Browsing by Author "Presser, Volker"
Now showing 1 - 20 of 89
Results Per Page
Sort Options
- ItemAuthor Correction: Persistent and reversible solid iodine electrodeposition in nanoporous carbons([London] : Nature Publishing Group UK, 2020) Prehal, Christian; Fitzek, Harald; Kothleitner, Gerald; Presser, Volker; Gollas, Bernhard; Freunberger, Stefan A.; Abbas, QamarCorrection to: Nature Communications https://doi.org/10.1038/s41467-020-18610-6, published online 24 September 2020.
- ItemBest practice for electrochemical water desalination data generation and analysis(Maryland Heights, MO : Cell Press, 2023) Torkamanzadeh, Mohammad; Kök, Cansu; Burger, Peter Rolf; Ren, Panyu; Zhang, Yuan; Lee, Juhan; Kim, Choonsoo; Presser, VolkerElectrochemical desalination shows promise for ion-selective, energy-efficient water desalination. This work reviews performance metrics commonly used for electrochemical desalination. We provide a step-by-step guide on acquiring, processing, and calculating raw desalination data, emphasizing informative and reliable figures of merit. A typical experiment uses calibrated conductivity probes to relate measured conductivity to concentration. Using a standard electrochemical desalination cell with activated carbon electrodes, we demonstrate the calculation of desalination capacity, charge efficiency, energy consumption, and ion selectivity metrics. We address potential pitfalls in performance metric calculations, including leakage current (charge) considerations and aging of conductivity probes, which can lead to inaccurate results. The relationships between pH, temperature, and conductivity are explored, highlighting their influence on final concentrations. Finally, we provide a checklist for calculating performance metrics and planning electrochemical desalination tests to ensure accuracy and reliability. Additionally, we offer simplified spreadsheet tools to aid data processing, system design, estimations, and upscaling.
- ItemCapacitive deionization using biomass-based microporous salt-templated heteroatom-doped carbons(Hoboken, NJ : Wiley, 2015) Porada, Slawomir; Schipper, Florian; Aslan, Mesut; Antonietti, Markus; Presser, Volker; Fellinger, Tim-PatrickMicroporous carbons are an interesting material for electrochemical applications. In this study, we evaluate several such carbons without/with N or S doping with regard to capacitive deionization. For this purpose, we extent the salt-templating synthesis towards biomass precursors and S-doped microporous carbons. The sample with the largest specific surface area (2830 m2 g−1) showed 1.0 wt % N and exhibited a high salt-sorption capacity of 15.0 mg g−1 at 1.2 V in 5 mM aqueous NaCl. While being a promising material from an equilibrium performance point of view, our study also gives first insights to practical limitations of heteroatom-doped carbon materials. We show that high heteroatom content may be associated with a low charge efficiency. The latter is a key parameter for capacitive deionization and is defined as the ratio between the amounts of removed salt molecules and electrical charge.
- ItemCarbon aerogels with improved flexibility by sphere templating(Cambridge : Royal Society of Chemistry, 2018) Salihovic, Miralem; Hüsing, Nicola; Bernardi, Johannes; Presser, Volker; Elsaesser, Michael S.Mechanically reversible compressible resorcinol–formaldehyde (RF) aerogels can be converted into mechanically reversible compressible carbon aerogels (CA) by carbonization in an inert atmosphere. By incorporation of polystyrene spheres into the RF gels as a sacrificial template, it is possible to create macropores with controlled size within the carbon framework during carbonization. The resulting templated carbon aerogel shows enhanced mechanical flexibility during compression compared to pristine samples. In addition, the presence of hierarchical porosity provides a porous architecture attractive for energy storage applications, such as supercapacitors.
- ItemCarbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation(Cambridge : Royal Society of Chemistry, 2014) Porada, S.; Weingarth, Daniel; Hamelers, H.V.M.; Bryjak, M.; Presser, Volker; Biesheuvel, P.M.Capacitive technologies, such as capacitive deionization and energy harvesting based on mixing energy (“capmix” and “CO2 energy”), are characterized by intermittent operation: phases of ion electrosorption from the water are followed by system regeneration. From a system application point of view, continuous operation has many advantages, to optimize performance, to simplify system operation, and ultimately to lower costs. In our study, we investigate as a step towards second generation capacitive technologies the potential of continuous operation of capacitive deionization and energy harvesting devices, enabled by carbon flow electrodes using a suspension based on conventional activated carbon powders. We show how the water residence time and mass loading of carbon in the suspension influence system performance. The efficiency and kinetics of the continuous salt removal process can be improved by optimizing device operation, without using less common or highly elaborate novel materials. We demonstrate, for the first time, continuous energy generation via capacitive mixing technology using differences in water salinity, and differences in gas phase CO2 concentration. Using a novel design of cylindrical ion exchange membranes serving as flow channels, we continuously extract energy from available concentration differences that otherwise would remain unused. These results may contribute to establishing a sustainable energy strategy when implementing energy extraction for sources such as CO2-emissions from power plants based on fossil fuels.
- ItemCarbon onion / sulfur hybrid cathodes via inverse vulcanization for lithium sulfur batteries(Cambridge : Royal Society of Chemistry, 2017) Choudhury, Soumyadip; Srimuk, Pattarachai; Raju, Kumar; Tolosa, Aura; Fleischmann, Simon; Zeiger, Marco; Ozoemena, Kenneth I.; Borchardt, Lars; Presser, VolkerA sulfur–1,3-diisopropenylbenzene copolymer was synthesized by ring-opening radical polymerization and hybridized with carbon onions at different loading levels. The carbon onion mixing was assisted by shear in a two-roll mill to capitalize on the softened state of the copolymer. The sulfur copolymer and the hybrids were thoroughly characterized in structure and chemical composition, and finally tested by electrochemical benchmarking. An enhancement of specific capacity was observed over 140 cycles at higher content of carbon onions in the hybrid electrodes. The copolymer hybrids demonstrate a maximum initial specific capacity of 1150 mA h gsulfur−1 (850 mA h gelectrode−1) and a low decay of capacity to reach 790 mA h gsulfur−1 (585 mA h gelectrode−1) after 140 charge/discharge cycles. All carbon onion/sulfur copolymer hybrid electrodes yielded high chemical stability, stable electrochemical performance superior to conventional melt-infiltrated reference samples having similar sulfur and carbon onion content. The amount of carbon onions embedded in the sulfur copolymer has a strong influence on the specific capacity, as they effectively stabilize the sulfur copolymer and sterically hinder the recombination of sulfur species to the S8 configuration.
- ItemCarbon onion–sulfur hybrid cathodes for lithium–sulfur batteries(Cambridge : Royal Society of Chemistry, 2017) Choudhury, Soumyadip; Zeiger, Marco; Massuti-Ballester, Pau; Fleischmann, Simon; Formanek, Petr; Borchardt, Lars; Presser, VolkerIn this study, we explore carbon onions (diameter below 10 nm), for the first time, as a substrate material for lithium sulfur cathodes. We introduce several scalable synthesis routes to fabricate carbon onion–sulfur hybrids by adopting in situ and melt diffusion strategies with sulfur fractions up to 68 mass%. The conducting skeleton of agglomerated carbon onions proved to be responsible for keeping active sulfur always in close vicinity to the conducting matrix. Therefore, the hybrids are found to be efficient cathodes for Li–S batteries, yielding 97–98% Coulombic efficiency over 150 cycles with a slow fading of the specific capacity (ca. 660 mA h g−1 after 150 cycles) in long term cycle test and rate capability experiments.
- ItemCarbons and electrolytes for advanced supercapacitors(Hoboken, NJ : Wiley, 2014) Presser, VolkerElectrical energy storage (EES) is one of the most critical areas of technological research around the world. Storing and efficiently using electricity generated by intermittent sources and the transition of our transportation fleet to electric drive depend fundamentally on the development of EES systems with high energy and power densities. Supercapacitors are promising devices for highly efficient energy storage and power management, yet they still suffer from moderate energy densities compared to batteries. To establish a detailed understanding of the science and technology of carbon/carbon supercapacitors, this review discusses the basic principles of the electrical double-layer (EDL), especially regarding the correlation between ion size/ion solvation and the pore size of porous carbon electrodes. We summarize the key aspects of various carbon materials synthesized for use in supercapacitors. With the objective of improving the energy density, the last two sections are dedicated to strategies to increase the capacitance by either introducing pseudocapacitive materials or by using novel electrolytes that allow to increasing the cell voltage. In particular, advances in ionic liquids, but also in the field of organic electrolytes, are discussed and electrode mass balancing is expanded because of its importance to create higher performance asymmetric electrochemical capacitors.
