Browsing by Author "Dessi, Rima"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDiving into Knowledge Graphs for Patents: Open Challenges and Benefits(Aachen, Germany : RWTH Aachen, 2023) Dessi, Danilo; Dessi, Rima; Alam, Mehwish; Trojahn, Cassia; Hertling, Sven; Pesquita, Catia; Aebeloe, Christian; Aras, Hidir; Azzam, Amr; Cano, Juan; Domingue, John; Gottschalk, Simon; Hartig, Olaf; Hose, Katja; Kirrane, Sabrina; Lisena, Pasquale; Osborne, Francesco; Rohde, Philipp; Steels, Luc; Taelman, Ruben; Third, Aisling; Tiddi, Ilaria; Türker, RimaTextual documents are the means of sharing information and preserving knowledge for a large variety of domains. The patent domain is also using such a paradigm which is becoming difficult to maintain and is limiting the potentialities of using advanced AI systems for domain analysis. To overcome this issue, it is more and more frequent to find approaches to transform textual representations into Knowledge Graphs (KGs). In this position paper, we discuss KGs within the patent domain, present its challenges, and envision the benefits of such technologies for this domain. In addition, this paper provides insights of such KGs by reproducing an existing pipeline to create KGs and applying it to patents in the computer science domain.
- ItemExploring the Impact of Negative Sampling on Patent Citation Recommendation(Paris : CNRS, 2023) Dessi, Rima; Aras, Hidir; Alam, MehwishDue to the increasing number of patents being published every day, patent citation recommendations have become one of the challenging tasks. Since patent citations may lead to legal and economic consequences, patent recommendations are even more challenging as compared to scientific article citations. One of the crucial components of the patent citation algorithm is negative sampling which is also a part of many other tasks such as text classification, knowledge graph completion, etc. This paper, particularly focuses on proposing a transformer-based ranking model for patent recommendations. It further experimentally compares the performance of patent recommendations based on various state-of-the-art negative sampling approaches to measure and compare the effectiveness of these approaches to aid future developments. These experiments are performed on a newly collected dataset of US patents from Google patents.