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Abstract

Standard generalized materials are described by an elastic energy density
and a dissipation potential. The latter gives rise to the evolution equation (flow
law) for the internal variables. The energetic formulation provides a very weak,
derivative-free form of this flow law. It is based on a global stability condition
and an energy balance. Using time-incremental minimization problems, which
allow for the usage of the rich theory in the direct method of the calculus of
variations, it is possible to establish general, abstract existence results as well
as convergence for numerical approximations. Applications to shape-memory
materials and to magnetostrictive or piezoelectric materials are surveyed.

1 Introduction

On the mechanical side the theory of standard generalized materials was developed
in the early 1970s, see |28, 64, 69, 81|. The mathematics for these models was
studied in parallel, but was mostly restricted to the case of convex potentials with
applications in small-strain elastoplasticity, cf. [31, 65].

The theory of rate-independent hysteresis operators advanced much further, see [11,
35, 36, 80|, mainly in the field of scalar-valued hysteresis operators. In parallel, the
mathematical theory of solid mechanics had major breakthroughs in the treatment
of finite-strain elastostatics |6, 13| and in the study of microstructures in modern
materials |7, 67].

The theory presented here is located in a triangle that has its corners in the rich
area of existing engineering models, in the theory of hysteresis models, and in the
methods of calculus of variations that were derived for nonconvex material models.
The major fact is that rate independence is still so close to statics that very similar
methods can be employed. Nevertheless it allows us to study evolutionary effects
on slow timescales.

In Sect. 2 we will present the theory of standard generalized materials and will show
how these models are linked to the so-called energetic formulation. In Sect. 3 we
summarize the existence theory for energetic solutions developed in a quite abstract
setting, see |22, 43, 49|.

In Sect. 4 we discuss the question of approximation of the energetic formulation.
Based on abstract I'-convergence ideas it is possible to derive convergent results for
numerical approximations via finite-element methods, see |37, 55]. Moreover, ho-
mogenization results are established, see [63]. Finally, a relaxation result is presented
that is due to |37, 57].



The final section is devoted to a list of several applications. The whole work was
initiated through the need for a better understanding of the hysteretic evolution
of microstructure in shape-memory alloys [58, 60]. In the Sects. 5.1 to 5.4 we re-
port on the development of the analysis of different models since then. Further
applications occur in damage |20, 56|, in delamination |34] and in brittle fracture
[12, 15, 21|. The modeling of ferroelectric and magnetostricitive materials also fits
into this framework, see Sects. 5.5 and 5.6. Moreover, the theory of elastoplasticity
should be mentioned, since it is one of the major driving forces of the theory of
rate-independent processes. The recent advances in this topic will be surveyed in
another article of this volume, see [46].

2 Modeling Materials with Internal Variables

2.1 Standard Generalized Materials

This theory was developed in |28, 81| and has established a central role in the area
of material modeling on the phenomenological level, see |23, 26, 45| for some recent
references.

We consider an elastic body with reference domain Q@ C R? . The deformation
¢ : ) — R gives rise to the strain tensor ' = V. We assume that the state
in a material point x € Q is described by F' € R™? and a further variable z € Z
which is often called internal variable. Here z may denote plastic variables, damage,
magnetization, polarization or some phase indicator. The admissible set Z is in
general a submanifold (with boundary) of R™ for some m € N.

The material behavior is described by two constitutive functions, the stored-energy
density W = W (z, F, z) (also called elastic potential) and the dissipation potential
R = ﬁ(m, z,%). While W is the potential for the stress-strain relation, R is the
potential for the dissipational forces versus the rate z, viz.,

T = aiFW(I’ F’ Z) and fdiss = _%R(IE,Z, Z) .
The time evolution of the material is now described by the quasistatic elastic equi-
librium

—div (%W(w, Vo, z)) = fext plus bound. cond.

and by the flow law for the internal variable which involves the thermodynamically
conjugated driving force X, = —%W(a:, F, z), viz.,

—~

—(faiss + X)) =0= %}A{(aj, z,2) + %W(m, Ve, z).

Rate independence means that }A%(:c,z, -) is homogeneous of degree 1. Then, %ﬁ
has to be understood as the multi-valued subdifferential of convex analysis

O:R(x,z,0) ={neT:Z|VweT.Z: R(z,zw) > Rz, z,v)+(n, w—0) } .
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To provide a mathematical framework we introduce F as the set of admissible de-
formations, which is typically an affine subspace of some Sobolev space W?(2, R?)
due to the Dirichlet boundary conditions. Moreover, we let Z = L'(2, Z) for the
function space of admissible internal states. For the state space Q = F X Z we set

= (p,2) and
Etg) = [, W( w, dz — [, fex(t, 2)(2) dz
R(z,2) = fQ (x)) dx .

Hence, the evolutionary problem takes the form

DyE(t, (1), 2(t)) =0,
0 € OR(=(t), 2(t)) + DLE(t, o(t), (1)) -

2.2 The Energetic Formulation

In general the manifold Z C R™ might be complicated and the definition of 2
might be nontrivial. Moreover, in rate-independent systems it is to be expected that
solutions develop jumps. Hence, it is desirable to find a weaker formulation avoiding
derivatives. For this we introduce the dissipation distance D(z,-,-) : Z x Z — [0, o0
which is associated with the Finslerian dissipation metric E(aj, ) TZ — [0, 00,
viz.,

D(x, 2, 21) = inf{ [, R(x,%(s),%(s))ds | 2€C([0,1], Z),Z(0)=20, 2(1)=21 } .

On Z this induces the distance D with D(zg, 21) fQ (x,20(x), z1(x)) dz, and we
are able to define the dissipation along an arbitrary path z : [0, T] — Z via

N
Dissp(z, [s,t]) = sup{ > D(z(t;—1),2(t;)) | N e Nys <tg <t; <---tn <t}.
j=1

For smooth paths is compatible with the classical dissipation

Dissp(z fR dT—f fQ x, z(1,x), 2(1,2)) do dT .

Our weak form of (1) is the energetic formulation involving the stability condition
(S) and the energy balance (E). A process ¢ = (p,2) : [0,T] = F x Z = Q is called
energetic solution for (€, D), if for all ¢t € [0,T] we have

(8) alt) €S() = {qeQ | £(1 ><oo vqeg E(tg) < E(LD+D(.0) }
(E) £(t,q(t)) + Dissp(q, [0,]) = £(0,q(0)) + [y 0,E(s,q(s)) ds

Here 0,E(s,q(s)) = 2&(s,q(s)) is called the power of the external forces and we
implicitly assume that ¢ — 9,E(t, ¢q(t)) lies in L((0,T)).

In the case that Q is a Banach space, that £ and R are Gateaux differentiable
and that the energetic solution ¢ lies in Wh1([0,T], Q) it is easy to see that (S)
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implies D,E(t, (1), 2(t)) = 0 and O € 9;R(2(t),0) + D.E(t, p(t), 2(t)). Moreover,
differentiating (E) with respect to time yields D,E (¢, o(t), 2(¢))[2(6)|+R(2(t), 2(t)) =
0. This is exactly (1). In the case that £(¢,-) is strictly convex on the Banach space
Q and that R does not depend on z, it is shown in |59| that (1) is in fact equivalent
to (S) & (E). See also [19, 52| for more general results on this equivalence.