- ItemChoosing the right carbon additive is of vital importance for high-performance Sb-based Na-ion batteries(London [u.a.] : RSC, 2020) Pfeifer, Kristina; Arnold, Stefanie; Budak, Öznil; Luo, Xianlin; Presser, Volker; Ehrenberg, Helmut; Dsoke, SoniaElectrodes based on alloying reactions for sodium-ion batteries (NIB) offer high specific capacity but require bespoken electrode material design to enable high performance stability. This work addresses that issue by systematically exploring the impact of carbon properties on antimony/carbon composite electrodes for NIBs. Since the Sb surface is covered by an insulating oxide layer, carbon additives are crucial for the percolation and electrochemical activity of Sb based anodes. Instead of using complex hybridization strategies, the ability of mechanical mixing to yield stable high-performance Sb/C sodium-ion battery (NIB) electrodes is shown. This is only possible by considering the physical, chemical, and structural features of the carbon phase. A comparison of carbon nanohorns, onion-like carbon, carbon black, and graphite as conductive additives is given in this work. The best performance is not triggered by the highest or lowest surface area, and not by highest or lowest heteroatom content, but by the best ability to homogenously distribute within the Sb matrix. The latter provides an optimum interaction between carbon and Sb and is best enabled by onion-like carbon. A remarkable rate performance is attained, electrode cracking caused by volume expansion is successfully prevented, and the homogeneity of the solid/electrolyte interphase is significantly improved as a result of it. With this composite electrode, a reversible capacity of 490 mA h g-1 at 0.1 A g-1 and even 300 mA g-1 at 8 A g-1 is obtained. Additionally, high stability with a capacity retention of 73% over 100 cycles is achieved at charge/discharge rates of 0.2 A g-1 This journal is © The Royal Society of Chemistry.
- ItemCombining Battery‐Type and Pseudocapacitive Charge Storage in Ag/Ti3C2Tx MXene Electrode for Capturing Chloride Ions with High Capacitance and Fast Ion Transport(Hoboken, NJ : Wiley, 2020) Liang, Mingxing; Wang, Lei; Presser, Volker; Dai, Xiaohu; Yu, Fei; Ma, JieThe recent advances in chloride‐ion capturing electrodes for capacitive deionization (CDI) are limited by the capacity, rate, and stability of desalination. This work introduces Ti3C2Tx/Ag synthesized via a facile oxidation‐reduction method and then uses it as an anode for chloride‐ion capture in CDI. Silver nanoparticles are formed successfully and uniformly distributed with the layered‐structure of Ti3C2Tx. All Ti3C2Tx/Ag samples are hydrophilic, which is beneficial for water desalination. Ti3C2Tx/Ag samples with a low charge transfer resistance exhibit both pseudocapacitive and battery behaviors. Herein, the Ti3C2Tx/Ag electrode with a reaction time of 3 h exhibits excellent desalination performance with a capacity of 135 mg Cl− g−1 at 20 mA g−1 in a 10 × 10−3 m NaCl solution. Furthermore, low energy consumption of 0.42 kWh kg−1 Cl− and a desalination rate of 1.5 mg Cl− g−1 min−1 at 50 mA g−1 is achieved. The Ti3C2Tx/Ag system exhibits fast rate capability, high desalination capacity, low energy consumption, and excellent cyclability, which can be ascribed to the synergistic effect between the battery and pseudocapacitive behaviors of the Ti3C2Tx/Ag hybrid material. This work provides fundamental insight into the coupling of battery and pseudocapacitive behaviors during Cl− capture for electrochemical desalination.
