Browsing by Author "Zeman, J."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemCryogenic characterization of a LiAlO 2 crystal and new results on spin-dependent dark matter interactions with ordinary matter: CRESST Collaboration(Berlin ; Heidelberg : Springer, 2020) Abdelhameed, A.H.; Angloher, G.; Bauer, P.; Bento, A.; Bertoldo, E.; Breier, R.; Bucci, C.; Canonica, L.; D’Addabbo, A.; Di Lorenzo, S.; Erb, A.; Feilitzsch, F.V.; Iachellini, N.F.; Fichtinger, S.; Fuchs, D.; Fuss, A.; Ghete, V.M.; Garai, A.; Gorla, P.; Hauff, D.; Ješkovský, M.; Jochum, J.; Kaizer, J.; Kaznacheeva, M.; Kinast, A.; Kluck, H.; Kraus, H.; Langenkämper, A.; Mancuso, M.; Mokina, V.; Mondragon, E.; Olmi, M.; Ortmann, T.; Pagliarone, C.; Palušová, V.; Pattavina, L.; Petricca, F.; Potzel, W.; Povinec, P.; Pröbst, F.; Reindl, F.; Rothe, J.; Schäffner, K.; Schieck, J.; Schipperges, V.; Schmiedmayer, D.; Schönert, S.; Schwertner, C.; Stahlberg, M.; Stodolsky, L.; Strandhagen, C.; Strauss, R.; Usherov, I.; Wagner, F.; Willers, M.; Zema, V.; Zeman, J.; Brützam, M.; Ganschow, S.In this work, a first cryogenic characterization of a scintillating LiAlO 2 single crystal is presented. The results achieved show that this material holds great potential as a target for direct dark matter search experiments. Three different detector modules obtained from one crystal grown at the Leibniz-Institut für Kristallzüchtung (IKZ) have been tested to study different properties at cryogenic temperatures. Firstly, two 2.8 g twin crystals were used to build different detector modules which were operated in an above-ground laboratory at the Max Planck Institute for Physics (MPP) in Munich, Germany. The first detector module was used to study the scintillation properties of LiAlO 2 at cryogenic temperatures. The second achieved an energy threshold of (213.02 ± 1.48) eV which allows setting a competitive limit on the spin-dependent dark matter particle-proton scattering cross section for dark matter particle masses between 350MeV/c2 and 1.50GeV/c2. Secondly, a detector module with a 373 g LiAlO 2 crystal as the main absorber was tested in an underground facility at the Laboratori Nazionali del Gran Sasso (LNGS): from this measurement it was possible to determine the radiopurity of the crystal and study the feasibility of using this material as a neutron flux monitor for low-background experiments. © 2020, The Author(s).
- ItemThe European Solar Telescope(Les Ulis : EDP Sciences, 2022) Quintero Noda, C.; Schlichenmaier, R.; Bellot Rubio, L.R.; Löfdahl, M.G.; Khomenko, E.; Jurčák, J.; Leenaarts, J.; Kuckein, C.; González Manrique, S.J.; Gunár, S.; Nelson, C.J.; Giovannelli, L.; González, F.; González, J.B.; González-Cava, J.M.; González García, M.; Gömöry, P.; Gracia, F.; Grauf, B.; Greco, V.; Grivel, C.; de la Cruz Rodríguez, J.; Guerreiro, N.; Guglielmino, S.L.; Hammerschlag, R.; Hanslmeier, A.; Hansteen, V.; Heinzel, P.; Hernández-Delgado, A.; Hernández Suárez, E.; Hidalgo, S.L.; Hill, F.; Tziotziou, K.; Hizberger, J.; Hofmeister, S.; Jägers, A.; Janett, G.; Jarolim, R.; Jess, D.; Jiménez Mejías, D.; Jolissaint, L.; Kamlah, R.; Kapitán, J.; Tsiropoula, G.; Kašparová, J.; Keller, C.U.; Kentischer, T.; Kiselman, D.; Kleint, L.; Klvana, M.; Kontogiannis, I.; Krishnappa, N.; Kučera, A.; Labrosse, N.; Aulanier, G.; Lagg, A.; Landi Degl’Innocenti, E.; Langlois, M.; Lafon, M.; Laforgue, D.; Le Men, C.; Lepori, B.; Lepreti, F.; Lindberg, B.; Lilje, P.B.; Aboudarham, J.; López Ariste, A.; López Fernández, V.A.; López Jiménez, A.C.; López López, R.; Manso Sainz, R.; Marassi, A.; Marco de la Rosa, J.; Marino, J.; Marrero, J.; Martín, A.; Allegri, D.; Martín Gálvez, A.; Martín Hernando, Y.; Masciadri, E.; Martínez González, M.; Matta-Gómez, A.; Mato, A.; Mathioudakis, M.; Matthews, S.; Mein, P.; Merlos García, F.; Alsina Ballester, E.; Moity, J.; Montilla, I.; Molinaro, M.; Molodij, G.; Montoya, L.M.; Munari, M.; Murabito, M.; Núñez Cagigal, M.; Oliviero, M.; Orozco Suárez, D.; Amans, J.P.; Ortiz, A.; Padilla-Hernández, C.; Paéz Mañá, E.; Paletou, F.; Pancorbo, J.; Pastor Cañedo, A.; Pastor Yabar, A.; Peat, A.W.; Pedichini, F.; Peixinho, N.; Asensio Ramos, A.; Peñate, J.; Pérez de Taoro, A.; Peter, H.; Petrovay, K.; Piazzesi, R.; Pietropaolo, E.; Pleier, O.; Poedts, S.; Pötzi, W.; Podladchikova, T.; Bailén, F.J.; Prieto, G.; Quintero