However, as we are mostly interested in nonconvex models we will mainly focus on
the energetic formulation (S) & (E). Note that a significant simplification occurs
due to the fact that (S) is a purely static condition.

2.3 Formulations that Minimize Locally

A major drawback of the energetic formulation is that (S) involves a global stability
condition, while local stability would be more physical. However, the word “local”
means that we need to specify a topology in which neighborhoods will be defined.
One physical way of doing this is to consider systems with small viscosity and to
study the limit of vanishing viscosity,

0 = 5A1§b + Dcpg(ta 12 Z) )

0 € OR(2,2)+eAz+D.E(t,p,2).
A mathematical way of approaching the same problem is that of doing local mini-
mization in the associated time-incremental problem

(IP)?OC ax € Argmln{ g(tkv a) + D(qk—h (D | Z]ve Q, ||Qk—1_m| S 5} )

where |[|-|| denotes a suitable norm.

It is shown in |18] that for the smooth finite-dimensional situation the associated
solutions converge, after an arclength parameterization, to solutions of the following
limit problem

0 € ORy (2 (s)) + D.E(t(s), 2(s)) and 1=1t'(s)+|Z'(s)| .

where Rj.(v) = R(v) for |[v|| < 1 and oo else. Generalizations of this idea to the
infinite dimensional setting will be discussed in |53].

3 Analysis of the Energetic Formulation

3.1 The Basic Abstract Assumptions

Our state space Q@ = F x Z is considered to be the product of two topological
spaces F and Z, both of which are assumed to be Hausdorffsch. Throughout all
topological notions like compactness, closedness and (semi-)continuity are meant in

. .. Q9 F z .
the sequential sense. For convergence we write —, — and —, respectively.
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We start with the assumptions on D : Z x Z — [0, o0]:

Vzl, 29,23 € Z: D(Zl, Zg) < D(Zl, ZQ) -+ D(Zg, Zg) . (2)
D:Zx 2 —[0,00] is lower semi-continuous . (3)

For compact K C Z and (z)gen C K we have:
min{D(z;,2),D(z, )} = 0 = 2z > 2.

For applications in continuum mechanics it is essential to allow D to attain the value
+00 and to be unsymmetric, i.e., in general D(z1, 22) # D(22, 21).

An important abstract tool is a suitable generalization of Helly’s selection prin-
ciple, c¢f. |43]. If the functions z; : [0,7] — K C Z with K compact satisfy
Dissp(zk, [0,7]) < C < oo, then there exists a subsequence (k;)jeny and a limit
function z : [0,T] — K C Z, such that for all ¢ € [0,T] we have 2 (t) 2 2(t) and
Dissp(z, [0,7]) < liminfg o Dissp(z, [0,T7]).

For the energy functional £ the following assumptions proved to be useful:

Vte[0,TIVEeR: {qeQ|&(t,q) < E}iscompact ; (5)

Jef e RIF >0V (t,q) €0,T] x Q with E(t,q) < o : (6)

E(-,q) € CH([0, T],R) and [0,&(s, q)| < cf' (E(s, q)+¢g) on [0,T7 ;

Ve>0VEe€eRIJ>0Vqwith £(0,9) < E: )

=t <6 = [6E(t,q)—0E(t1,q)| <€

(Qk € S(1), iugg(ta%)<007 = Q) = 0 &(t,qn) — GE(L,q) - (8)
€

The standard condition (5) implies lower semi-continuity and relative compactness
of infimizing sequences. The other conditions concern the power of external forces
0,€. Assumption (6) says that we are able to control the work of the external
forces via the energy itself. The assumptions (7) and (8) concern continuity in
t and ¢q. They are easily checked in the Banach space setting if £ has the form
E(t.q) = Eo(g) — (£(1),q) with € € CI([0,T], Q).

The final and crucial assumption controls the interplay of £ and D:
Vtel0,T]: S(t) is closed in Q. 9)

In most applications of the present theory, the major work goes into establishing (9).
There are a few abstract results that establish (9). For instance, if D is continuous
on Z, then (9) can be easily derived using (5).

The following lemma provides a more general condition. We refer to |43, 55, 57| for
more discussion on ways to establish closedness of the stable set.



Lemma 3.1. If for each sequence (qi)gen in S(t) with gy < q and each § € Q there

exists a recovery sequence (qx)ren With gy g q such that

lim sup (S(t, ar) + D(qw, ax) — E(t, Qk>) < &(t,q) +D(q,q) — E(t,q)

k—o0

holds, then S(t) is closed.

Proof: We start from ¢, € S(t) with ¢z — ¢ and have to show ¢ € S(t). Let q
be an arbitrary test function. Then, by the assumption of the lemma there exist
gk, k € N, with g A q. From g, € S(t) we know 0 < E(¢, qr) + D(qr, qr) — E(t, qr)
and hence the limsup,,_, . is nonnegative. We conclude £(t,q)+D(q,q) —E(t,q) >0
and obtain g € S(t). n

3.2 The Existence Result

We approach the time-continuous formulation (S) & (E) by the following time-
incremental problem (IP). For a partition Il = {0 =ty <t; <--- <ty =T} and a
given initial value gy € @) we let

Find ¢q,qo, ..., q, such that
qe € Argmin{ E(tx, ) + E(qr-1,9) | 7€ 2} .

By assumption (3) and (5) it is immediate that (IP)y is solvable and we are able to
define the piecewise constant interpolant

(IP)nt

I . . 11 o Qj—l fOI‘ t € [tj—latj)a

q :[0,T] = Q with ¢ (t)—{ o for t—T.

It is not difficult to see that the incremental solution satisfies ¢''(¢;) € S(¢;) for
j=1,...,N and

E(tj, q"(t;)) + Dissp(q™, [0,¢;]) < £(0,4¢"(0)) + fgj 0:E(s,q"(s)) ds .

From this it is then possible to derive a priori estimates independent of II for
E(t,q"(t)) and Dissp(¢',[0,7]). Helly’s selection principle for the z-component
and the compactness of the sublevels of £ allow us then to construct a converging
subsequence and to pass to the limit. The final result reads as follows. We refer to
|22, 43, 49| for the proof.

Theorem 3.2. Let I, = {0 = tf < tf <--- <t§, =T}k eN, be a sequence of
partitions such that (1) = max{th—t% | | j =1,... Ny} tends to 0. Let gy € S(0)
be an initial condition and ¢ : [0,T] — Q be piecewise constant interpolants of
the solution of (IP)u,. Then there exists a subsequence Q,, = ¢"*» and an energetic
solution q : [0,T] — Q of (S) & (E) with q(0) = qo such that for all t € [0,T] the
following holds



(i) Za(t) 5 2(t)
(i) E(t,q,(t) — E(t,q(t))
(iii) Dissp(q,, [0,t]) — Dissp(q, [0,7]) ,

(iv) 3 subsequence (N})jen: P () S o(t) forl — oo .

Moreover, 0,E(+,q,(-)) — 0,E(+,q(+)) in L=((0,T)).