- ItemComment on "Sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance"(Hoboken, NJ : Wiley, 2015) Porada, Slawomir; Biesheuvel, P.M.; Presser, Volker[no abstract available]
- ItemComment on "Synthesis, characterization and growth mechanism of flower-like vanadium carbide hierarchical nanocrystals"(Cambridge : Royal Society of Chemistry, 2012) Presser, Volker; Vakifahmetoglu, CekdarThis Letter is in response to a recent paper by Ma et al. (CrystEngComm, 2010, 12, 750-754) which arguably studied vanadium carbide nanostructures whereas all available evidence indicates the study of vanadium oxide. We feel that it is important to communicate to the community several inconsistencies so that the interesting material reported can be seen in the right light, especially with several groups nowadays having reported similar structures from vanadium oxide synthesis.
- ItemContinuous wet chemical synthesis of Mo(C,N,O)x as anode materials for Li-ion batteries(London [u.a.] : RSC, 2023) Abdirahman Mohamed, Mana; Arnold, Stefanie; Janka, Oliver; Quade, Antje; Schmauch, Jörg; Presser, Volker; Kickelbick, GuidoMolybdenum carbides, oxides, and mixed anionic carbide–nitride–oxides Mo(C,N,O)x are potential anode materials for lithium-ion batteries. Here we present the preparation of hybrid inorganic–organic precursors by a precipitation reaction of ammonium heptamolybdate ((NH4)6Mo7O24) with para-phenylenediamine in a continuous wet chemical process known as a microjet reactor. The mixing ratio of the two components has a crucial influence on the chemical composition of the obtained material. Pyrolysis of the precipitated precursor compounds preserved the size and morphology of the micro- to nanometer-sized starting materials. Changes in pyrolysis conditions such as temperature and time resulted in variations of the final compositions of the products, which consisted of mixtures of Mo(C,N,O)x, MoO2, Mo2C, Mo2N, and Mo. We optimized the reaction conditions to obtain carbide-rich phases. When evaluated as an anode material for application in lithium-ion battery half-cells, one of the optimized materials shows a remarkably high capacity of 933 mA h g−1 after 500 cycles. The maximum capacity is reached after an activation process caused by various conversion reactions with lithium.
- ItemDesign of high-performance antimony/MXene hybrid electrodes for sodium-ion batteries(London [u.a.] : RSC, 2022) Arnold, Stefanie; Gentile, Antonio; Li, Yunjie; Wang, Qingsong; Marchionna, Stefano; Ruffo, Riccardo; Presser, VolkerDue to their versatile properties and excellent electrical conductivity, MXenes have become attractive materials for alkali metal-ion batteries. However, as the capacity is limited to lower values due to the intercalation mechanism, these materials can hardly keep up in the ever-fast-growing community of battery research. Antimony has a promisingly high theoretical sodiation capacity characterized by an alloying reaction. The main drawback of this type of battery material is related to the high volume changes during cycling, often leading to electrode cracking and pulverization, resulting in poor electrochemical performance. A synergistic effect of combing antimony and MXene can be expected to obtain an optimized electrochemical system to overcome capacity fading of antimony while taking advantage of MXene charge storage ability. In this work, variation of the synthesis parameters and material design strategy have been dedicated to achieving the optimized antimony/MXene hybrid electrodes for high-performance sodium-ion batteries. The optimized performance does not align with the highest amount of antimony, the smallest nanoparticles, or the largest interlayer distance of MXene but with the most homogeneous distribution of antimony and MXene while both components remain electrochemically addressable. As a result, the electrode with 40 mass% MXene, not previously expanded, etched with 5 mass% HF and 60% antimony synthesized on the surfaces of MXene emerged as the best electrode. We obtained a high reversible capacity of 450 mA h g−1 at 0.1 A g−1 with a capacity retention of around 96% after 100 cycles with this hybrid material. Besides the successful cycling stability, this material also exhibits high rate capability with a capacity of 365 mA h g−1 at 4 A g−1. In situ XRD measurements and post mortem analysis were used to investigate the reaction mechanism.
