Browsing by Author "Chen, S.-Y."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemPatterned illumination single molecule localization microscopy (piSMLM): user defined blinking regions of interest cellSTORM - Cost-effective Super-Resolution on a Cellphone using dSTORM(Washington D.C. : Optical Society of America, 2018) Chen, S.-Y.; Bestvater, F.; Heintzmann, Rainer; Cremer, ChristophSingle molecule localization microscopy (SMLM) has been established as an important super-resolution technique for studying subcellular structures with a resolution down to a lateral scale of 10 nm. Usually samples are illuminated with a Gaussian shaped beam and consequently insufficient irradiance on the periphery of the illuminated region leads to artifacts in the reconstructed image which degrades image quality. We present a newly developed patterned illumination SMLM (piSMLM) to overcome the problem of uneven illumination by computer-generated holography. By utilizing a phase-only spatial light modulator (SLM) in combination with a modified Gerchberg-Saxton algorithm, a user-defined pattern with homogeneous and nearly speckle-free illumination is obtained. Our experimental results show that irradiance 1 to 5 kW/cm2 was achieved by using a laser with an output power of 200 mW in a region of 2000 µm2 to 500 µm2, respectively. Higher irradiance of up to 20 kW/cm2 can be reached by simply reducing the size of the region of interest (ROI). To demonstrate the application of the piSMLM, nuclear structures were imaged based on fluctuation binding-activated localization microscopy (fBALM). The super-resolution fBALM images revealed nuclear structures at a nanometer scale.Single molecule localization microscopy (SMLM) has been established as an important super-resolution technique for studying subcellular structures with a resolution down to a lateral scale of 10 nm. Usually samples are illuminated with a Gaussian shaped beam and consequently insufficient irradiance on the periphery of the illuminated region leads to artifacts in the reconstructed image which degrades image quality. We present a newly developed patterned illumination SMLM (piSMLM) to overcome the problem of uneven illumination by computer-generated holography. By utilizing a phase-only spatial light modulator (SLM) in combination with a modified Gerchberg-Saxton algorithm, a user-defined pattern with homogeneous and nearly speckle-free illumination is obtained. Our experimental results show that irradiance 1 to 5 kW/cm2 was achieved by using a laser with an output power of 200 mW in a region of 2000 µm2 to 500 µm2, respectively. Higher irradiance of up to 20 kW/cm2 can be reached by simply reducing the size of the region of interest (ROI). To demonstrate the application of the piSMLM, nuclear structures were imaged based on fluctuation binding-activated localization microscopy (fBALM). The super-resolution fBALM images revealed nuclear structures at a nanometer scale.