The convergence of the ¢-component occurs only on ¢-dependent subsequences
(N})ien. Hence, in general, we cannot guarantee the measurability of the map-
ping ¢ : [0,7] — F. However, in [41, 42] it is shown that measurability can also
be obtained by applying suitable results for measurable selections of multi-valued
mappings.

3.3 Results Based on Convexity

The abstract result of the previous section can be improved if additional properties
are available. We now assume that Q is a Banach space, such that convexity methods
can be used. In general, one should distinguish three different spaces X,Y and Z.
The space Z is the one that provides coercivity of the dissipation distance, i.e.,

Vaqo,q1 € Q: D(go,q1) > |1 — QOHZ . (10)

The space Y measures the uniform convexity of J;, : ¢ — E(t,q)+D(q,q):

Vo, q1 € Q: xﬁ,q(%(%‘f‘%)) < %(jt,q(%)"‘jt,q(‘h)) -3 HQO—(]1||§/ (11)

for some a > 0. Finally, X relates to the coercivity of £, i.e.,

Vge Q: &(tq) = g(llallx) (12)

for some g € C°([0, 00),R) with g(t) — oo for t — oo.

The abstract results of Sect. 3.2 immediately imply that any solution of (S) & (E)
satisfies
0= (p.2) €LX(0,T],X) and =€ BV(0,7T],2).

For a proof of the following result we refer to Theorem 3.4 in [|49].

Proposition 3.3. Assume that £ and D satisfy the joint convezity condition (11)
for some a > 0 and that there exists Cy > 0 such that

Vte [0, TVqo,q1 € Q: [0:E(t, q0)—0E(t, q1)| < Cyllgo—aq]ly -

Then, every solution q of (S) & (E) satisfies

C
Vit € 00,71 [lg(ti)—q(t2)|ly < ?Y|t1—t2\ :



As a typical example we consider the case Q@ = Z = X with

X =H'(Q), D(20,21) = [l2(x) —2(z)| dz ,
E(t,z) = [ W(Vz(x)) + §|2(2)]* — feu(t, x)2(z) dz |

with a > 0, fer € C([0,T],L%(2)) and W : R? — [0, 00), where W is convex and
coercive, i.e., W(A) > ¢|A|?> — C for some C,c > 0 and all A € R%. Then, we may
choose Z = L1(Q) and Y = L3(Q).

In such situations it is possible to define ¢(t) almost everywhere, since jumps, which
are allowed in the energetic formulation, can no longer occur. Hence, it is possible
to study the local subdifferential formulation (1) instead. Using ¢ = (p,2) € X = Q
and R(z,v) = lim._o 1D(z, z + cv) we write (1) in the compact form

X*30€0,R(q(t),q(t)) + 9,E(t,q(t)) a.e. on [0,7]. (13)

This equation is called a doubly nonlinear equation and it relates to evolutionary
quasi-variational inequalities (cf. [10]). We refer to [52, 59| for exact conditions
which guarantee the equivalence between (S) & (E) and (13).

The latter work contains also a general existence result for Lipschitz continuous
solutions to (13). Under quite severe additional assumptions it is even possible
to prove uniqueness, see [10, 52, 59|. However, these assumptions are rarely met
in material models except for very simple cases like linearized elastoplasticity with
quadratic hardening, see |29, 31, 65|. Other uniqueness results are discussed in
|61, 62| for piezoelectricity and in |4] for an isotropic model for shape-memory alloys,
see also Sect. 5.

4 Approximation, ['-Limits and Relaxation

In several circumstances it is desirable to consider sequences of functionals (& )ken
and (Dy)ren which converge to limit functionals &, and D, respectively, in a
suitable sense. The main question is which type of convergence guarantees that
limits ¢ : [0,7] — Q of solutions ¢, : [0,7] — Q for (&, D) are solutions for
(s Doo)-

Typical applications of this idea occur for
e numerical approximations with &(¢,q) = Ex(t,q) for ¢ € Qr C Q and oo

otherwise, where each (), is a finite-dimensional subspace of Q such that ), C
Qp+1 and J, oy @k is dense in Q.

e problems with singular perturbations (like sharp interface models) or with
penalization terms

e constant sequences & = &1, Dy = Dy, where &(t,-) and Dy (-, -) are not lower
semi-continuous and differ from their I'-limits £, and D,.
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The latter point relates to relaxations of rate-independent evolution which is an
important topic in material modeling. It is a tool for deriving evolution equations
for microstructures. We refer to [14, 48, 51, 60, 79| for discussions of this topic.

Here we present the theory originating from [37]. In [57]| the abstract version was
developed and in [55] it is applied to numerical approximation in several material
models. The following version is a simplified version of the one developed in [57].

4.1 TI'-Convergence of Rate-Independent Systems

We let Ny, := N U {co} and state first the conditions on the dissipation distances
(Di)ren.,- Each Dy, k € N, is a pseudo distance on Z, i.e.,

Vz; € Z: Dy(z1,21) =0 and Dy(21, 23) < Dy(21, 22) + Di(22, 23) - (14)
To obtain solutions of incremental problems we impose that
VkeNyg: Dyp: Zx Z —[0,00] is lower semi-continuous. (15)
The limit distance D4, must be positive in the following sense

For compact K C Z and (z;)reny C K we have:

16
min{Dy(2k, 2), Do (2, 2k)} = 0 = 2z Z . (16)

Finally, D, must be bounded from above by the I'-liminf of (Dy)ien, i.e.,
<zk Z s and % 5 z) = Ducl2,2) < liminf Dy, %) (17)

Next we state the conditions on the energy functionals. We start with the compact-
ness of the sublevels:

Vtel[0,TIVE eR:
(i) VEe Ny : {qge Q| &l(t,q <E}iscompact, (18)
(i) Urenta € Q| &(t,q) < £} is relatively compact .

The next three conditions provide suitable continuity properties of the powers 9,&(+, -)
of the external forces.

Jeg,c1 > 0VEk € N V(t,q) € [0, 7] x Q with E(t,q) < oo

19

Eu(erq) € CH(0,T]) and 815, 0)| < cr(Eals,q)4co) on (0,75 )

Ve>OVE>030>0VkEN Vg€ Quith GO0 S F: o
[ti—ta] <0 = |0:&(t1,q)—0Ek(t2,q)| < e

<Qk 5 q and sup E(t, qr) < OO) = 0&(t,qx) — 0E(t,q) . (21)

keN



The final condition on (&)gen,, concerns the I'-liminf, namely
G 2>q = Eultg) < liligﬂ inf E(t, qr) - (22)
The crucial condition that connects the convergences of Dy to Do, and & to E

involves the sets of stable states. For k € N, we have

def

Se(t) ={q€ Q| &(t,q) <oocandVqge Q: El(t,q) < &E(t,q) +Dr(q,q) }

and ask for the upper semi-continuity Limsup,_, . Sk(t) C Sx(t), i.e.,
<qu € Sk, (t) and gy, S ¢ for ky — oo) = q€S(1). (23)

In typical applications in continuums mechanics it is hard to establish this condition.
On the abstract level it is possible to provide sufficient conditions. For instance, we
say that € is the T'-limit of (Ex)ken if (22) holds and if for all ¢ € Q there exists a
recovery sequence (gx)gen such that

Tk A q and E(t,q) > limsup E(t, qr) - (24)

k—o0

A similar notion of I'-limit holds for (Dy)gen.

