, x, ε(u), B,m) is repla
ed by

Ŵ (t, x, ε,H,m) = W̃ (t, x, ε, B,m) − B·∂BW̃ (t, x, ε, B,m)where B is again eliminated using (34). The 
orresponding energy Ê then 
ontainsthe negative de�nite term −
∫

Rd

µ0

2
|∇U |2 dx. Thus, we may use DU Ê(t, u, U,m)[Û ] =

0 to obtain (35), but the saddle point stru
ture of Ê does not allow us to introdu
ea stability 
ondition in terms of (u, U,m). Thus, it is not possible to derive anenergeti
 formulation either.6 Con
lusionsThe energeti
 formulation of rate-independent pro
esses was developed mu
h fur-ther via the abstra
t approa
hes des
ribed in [22, 43, 49℄. The major improvemento

urred through �nding abstra
t versions of the ideas in [15℄ for treating a rate-independent model for 
ra
k growth. Now it is possible to deal with problems wherethe energy E(t, ·, z) : F → R∞ is non-
onvex. In general, the abstra
t theory is avail-able in topologi
al spa
es without any linear stru
ture. Thus, it is possible to treat�nite-strain elasti
ity (
f. [22, 33℄) as well as internal variables whi
h lie in generalnon
onvex sets su
h as in magnetism (
f. Se
t. 5.6) or in �nite-strain plasti
ity, see[46℄. Moreover, it is possible to in
lude Young measure into the state spa
e as well[37, 54℄. 24



Further developments in
lude the abstra
t theory of Γ-
onvergen
e and relaxationsof the energeti
 formulation. This allows us, for instan
e, to treat numeri
al approx-imations, see [4, 37, 55℄. However, the numeri
al analysis and e�
ient simulationsstill need a lot of further developments.The major drawba
k of the energeti
 formulation is that there are only very fewresults on the uniqueness of solutions, see [10, 52, 59℄. Another de�
ien
y 
on
ernsthe fa
t that the stability 
ondition (S) involves a global stability 
ondition. For abetter physi
al modeling and for numeri
al implementation it would be desirable torepla
e this 
ondition by a suitable lo
al stability 
ondition. First attempts are givenin [18, 53℄, but a reasonable general theory is not yet developed. This is 
losely tothe general problem how these rate-independent models 
an be embedded into moregeneral dynami
al problems, for instan
e in
luding rate-dependent heat 
ondu
tion,vis
ous e�e
ts or even kineti
 terms.On the side of material modeling there is now quite a variety of models for shape-memory materials. It is possible to des
ribe models on many di�erent length s
ales.However, the question of ups
aling and deriving e�e
tive models on larger s
alesneeds further investigations. The relaxations and Γ-
onvergen
e results in Se
t. 4will be a good basis for doing this, see also [57℄. A �rst step in two-s
ale homogeniza-tion will be developed in [63℄. Moreover, evolutionary models for mi
rostru
turesand textures will 
ertainly be important future areas where the energeti
 formulation
an be helpful.The strength of the energeti
 formulation is that it 
an model the stati
s extremelywell by adjusting the energy-storage fun
tional E a

ording to experiments, see, e.g.,[37℄. However, the modeling of the dissipation distan
es, whi
h 
ontains the onlyinformation on the dynami
s, is not supported very well by experiments. In thissense, the energeti
 formulation provides a �rst mathemati
al step to well-posedevolutionary models for 
omplex material behavior.A
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