- ItemDirect Evidence for Solid-like Hydrogen in a Nanoporous Carbon Hydrogen Storage Material at Supercritical Temperatures(Washington, DC : Soc., 2015) Ting, Valeska P.; Ramirez-Cuesta, Anibal J.; Bimbo, Nuno; Sharpe, Jessica E.; Noguera-Diaz, Antonio; Presser, Volker; Rudic, Svemir; Mays, Timothy J.Here we report direct physical evidence that confinement of molecular hydrogen (H2) in an optimized nanoporous carbon results in accumulation of hydrogen with characteristics commensurate with solid H2 at temperatures up to 67 K above the liquid–vapor critical temperature of bulk H2. This extreme densification is attributed to confinement of H2 molecules in the optimally sized micropores, and occurs at pressures as low as 0.02 MPa. The quantities of contained, solid-like H2 increased with pressure and were directly evaluated using in situ inelastic neutron scattering and confirmed by analysis of gas sorption isotherms. The demonstration of the existence of solid-like H2 challenges the existing assumption that supercritical hydrogen confined in nanopores has an upper limit of liquid H2 density. Thus, this insight offers opportunities for the development of more accurate models for the evaluation and design of nanoporous materials for high capacity adsorptive hydrogen storage.
- ItemDirect prediction of the desalination performance of porous carbon electrodes for capacitive deionization(Cambridge : Royal Society of Chemistry, 2013) Presser, Volker; Porada, S.; Borchardt, L.; Oschatz, M.; Bryjak, M.; Atchison, Jennifer; Keesmann, K.J.; Kaskel, S.; Biesheuvel, P.M.Desalination by capacitive deionization (CDI) is an emerging technology for the energy- and cost-efficient removal of ions from water by electrosorption in charged porous carbon electrodes. A variety of carbon materials, including activated carbons, templated carbons, carbon aerogels, and carbon nanotubes, have been studied as electrode materials for CDI. Using carbide-derived carbons (CDCs) with precisely tailored pore size distributions (PSD) of micro- and mesopores, we studied experimentally and theoretically the effect of pore architecture on salt electrosorption capacity and salt removal rate. Of the reported CDC-materials, ordered mesoporous silicon carbide-derived carbon (OM SiC-CDC), with a bimodal distribution of pore sizes at 1 and 4 nm, shows the highest salt electrosorption capacity per unit mass, namely 15.0 mg of NaCl per 1 g of porous carbon in both electrodes at a cell voltage of 1.2 V (12.8 mg per 1 g of total electrode mass). We present a method to quantify the influence of each pore size increment on desalination performance in CDI by correlating the PSD with desalination performance. We obtain a high correlation when assuming the ion adsorption capacity to increase sharply for pore sizes below one nanometer, in line with previous observations for CDI and for electrical double layer capacitors, but in contrast to the commonly held view about CDI that mesopores are required to avoid electrical double layer overlap. To quantify the dynamics of CDI, we develop a two-dimensional porous electrode modified Donnan model. For two of the tested materials, both containing a fair degree of mesopores (while the total electrode porosity is [similar]95 vol%), the model describes data for the accumulation rate of charge (current) and salt accumulation very well, and also accurately reproduces the effect of an increase in electrode thickness. However, for TiC-CDC with hardly any mesopores, and with a lower total porosity, the current is underestimated. Calculation results show that a material with higher electrode porosity is not necessarily responding faster, as more porosity also implies longer transport pathways across the electrode. Our work highlights that a direct prediction of CDI performance both for equilibrium and dynamics can be achieved based on the PSD and knowledge of the geometrical structure of the electrodes.
- ItemDual-Use of Seawater Batteries for Energy Storage and Water Desalination(Weinheim : Wiley-VCH, 2022) Arnold, Stefanie; Wang, Lei; Presser, VolkerSeawater batteries are unique energy storage systems for sustainable renewable energy storage by directly utilizing seawater as a source for converting electrical energy and chemical energy. This technology is a sustainable and cost-effective alternative to lithium-ion batteries, benefitting from seawater-abundant sodium as the charge-transfer ions. Research has significantly improved and revised the performance of this type of battery over the last few years. However, fundamental limitations of the technology remain to be overcome in future studies to make this method even more viable. Disadvantages include degradation of the anode materials or limited membrane stability in aqueous saltwater resulting in low electrochemical performance and low Coulombic efficiency. The use of seawater batteries exceeds the application for energy storage. The electrochemical immobilization of ions intrinsic to the operation of seawater batteries is also an effective mechanism for direct seawater desalination. The high charge/discharge efficiency and energy recovery make seawater batteries an attractive water remediation technology. Here, the seawater battery components and the parameters used to evaluate their energy storage and water desalination performances are reviewed. Approaches to overcoming stability issues and low voltage efficiency are also introduced. Finally, an overview of potential applications, particularly in desalination technology, is provided.