It is shown in [57| that in general (23) does not hold if & I'-converges to &, and
Dy, I'-converges to D,,. Even more, the following theorem may be false. The next
lemma gives a positive result.

Lemma 4.1. If &, = T'-limg &, i.e., (22) and (24) hold, and if Dy converges
continuously to Dy, i.e.,

(2 22 and 3 > z) = Dilz ) = Do(z,2), (25)
then (23) holds.
Proof: Let g, = (pk, 2x) € Sk(t) be given such that gy, < g. Moreover, let ¢ be

arbitrary. Then there exists a recovery sequence gx = (@, 21 ) satisfying (24). Using
(25) we conclude

goo (t, q) S hm iIlfg_wo 5]% (t, qkz)
S lim inff—wo (gkz (t7 a/kz)_'_,Dke (qkw 6/@)) == goo (tu ZD + Doo (q7 ZI) .

Here we use first (22), next ¢ € Sk(t) and last (24) and (25). Since ¢ € Q was
arbitrary, we have ¢ € S,.(t). m

The following result is concerned with the so-called incremental problem (IP)y. For
this choose a sequence (ITy)gen of partitions with II, = {0 = 1§ < tf < ... <1}, =
T} and fineness ¢(I1;) = max{ty —¢¥_ [j=1,... Ny }:

10



Given ¢f € Q, find iteratively

1P -
IP)e 0k & Argmin{ £(#,) + Dulet @) |G Q).

Existence of solutions follows easily from (15) and (18). We define the constant
interpolants g, : [0,7] — Q via

q(t) = qgf—1 for t € [t?—lvt?> and G, (T) = QJIi/k .

Theorem 4.2. Let the conditions (14) to (23) hold and let the partitions Iy, k € N,
satisfy ¢(Ilx) — 0 for k — oo. Moreover, assume

€ 8(0), ¢f = qo, and E(0,¢8) — Ex(0,q0) -

Choose any sequence (G, )ren of constant interpolants of solutions to (IP),. Then,
there exists a solution q : [0,T] — Q of (S) & (E) associated with (Ex,Deo) and
q(0) = qo and a subsequence (qy,)een such that for all t € [0,T] the following holds:

(1) &k, (t,q, (1) = Ex(t, q(1)),
(it) Dissp, (qy,,[0,t]) — Dissp_(q,[0,]),

(iii) 2, (t) = 2(1),
(iv) 3 subsequences (K} )nen of (ke)een : @i (1) S ©o(t) for n — oo.

Moreover, we have 0;E, (-, Gy, (+)) = 0:€x (-, q(+)) in L>([0,T7).

4.2 Relaxation in Case of Missing Lower Semi-Continuity

In applications it may occur that for mechanically given functionals £ and D it is
not possible to choose a space Q, such that the sublevels of £ are compact. In
particular, the time-incremental problems (IP)r; may not be solvable because of the
missing lower semi-continuity, which has its mechanical counterpart in the formation
of microstructure. In such situations it is desirable to find suitable relazations,
which allow for the calculation of suitable effective quantities associated with these
microstructures. For rate-independent systems this question was first addressed in
|60], where the separate relaxation &, = I'-lim€& and D,, = I-limD, and further
developed in |14, 20, 48, 57, 79]. Of course, in the case of a constant sequence the
['-limit is simply the lower semi-continuous hull.

In |48, 57, 60| it is suggested to study the approzimate incremental problem

Given gy € 9, find iteratively ¢1, ga, ..., gy such that
(AIP)ia  E(t5,45) +D(qj-1, ;)
< (tj—tj-1)a + infzeo E(;, ¢)+D(gj-1, ).

For av > 0 this problem always has solutions and the question arises as to how the
solutions behave for a« — 0 and for smaller and smaller time steps.
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Choose sequence (ITy)ken and (ag)gen with 0 < o — 0 and ¢(Il;) — 0. Then,
wor each k& € N a solution of (AIP)y, ,, exists and defines a piecewise constant
interpolant g, : [0,7] — Q. In [57] it is shown under general abstract conditions
that the interpolants contain a convergent subsequence in the sense above and that
the limit ¢ : [0,7] — Q is an energetic solution for the I'-limit potentials &, and
Ds. One simple sufficient condition is that D is already continuous, which implies

D, =1D.

Another abstract relaxation result is derived in [51]. It uses a kind of elliptic regu-
larization of the subdifferential inclusion (13). We consider a sequence of functionals

Ts(q) = fy e P (Ri(d(t)) + LE(t,q(t))) dt ,

where again each Ry : Q — [0, 00] is convex, lower semi-continuous and 1- homoge-
neous. If R, and &, were smooth, the Euler-Lagrange equation reads

6D*Ri(¢)[d] = DRi(q) + De&i(t. q) ,

which in the formal limit § — 0 converges to (13).

Using the 1-homogeneity of Ry it is proved in [51] that minimizers ¢ : [0,7] — Q of
T) s satisfy the d-independent energy balance

Ex(t.a(t) + [, Ri(dg) = E(0,q(0)) + [ 0:Ex(s,q(s)) ds .

As in Sect. 3.2 this implies a priori bounds independent of 6 > 0 and of k, if (19) is
used. Fixing 0 > 0 and letting k — oo, we obtain a I'-limit Z, 5 in the form

Toos(q) = fi ¢ (Roo(d(t)) + 1€(t, q(t))) dt

if £, = I'-limy_ o & and R converges continuously to R... Finally, under these
assumptions it is shown that for minimizers gz : [0,7] — Q the accumulation
points for & — 0o and § — 0 are in fact solutions of the energetic formulation (S)
and (E) associated with £, and Dy : (¢, ) — Re(q — q)-

4.3 Numerical Space Discretization

We indicate one of the main applications of the I'-convergence results. Consider a
reflexive Banach space Q equipped with its weak topology. This space is approxi-
mated by a nested sequence (Q)ren of finite-dimensional subspaces such that their
union is dense, viz., Qr C Qryr1 C Q and Uren@r = Q. Finally, assume that the
functionals £, = [0,7] x Q — R is strongly continuous and Dy, : @ X Q — [0, o0
is weakly continuous in addition to the assumption (2) to (9). Now define the
finite-dimensional (space) approximations via

o0 otherwise , 00 otherwise .

gk(t, q) _ { goo(t,Q) for qc Qk ) Dk(q,N) _ { Doo(qaa) for Q7a€ Qk ,
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Then it is easy to see that the assumptions (14) to (22) are satisfied. To establish
the upper semi-continuity of the stable sets we proceed as follows. Starting from
qr € Si(t) with gz — ¢ we need to show ¢ € S,.(t). For ¢ € Q we choose g € Qx
with gx — ¢ (strongly). Then we have

0 < &(t,qr) + Dilqr, @) — Ec(t,ax) = Et, @) + D(qw, @) — E(t, qr) -

Using strong continuity for £, weak continuity for D and weak lower semi-continuity
for £ we take the limsup of the last expression and find

0 S lim sup (g(t’ ak)+D(Qk> (Ajk)_g(t> qk)) S g(ta €1>+D(Q> a)_g(t> q) ;

k—o0

which is the desired stability result, since ¢ is arbitrary.

