Repository logo
  • English
  • Deutsch
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • Home
  • Browse
    About
  1. Home
  2. Browse by Author

Browsing by Author "Bestvater, F."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Patterned illumination single molecule localization microscopy (piSMLM): user defined blinking regions of interest cellSTORM - Cost-effective Super-Resolution on a Cellphone using dSTORM
    (Washington D.C. : Optical Society of America, 2018) Chen, S.-Y.; Bestvater, F.; Heintzmann, Rainer; Cremer, Christoph
    Single molecule localization microscopy (SMLM) has been established as an important super-resolution technique for studying subcellular structures with a resolution down to a lateral scale of 10 nm. Usually samples are illuminated with a Gaussian shaped beam and consequently insufficient irradiance on the periphery of the illuminated region leads to artifacts in the reconstructed image which degrades image quality. We present a newly developed patterned illumination SMLM (piSMLM) to overcome the problem of uneven illumination by computer-generated holography. By utilizing a phase-only spatial light modulator (SLM) in combination with a modified Gerchberg-Saxton algorithm, a user-defined pattern with homogeneous and nearly speckle-free illumination is obtained. Our experimental results show that irradiance 1 to 5 kW/cm2 was achieved by using a laser with an output power of 200 mW in a region of 2000 µm2 to 500 µm2, respectively. Higher irradiance of up to 20 kW/cm2 can be reached by simply reducing the size of the region of interest (ROI). To demonstrate the application of the piSMLM, nuclear structures were imaged based on fluctuation binding-activated localization microscopy (fBALM). The super-resolution fBALM images revealed nuclear structures at a nanometer scale.Single molecule localization microscopy (SMLM) has been established as an important super-resolution technique for studying subcellular structures with a resolution down to a lateral scale of 10 nm. Usually samples are illuminated with a Gaussian shaped beam and consequently insufficient irradiance on the periphery of the illuminated region leads to artifacts in the reconstructed image which degrades image quality. We present a newly developed patterned illumination SMLM (piSMLM) to overcome the problem of uneven illumination by computer-generated holography. By utilizing a phase-only spatial light modulator (SLM) in combination with a modified Gerchberg-Saxton algorithm, a user-defined pattern with homogeneous and nearly speckle-free illumination is obtained. Our experimental results show that irradiance 1 to 5 kW/cm2 was achieved by using a laser with an output power of 200 mW in a region of 2000 µm2 to 500 µm2, respectively. Higher irradiance of up to 20 kW/cm2 can be reached by simply reducing the size of the region of interest (ROI). To demonstrate the application of the piSMLM, nuclear structures were imaged based on fluctuation binding-activated localization microscopy (fBALM). The super-resolution fBALM images revealed nuclear structures at a nanometer scale.
unread
  • Imprint
  • Privacy policy
  • Accessibility
unread