- ItemDye-Loaded Mechanochromic and pH-Responsive Elastomeric Opal Films(Weinheim : Wiley-VCH, 2021) Winter, Tamara; Boehm, Anna; Presser, Volker; Gallei, MarkusIn this work, the preparation and fabrication of elastomeric opal films revealing reversible mechanochromic and pH-responsive features are reported. The core–interlayer–shell (CIS) particles are synthesized via stepwise emulsion polymerization leading to hard core (polystyrene), crosslinked interlayer (poly(methyl methacrylate-co-allyl methacrylate), and soft poly(ethyl acrylate-co-butyl acrylate-co-(2-hydroxyethyl) methacrylate) shell particles featuring a size of 294.9 ± 14.8 nm. This particle architecture enables the application of the melt-shear organization technique leading to elastomeric opal films with orange, respectively, green brilliant reflection colors dependent on the angle of view. Moreover, the hydroxyl moieties as part of the particle shell are advantageously used for subsequent thermally induced crosslinking reactions enabling the preparation of reversibly tunable mechanochromic structural colors based on Bragg's law of diffraction. Additionally, the CIS particles can be loaded upon extrusion or chemically by a postfunctionalization strategy with organic dyes implying pH-responsive features. This convenient protocol for preparing multi-responsive, reversibly stretch-tunable opal films is expected to enable a new material family for anti-counterfeiting applications based on external triggers.
- ItemEffect of cation size of binary cation ionic liquid mixtures on capacitive energy storage(New York, NY [u.a.] : Elsevier, 2023) Seltmann, Anna; Verkholyak, Taras; Gołowicz, Dariusz; Pameté, Emmanuel; Kuzmak, Andrij; Presser, Volker; Kondrat, SvyatoslavIonic liquid mixtures show promise as electrolytes for supercapacitors with nanoporous electrodes. Herein, we investigate theoretically and with experiments how binary electrolytes comprising a common anion and two types of differently-sized cations affect capacitive energy storage. We find that such electrolytes can enhance the capacitance of single nanopores and nanoporous electrodes under potential differences negative relative to the potential of zero charge. For a two-electrode cell, however, they are beneficial only at low and intermediate cell voltages, while a neat ionic liquid performs better at higher voltages. We reveal subtle effects of how the distribution of pores accessible to different types of ions correlates with charge storage and suggest approaches to increase capacitance and stored energy density with ionic liquid mixtures.
- ItemEffect of pore geometry on ultra-densified hydrogen in microporous carbons(Amsterdam [u.a.] : Elsevier Science, 2021) Tian, Mi; Lennox, Matthew J.; O’Malley, Alexander J.; Porter, Alexander J.; Krüner, Benjamin; Rudić, Svemir; Mays, Timothy J.; Düren, Tina; Presser, Volker; Terry, Lui R.; Rols, Stephane; Fang, Yanan; Dong, Zhili; Rochat, Sebastien; Ting, Valeska P.Our investigations into molecular hydrogen (H2) confined in microporous carbons with different pore geometries at 77 K have provided detailed information on effects of pore shape on densification of confined H2 at pressures up to 15 MPa. We selected three materials: a disordered, phenolic resin-based activated carbon, a graphitic carbon with slit-shaped pores (titanium carbide-derived carbon), and single-walled carbon nanotubes, all with comparable pore sizes of <1 nm. We show via a combination of in situ inelastic neutron scattering studies, high-pressure H2 adsorption measurements, and molecular modelling that both slit-shaped and cylindrical pores with a diameter of ∼0.7 nm lead to significant H2 densification compared to bulk hydrogen under the same conditions, with only subtle differences in hydrogen packing (and hence density) due to geometric constraints. While pore geometry may play some part in influencing the diffusion kinetics and packing arrangement of hydrogen molecules in pores, pore size remains the critical factor determining hydrogen storage capacities. This confirmation of the effects of pore geometry and pore size on the confinement of molecules is essential in understanding and guiding the development and scale-up of porous adsorbents that are tailored for maximising H2 storage capacities, in particular for sustainable energy applications.