This theory is the basis for treating spatial discretizations of energetic formulations.
In particular, Theorem 4.2 guarantees that each limit point of the joint space-time
discretization provides a true solution of (S) and (E).

In [37| this numerical theory was developed for a model involving gradient Young
measures to describe microstructures in shape-memory alloys. A more systematic
treatment of different aspects of numerical space discretizations as well as penal-
izations or relaxations is given in [55]. Using more regularity and convexity as-
sumptions full convergence results, without choosing subsequences, are established
in [4]. This is closer to the highly developed theory in linearized elastoplasticity, see
[1, 29, 31, 78|.

5 Applications to Material Models

The theory of rate-independent processes finds applications in many areas. This
includes the theory of superconductivity [68, 76|, dry friction on surfaces |2, 44, 75|,
delamination [34], damage [56] and brittle fracture [12, 15, 21|. The latter three
areas involve applications where the internal variable is active only on submanifolds
of the elastic body. Here we restrict ourselves to those situations where the internal
variable z is distributed throughout the body.

The original driving force of this theory was the dynamic problem of linearized
elastoplasticity, however, nowadays many other applications occur in phase trans-
formations in shape-memory materials, in magnetostriction, in piezo- or ferroelec-
tricity, and in damage. Finite-strain elastoplasticity is another very active area for
rate-independent modeling. This will be surveyed in [46] of this volume.

5.1 Shape-Memory Materials

We consider an elastic body Q C R? in its reference configuration, which we assume
to have a Lipschitz boundary. The deformation ¢ : Q@ — R? describes the elastic
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Figure 1: Sketch of the multiscale structure of a sequential laminate in a shape-
memory alloy (left to middle). Microscopic view of laminates by Chu and James
(right)

behavior in the case of large strains (also called “finite strain”), whereas the displace-
ment u : Q — R 2 +— p(x) — z, is used in the case of small strains (also called
“infinitesimal strain”). The elastic properties depend on the strain tensors V! Vi
and e(u) = $(Vu+ Vu'), respectively.

Since the shape-memory effect relies on the fact that these materials have several
phases, the corresponding stored-energy density (also called stress potential) has a
multi-well structure, which is usually given in the form

W(z,Ve) =min{ W;(z,Vy)|j=1,...,N}.

Here N is the number of (variants of) phases including the austenite and the marten-
sites. Each W;(x,-) : R™? — [0, 00] is assumed to behave nicely in terms of lower
semi-continuity and coercivity.

However, W (z,-) is in general not rank-one convex, and hence formation of mi-
crostructures is to be expected. This is compatible with the physics, since the
shape-memory effect relies heavily on formation of martensitic laminates (also called
“twinning”), see Fig. 1. We refer to |9, 71| for surveys on the mathematical modeling
of microsctructures in shape-memory alloys.

To describe this mathematically it is advantageous to use gradient Young measures,
see 7,9, 38, 39, 66| for the static case and see [3, 27, 37, 48, 54, 71| for the evolution
of microstructures. We will survey this work next. After that we will discuss several
models which do not resolve the microstructure but keep certain volume fractions
or effective properties, see |23, 24, 25, 42, 58, 60, 77|. Finally, we will indicate
how these models may be generalized to include the temperature as an additional
external parameter.

5.2 Models Using Gradient Young Measures
A gradient Young measure is a function over the physical domain €2 which takes

values in the set of probability measures on the set R?*? of deformation gradients,
namely

Prob(R™?) := { p € MR | u >0, fRdxd Lp(dA)=17}.

14



However, the addition “gradient” means that only those measures are considered,
that can be generated via a sequence of gradients of deformations.

We say that a bounded sequence (@p)ren in WHP(Q,R?) generates the gradient

Young measure p :  — Prob(R%*?) and write Vi, s w, if for all ¢ € CY(Q x R¥*4)
we have, for k — oo,

Jo (@, Vor(@)) dz — [, foaa ¥(z, Ap(z, dA) da .

Such g have the additional property [, [gaxa(1+|A])Pp(z, dA) dz < oo, and we
denote the set of all these measures by

G,(§2) = p-integrable gradient Young measures .

To model the hysteretic behavior in shape-memory materials with the energetic
formulation discussed in Sect. 3 we need to introduce a phase indicator z : Q — Zy
where Zy is usually taken as the Gibbs simplex

In={zeRY|z>0, 3N z=1}.

The components z; of z € Zn measure the volume fraction of phase ¢ in a represen-
tative volume element. For gradient Young measures we extract the phase fractions
via a continuous mapping

C: QxR - 7y

such that ((z, A) = e; (unit vector in RY), if W(z, A) = Wj(z, A) < Wy(z, A) — ¢
for £ # j. Here § > 0 is a suitable constant which is assumed to be much smaller
than the depth of the wells.

Finally we introduce a dissipation distance D : Zy x Zy — [0,00). It suffices to
prescribe the values k;_; = D(e;,e;) > 0, such that the triangle inequality holds,
ie., Kjy < Kjp + Kg—e. Here k;_; denotes the energetic loss when the material
jumps from a phase e; into another phase e;,. Then, D : Zy x Zy — [0,00) is
defined via the optimal transport problem

N N N
D(z,2) = min{ > Mmigkiok } mje >0, > mjge; =2, > mjgep = 2 } )
Jk=1 k=1 J=1

It is shown in Proposition 4.7 in [60], that there exists a convex, 1-homogeneous
R:RY — [0,00) such that D(z,2) = R(Z — z).

With these notations we now formulate the function spaces and the functionals.
We assume that @ C R? is a bounded domain with Lipschitz boundary 99 and
that I'p;; C 0N is a set of positive surface measure on which we describe Dirichlet
boundary data. We let

F={peWPQRY | or,. = Ppir } X G,(Q) and Z = LY(Q, Zy) .

The state space is @ = F X Z and a state consists of a triple ¢ = (o, u, 2). We
further let Qy = { (v, i, 2) € Q | Vo = ideu, z = Ceu }, where “o” denotes the
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contraction over A € R™ but not over z € Q, ie., (idep)(z) = [pawa Ap(z, dA)
and (Cop)() = [qaxa C(x, A)p(x, dA). With the prescribed external volume and
surface loadlngs

) = Jo Jet(t, 2)-0(x) dz + [ Gext(t, 2)-0(2) da(w)

we define the energy-storage functional

Et,q)=[ [ W(x, A)p(z, dA) + E|V2|*> dz — (((t), q) for ¢ € Qo (26)
Q Rdxd
and E(t,q) = oo for ¢ = (o, i, 2) € Q\Qp. Here p > 0 and V*z, a > 0, denotes a
(fractional) derivative, for instance for o € (0,1) we have

Jo V2> dz = [ [, % dz d7 .

This regularizing term allows us to choose the strong topology in L'(€, Zy) as this
space is compactly embedded into W*2(Q, RY) for o > 0. Nevertheless, for a < 1/2
the functions in W*2(Q, RY) may have jumps along smooth interfaces such as the
habit plane between austenite and martensite.

The dissipation distance is defined as

D(z,2)= [, D ,Z(x)) de = [, R(z, Z(z)—2(x)) da . (27)

Since D is (strongly) continuous on Z the crucial closedness condition (9) of the
stable sets is easily obtained via Lemma 3.1 by taking ¢, = q.

The following existence theorem is established in [37|. The earlier version in [54] was
based on the much stronger assumption that £(¢, (-, -, z)) has a unique minimizer, but
this condition is no longer needed because of the abstract developments in |22, 49].

Theorem 5.1. Let p € (1,00), a € (0,1), and p > 0. Assume that there exists
C > 0 such that for j =1,..., N, we have

VAeR™: LIAP —C < Wj(z, A) < CIAIP + C . (28)

Further assume ¢ € CL([0, T], WP(Q,RY)*) and that qo € S(0). Then, the energetic
formulation (S) and (E) associated with € and D from (26) and (27), respectively,
has a solution q : [0,T] — Q.

The theory of I'-convergence discussed in Sect. 4.1 can also be used to show that
space-time discretizations of the energetic formulation contain subsequences which
converge to energetic solutions. For this we use triangulations 7;, of 2. Moreover,
we approximate gradient Young measures by sequential laminates of order k € N,
see [3, 8, 38, 72| and Sect. 5.4 in [48] for an introduction. Fixing x € N we define
Q" as the space of functions ¢ = (p, 1, z) € Q for which Vo, i and z are constant
on each simplex and p is a laminate of order at most x. Using the penalization
parameter € > 0 we let

Ene(t,q) = E(t,q) + 1 [, |z—Copl? dx for ¢ € Q with Vo = idey
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Figure 2: Left: 12 steps of the compression cycle. The greyscale indicates the volume
fraction of martensite in each element. Additionally, in the discs the microstruc-
ture on the indicated element is indicated (white—austenite, grey—martensite2,
black—martensite3). Right: hysteresis in the overall stress-strain relation
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Figure 3: Energies (in Joule) during the cycle. Left: stored energy £(¢, ¢(t)), middle:
dissipated energy Dissp(q, [0, t]) and right: work of external forces f(f 0s€(s,q(s)) ds

and &, .(t,q) = +o0 otherwise on Q.

In [37] a function H : (0,00) — (0,00) with H(g) — 0 for € N\, 0 is constructed
such that the following holds: If (Ilx)ren is a sequence of partitions of [0,T]| with
o(Ily) — 0, if (7p,) is a sequence of triangulations of Q and if e, — 0 with hy <
H(gg), then the incremental solutions G, associated with (Ep, ., D) on Q" have a
subsequence which converges to an energetic solution q : [0, T] — Q for (€, D).

Figures 2 and 3 show results from a numerical simulation from [37| for a sample
of 4x4x9mm single-crystal alloy of CuAINi. It has a cubic-to-orthorhombic phase
transition with one austenite and 6 variants of a martensite (i.e., N = 7).

All phases are modelled by a Saint-Venant-Kirchhoff material W;(z, A) = 1(ATA —
C;): C;: (ATA—C)) +d;, where C; € RS, C; € Lin(R2:?), and d; are the exper-
imentally measured values for each j € {1,...,7} at a fixed temperature of 312 K.
The dissipation constants D(e;, es) are chosen to be 0.5 MPa for transformations
between martensite and austenite or vice versa. Transformations between different

variants of austenite are assumed to have much lower dissipation thresholds.

The discretization involves 180 tetrahedrons and second-order laminates. This leads
to 20 degrees of freedom in each element, which lie in a nonlinear manifold with
boundary (box constraints). The minimization technique for solving the highly
nonconvex incremental problem is described in Sect. 6.3 in [37].

A microscopic model that does not allow for microstructure and uses only pure
phases is developed and analyzed in [41, 42]. Tt is based on the usage of an interface
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energy that is proportional to the surface of the interfaces. We denote the set of
pure phases by Py = {ey,...,exy} C Zy € RY and let Z,,.. = L'(Q, Py) equipped
with the strong L'-topology. The space F of admissible deformations remains as
above, whereas the energy functional &€ : [0,7] x Q@ — R, takes the form

Et,p,2) = [o Wi (@, Vo(x)) dz + p [o [Dz] = ((t), ¢) |

where j(z) =k < z(x) = e, and where [, |dz| denotes the total variation

Joy D2 = sup{ [, z-divep da | ¢ € CHQ,R™ ), [[[(@)||| < Lon Q } .

The norm ||| ||| on R¥*4 can be adjusted to anisotropies in Q C R? and to different

weights for the interfaces between phases j and k, see |41, 42| for the details and for
generalizations.

Using the same dissipation distance D as above an existence theory as in Theorem
5.1 can be derived, since BV(Q) embeds compactly into L'(2). The solution ¢ =
(p,2):[0,T] — Q now satisfies

p € L2([0, 7], W' (2, R7)) and

z € BV([0,T],L'(2, Py)) N L,k ([0, 7], BV(Q,RY)) .

weak

5.3 Mesoscopic Models

Often it is not desirable or prohibitly costly to calculate the evolution of the mi-
crostructure during the hysteretic evolution process. If these details are not needed
and if volume fractions or other effective quantities are sufficient, then simpler mod-
els may be used.

If we only care about volume fractions, then the mizture function can be used to
describe the effective behavior of phase mixtures. Let W;(x,-) be given as above for
j=1,...,N. For z € Zy and A € R™? we let

W(x,A,z):inf{ [ Wi (@, A4y dy‘JeLl((O D4 {1, ..., NY),
(0,1)¢

[ esydy =z 0 e Wy (0.1 B |
(0,1)

where (0, 1)? is a microscopic representative volume element, J a microscopic phase
indicator, and V4 microscopic fluctuation of the gradient. In [40] W is also called
cross-quasiconvezification and in [25] the free energy of mizing.

Unfortunately, in general situations it is almost impossible to calculate W explicitly.
Nevertheless W is cross-quasiconvex and hence, for each 2 € Q and A € R¥?, the
function W(z, A,-) : Zy — [0,00) is convex and, for each x € Q and z € Zy,
the function W(z, -, 2) : R4 — [0, 00) is quasiconvex. Explicit formulas are only
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available in dimension d = 1 or if each W; is quadratic with an elastic tensor
independent of j, viz.,

Wiz, A) = 3(e(A) — g;(2)) : C(2) : (e(A) — &;(2)) + d;(@)
where e(A) = $(A+ AT — 2I). Then,
W(z, A, 2) = Zjvzl 2iWi(x, A) + wmix(z, 2) ,

where wyic(z,e;) = 0 and wyic(z,+) © Zy — R is convex. See |25, 47| for cases
where wp,;x can be calculated or estimated efficiently.

The advantage of the mixture theory is that we are not forced to work with qua-
siconvexity. We are able to use polyconvexity as well. Hence it is possible to use
energy densities that take the value +oo, as for instance in finite-strain elastic-
ity where W(z, A) = +oo for det A < 0. Instead of cross-quasiconvexity we may
use cross-polyconvexity, namely W(z,-,-) : R™>? x Zy — [0,00] is called cross-
polyconver, if there exists a function g(x,-) : R™a™N — [0, oo] that is convex, lower
semi-continuous and satisfies

W(z, A, z) = g(z, M(A), 2) ,

where M(A) € R™ is the set of all minors.

We now define the state space Q@ = F x Z for classical functions ¢ only, namely
F={peWPQRY| ¢, =id} c W (Q,R?)
equipped with the weak topology. The stored-energy functional takes the form
E(t,p,2) = [ W(x,Vo(z), 2(x)) + 5|V2> do — (£(t), ) . (29)

For p > 0 and a > 0 we take Z = L}(2, Zy) equipped with the strong topology.
Under suitable coercivity and (poly)quasiconvexity assumptions on W(x, -, z) it can
then be shown that the sublevels of £(t,-) are compact in Q, which is our basic
condition (5). In the case p = 0, this is more difficult, since Z then has to be
equipped with the weak topology. Then, cross-(poly)quasiconvexity is necessary
for weak lower semi-continuity of £. However, for the case without regularization
(p = 0) the best we can hope for is that solutions for the incremental problem (IP)
exist. The passage to the limit of vanishing time incrementals strongly relies on the
closedness condition (9) for the stable sets which, so far, cannot be established in
cases without regularization.

The following result is a slight variant of the existence results in |22, 41, 49|.

Theorem 5.2. Letp € (1,00), a, p > 0 and ¢ € CX([0, T], W-P(Q, R%)*). Moreover,
let D be given as in Sect. 5.2 and assume that € in (29) has compact sublevels
in @ C WP (Q,RY) e X LN(Q, Zx )strong- Then, for each stable initial state qo =
(po, 20) € Q there exists an energetic solution ¢ = (p, z) : [0,T] — Q for (€, D) with
¢ € L=([0, T), WLP(Q, RY)) and 2 € BV([0, T], LY(Q, Zn)) N L=([0, T], H*(Q, RY)).
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The associated numerical convergence results are discussed in [55]. But all the above
models have the disadvantage that the solutions are not unique. Hence, it is not
possible to show that numerical solutions converge.

The next model goes back to [77] and was further developed in [4, 5|. This model
is based on the linearized strain tensor £(u) = £(Vu + Vu') and the mesoscopic
transformation strain z € Z ={ A € R>? | A= AT tr A = 0}. The dissipation is
simply a multiple of the L'-norm:

D(2,2) = R(Z—z) = [, caZ(x)—2(z)| dz .
The energy functional takes the form
E(t,u,z) = [ Wz, e(u), z) + h(|z]) + §IV2]* dz — (U(t), u) |

with W(z,e,z) = 2(e—2):C:(e—z). Again, the classical model has no regularization,
i.e., p =0. The hardening function & : [0, 00) — [0, co] equals

h(r) = { Vo2 +r2+cr? forr e (0,1,
o

otherwise ,

in [5] and has § = 0 in [77]. In these cases it is easy to solve the incremental
problems (IP)y in the space @ = HY(Q,R?) x H*(Q, Z), for all a > 0. However,
for obtaining energetic solutions we again need p and « strictly positive, to make D
weakly continuous on Z = H*(2, 7).

A further variation is considered in [4|, where h is replaced by a smooth, convex
function taking finite values and growing at most quadratically, e.g.,

h(r) = o V& 72 + egr? 4 amexlirorat
Then, for a > d/6 it can be shown that £(¢,-) : H'(,R?) x H¥(Q,Z) — R is
three-times differentiable and uniformly convex. Hence, the theory of Sect. 7 in
[59] is applicable. This allows us to conclude uniqueness of the solutions as well
as strong convergence of the solutions of the incremental problem. In fact, the

convergence rate is (¢(I1;))"/2. In [4] also the convergence of spatial discretization
will be discussed.

5.4 Temperature-Induced Phase Transformation

The original shape-memory effect is based on cooling and heating to switch between
martensite occurring in several variants and the single austenite phase. So far the
energetic formulation is only available for the isothermal case and thus is suited for
stress-induced phase transformations only.

There is at least one nonisothermal case that can be treated via the energetic for-
mulation as well, namely if the temperature field is given a priori independent of the
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solution to be calculated. This means that the deformation and phase transforma-
tion process is so slow that all latent heat which is either consumed or generated via
phase transformation can be transported via heat conduction into the environment.

Thus, our model is based on a temperature dependent stored-energy density W (x, A, z, )
which is assumed to satisfy

FJ eRIY >0Vr e QVAEeR™ V2 e Zy V0 >0

30
|0aW (2, A, 2,0)| < ¥ (W (z, A, 2,0)+cF) . (30)

The given temperature profile 6 should satisfy (log#) € CH([0,T] x Q), then the
energy potential, which for simplicity is now without external forcing, takes the
form

E(t,p,2) = [, W(x, Vo(x),2(x),0(t,x)) dz

and the power associated to the temperature changes is
QE(t, p,2) = [ 0W (x,V(x), 2(x),0(t,2))0,0(t, x) dx .

Using (30) it is easy to establish the condition (6) and, under suitable additional
assumptions, the conditions (7) and (8) hold as well. In [50] we will provide the
detailed assumptions for a full existence theory.

5.5 Poling Induced Piezoelectricity

Multifunctional materials derive their functionality from the combination of several
properties such as elasticity, polarizability, and magnetizability. For such materials
the polarization p or the magnetization m may be considered as the variable z used
above. However, in addition we have to take the relevant version of the Maxwell
equation into account.

In the quasi-static setting either the electric or the magnetic field vanishes such
that we obtain two clearly distinguished cases, which are dual in a certain sense.
Throughout we will restrict to the case of small strains, since otherwise the Maxwell
equations have to be solved in the deformed configuraton, see the references at the
beginning of Sect. 5.6.

The electric field E and the dielectric displacement D are defined on all of R?
whereas the polarization P : Q — R? on the body only. These fields are related by
the constitutive relation

D=cyE+PinQ and D =¢gyF in R\Q.
The reduced Maxwell equations are
divD = 0 and curl(E — Ee(t,-)) = 0 in R? (31)

where curl E = VE — (VE)T. We will implement these equations as part of the
energetic formulation.
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We consider the displacement u :  — R? and the dielectric displacement D as
variables in the space
F =Hp,, (2,RY) x L, (RY, R)

with L3, (R4, RY) = { D € L*(RY,RY) | divD =0} .
The internal variable p € Z = H'(Q,R?) is the remanent polarization. For q =
(u,D,p) € Q=F x Z and t € [0,T] the energy potential £ is defined via

t,q) = Jo W(z,e(u),p)—2D-P(x,e(u),p)+5|Vp* do

+ Jga 5| DI? dz — (£(t), (u, D))

where the external forcing occurs via mechanical volume and surface loadings and
via an external electric field

((t), (u, D)) = [q fexe(®)udr + [i. gext(t)u da+ [pg Eee(t)-D do .

The electric field is the dual variable to the dielectric displacement D, i.e.,
E = i(D—P(x,a(u),p)) in Q and FE = %D in RA\Q . (32)

The polarization is given as a constitutive function and poling induced piezoelec-
tricity means that the piezoelectric tensor 0. P does not vanish.

Following [32, 70| the dissipation distance is the Legendre transform of the so-called
switching function, namely

D(p,p) = R(p—p) = [, R( —p(x)) dz

for some Caratheodory function R : Q x R? — [0,00) with R(z,-) being convex
and 1-homogeneous. Under the assumption that W (x,- -, p) : Rg;n‘f x R — R is
convex and that W satisfies suitable upper and lower bounds, it is now straight
forward to prove the existence of energetic solutions (u, D,p) : [0,7] — Q with

(u, D) € L(0, ), F) and p € BV((0, 7], L\(Q, B) nL=([0. T}, (2, %)),
To see the compatibility with the Maxwell equations (31) we note that the stability
condition (S) implies that for all ¢ € [0, 7] we have

Dpé(t,u(t), D(t), p(t))[D] = 0 for all D € L2 (R? R?) .
In Proposition 2.1 of [61] it is shown that the latter relation is equivalent to the
Maxwell equations (31), if the definition (32) is used.

Moreover, in that work additional conditions are discussed which imply also unique-
ness of solutions. For this the uniqueness theory of Sect. 7 in [59] is employed.
However, the resulting conditions seem very restrictive.
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5.6 Magnetostrictive Materials

We summarize the theory of [17] which is based on small-strain elasticity, see also
[55]. For the much more complicated constitutive theory in the case of finite-strain
elasticity we refer to [16, 30] and for some analysis for the static problem with
second-order regularization of the deformation we refer to |74]. For small strain-
models including microstructure via Young measure (like in Sect. 5.2) we refer to
|72, 73].

In analogy to the case of polarizable materials we use the magnetization m : Q — R?
as an internal variable. Usually the saturation assumption |m(z)| = mee > 0 is
added which we impose by letting Z = {m € R? | |m| = mg }. The magnetic
induction B : R? — R? and the magnetic field H : R? — R? are related via the
constitutive law

B=uo(H+m)inQ and B = poH in RN\Q .
In this quasistatic setting Maxwell’s equation reduces to
divB=0 and curl H =0in R . (33)

We choose F = Hi_(Q,R?) x L (R, R?) equipped with the weak topology and
Z =LY, Z) with the strong topology. The energy potential reads

E(t,u, B,m) = [, W(x,e(u),m)—B-m+5|Vm|* dz

+ Jpa 30 | BI? do = (£(2), (u, B))
with an external forcing of the form
(0(0), (0 B)) = Jo Fosa(t)u o+ [ G (00 da+ [y Ho(0)B o

The parameter /p relates to the exchange length, which determines the scalings for
the width of domain walls. The dissipation distance may be chosen via an arbitrary
distance D(z,-,-) on Z = mS*!, e.g.,

M) 4 cole:(m—m)]

sat

D(z,m,m) = ¢; arccos (

where € is an “easy” axis and ¢ = 0 in the isotropic case. We let D(m,m) =
Jo D(x,m(z),m(x)) da.

Using the standard coercivity assumptions on W : Q x Rgl;n‘f x Z — [0, 00), convexity
in e(u) and continuity in m € Z it is standard to show that £(t,-) : Q =F xZ — R
is lower semi-continuous with compact sublevels. Moreover D : Z x Z — [0, 00) is
continuous in the strong L'-topology (or in the weak H!-topology). Thus, existence

of energetic solutions for (£, D) can be easily obtained from Theorem 3.2.

Since the magnetic field H is the dual variable to B,
D& (t, u(t), B(t), m(t))[B] = 0 for all B € L, (R? RY)
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is equivalent to (33) in the form

divB =0 and curl( B He — xam) =0 in R?.

It is more common to formulate the problem of magnetostriction in terms of the
potential U of the magnetic field H, i.e., H = VU. In the above formulation we
may then replace B via

B = 1ig(VU + Hey(t) + xam) (34)
in the energy £ to arrive at

Et,u,Uym) = [, W, e ), m) — 2 mf*—m- Ho (1)
+ fRd 7|VU|2_%|Hext(t>|2 dz = {bmeen(t), u) -

Note that the Euler-Lagrange equation for U does not supply the desired Maxwell
equation
div(VU + Heg(t,-) + xom) =0 in R?. (35)

Thus, to derive an energetic formulation in this situation the variable U has to be
taken as a function of m € L*(Q, Z) and t € [0, T] via Hey (¢, ), namely U = U(t, m)
being the solution of (35).

Instead of simply replacing B by the corresponding variable, we might as well per-
form a partial Legendre transform such that W(f, z,e(u), B, m) is replaced by

/W(t, x,e, Hym) = W(t,x, e,B,m)— B-@BW(t, x,e, B,m)

where B is again eliminated using (34). The corresponding energy & then contains
the negative definite term — [, 22|VU|* dz. Thus, we may use Dy E(t, u, U, m)[U] =
0 to obtain (35), but the saddle point structure of £ does not allow us to introduce
a stability condition in terms of (u,U,m). Thus, it is not possible to derive an
energetic formulation either.

6 Conclusions

The energetic formulation of rate-independent processes was developed much fur-
ther via the abstract approaches described in [22, 43, 49|. The major improvement
occurred through finding abstract versions of the ideas in [15] for treating a rate-
independent model for crack growth. Now it is possible to deal with problems where
the energy £(t,, z) : F — R, is non-convex. In general, the abstract theory is avail-
able in topological spaces without any linear structure. Thus, it is possible to treat
finite-strain elasticity (cf. [22, 33]) as well as internal variables which lie in general
nonconvex sets such as in magnetism (cf. Sect. 5.6) or in finite-strain plasticity, see
[46]. Moreover, it is possible to include Young measure into the state space as well
[37, 54].
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Further developments include the abstract theory of I'-convergence and relaxations
of the energetic formulation. This allows us, for instance, to treat numerical approx-
imations, see [4, 37, 55|. However, the numerical analysis and efficient simulations
still need a lot of further developments.

The major drawback of the energetic formulation is that there are only very few
results on the uniqueness of solutions, see [10, 52, 59|. Another deficiency concerns
the fact that the stability condition (S) involves a global stability condition. For a
better physical modeling and for numerical implementation it would be desirable to
replace this condition by a suitable local stability condition. First attempts are given
in [18, 53|, but a reasonable general theory is not yet developed. This is closely to
the general problem how these rate-independent models can be embedded into more
general dynamical problems, for instance including rate-dependent heat conduction,
viscous effects or even kinetic terms.

On the side of material modeling there is now quite a variety of models for shape-
memory materials. It is possible to describe models on many different length scales.
However, the question of upscaling and deriving effective models on larger scales
needs further investigations. The relaxations and I'-convergence results in Sect. 4
will be a good basis for doing this, see also [57]. A first step in two-scale homogeniza-
tion will be developed in [63|. Moreover, evolutionary models for microstructures
and textures will certainly be important future areas where the energetic formulation
can be helpful.

The strength of the energetic formulation is that it can model the statics extremely
well by adjusting the energy-storage functional £ according to experiments, see, e.g.,
[37]. However, the modeling of the dissipation distances, which contains the only
information on the dynamics, is not supported very well by experiments. In this
sense, the energetic formulation provides a first mathematical step to well-posed
evolutionary models for complex material behavior.
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