Nehrkorn, J.; Ramelli, R.; Ramos Sapena, Y.; Rasilla, J.L.; Reardon, K.; Rebolo, R.; Regalado Olivares, S.; Reyes García-Talavera, M.; Riethmüller, T.L.; Balaguer, M.; Rimmele, T.; Rodríguez Delgado, H.; Rodríguez González, N.; Rodríguez-Losada, J.A.; Rodríguez Ramos, L.F.; Romano, P.; Roth, M.; Rouppe van der Voort, L.; Rudawy, P.; Ruiz de Galarreta, C.; Baldini, V.; Rybák, J.; Salvade, A.; Sánchez-Capuchino, J.; Sánchez Rodríguez, M.L.; Sangiorgi, M.; Sayède, F.; Scharmer, G.; Scheiffelen, T.; Schmidt, W.; Schmieder, B.; Balthasar, H.; Scirè, C.; Scuderi, S.; Siegel, B.; Sigwarth, M.; Simões, P.J.A.; Snik, F.; Sliepen, G.; Sobotka, M.; Socas-Navarro, H.; Sola La Serna, P.; Barata, T.; Solanki, S. K.; Soler Trujillo, M.; Soltau, D.; Sordini, A.; Sosa Méndez, A.; Stangalini, M.; Steiner, O.; Stenflo, J.O.; Štěpán, J.; Strassmeier, K.G.; Barczynski, K.; Sudar, D.; Suematsu, Y.; Sütterlin, P.; Tallon, M.; Temmer, M.; Tenegi, F.; Tritschler, A.; Trujillo Bueno, J.; Turchi, A.; Utz, D.; Barreto Cabrera, M.; van Harten, G.; van Noort, M.; van Werkhoven, T.; Vansintjan, R.; Vaz Cedillo, J.J.; Vega Reyes, N.; Verma, M.; Veronig, A.M.; Viavattene, G.; Vitas, N.; Baur, A.; Vögler, A.; von der Lühe, O.; Volkmer, R.; Waldmann, T.A.; Walton, D.; Wisniewska, A.; Zeman, J.; Zeuner, F.; Zhang, L.Q.; Zuccarello, F.; Béchet, C.; Collados, M.; Beck, C.; Belío-Asín, M.; Bello-González, N.; Belluzzi, L.; Bentley, R.D.; Berdyugina, S.V.; Berghmans, D.; Berlicki, A.; Berrilli, F.; Berkefeld, T.; Bettonvil, F.; Bianda, M.; Bienes Pérez, J.; Bonaque-González, S.; Brajša, R.; Bommier, V.; Bourdin, P.-A.; Burgos Martín, J.; Calchetti, D.; Calcines, A.; Calvo Tovar, J.; Campbell, R.J.; Carballo-Martín, Y.; Carbone, V.; Carlin, E.S.; Carlsson, M.; Castro López, J.; Cavaller, L.; Cavallini, F.; Cauzzi, G.; Cecconi, M.; Chulani, H.M.; Cirami, R.; Consolini, G.; Coretti, I.; Cosentino, R.; Cózar-Castellano, J.; Dalmasse, K.; Danilovic, S.; De Juan Ovelar, M.; Del Moro, D.; del Pino Alemán, T.; del Toro Iniesta, J. C.; Denker, C.; Dhara, S.K.; Di Marcantonio, P.; Díaz Baso, C.J.; Diercke, A.; Dineva, E.; Díaz-García, J.J.; Doerr, H.-P.; Doyle, G.; Erdelyi, R.; Ermolli, I.; Escobar Rodríguez, A.; Esteban Pozuelo, S.; Faurobert, M.; Felipe, T.; Feller, A.; Feijoo Amoedo, N.; Femenía Castellá, B.; Fernandes, J.; Ferro Rodríguez, I.; Figueroa, I.; Fletcher, L.; Franco Ordovas, A.; Gafeira, R.; Gardenghi, R.; Gelly, B.; Giorgi, F.; Gisler, D.The European Solar Telescope (EST) is a project aimed at studying the magnetic connectivity of the solar atmosphere, from the deep photosphere to the upper chromosphere. Its design combines the knowledge and expertise gathered by the European solar physics community during the construction and operation of state-of-the-art solar telescopes operating in visible and near-infrared wavelengths: the Swedish 1m Solar Telescope, the German Vacuum Tower Telescope and GREGOR, the French Télescope Héliographique pour l'Étude du Magnétisme et des Instabilités Solaires, and the Dutch Open Telescope. With its 4.2 m primary mirror and an open configuration, EST will become the most powerful European ground-based facility to study the Sun in the coming decades in the visible and near-infrared bands. EST uses the most innovative technological advances: the first adaptive secondary mirror ever used in a solar telescope, a complex multi-conjugate adaptive optics with deformable mirrors that form part of the optical design in a natural way, a polarimetrically compensated telescope design that eliminates the complex temporal variation and wavelength dependence of the telescope Mueller matrix, and an instrument suite containing several (etalon-based) tunable imaging spectropolarimeters and several integral field unit spectropolarimeters. This publication summarises some fundamental science questions that can be addressed with the telescope, together with a complete description of its major subsystems.
- ItemLithium-Containing Crystals for Light Dark Matter Search Experiments(Dordrecht : Springer Science + Business Media B.V. , 2020) Bertoldo, E.; Abdelhameed, A.H.; Angloher, G.; Bauer, P.; Bento, A.; Breier, R.; Bucci, C.; Canonica, L.; D’Addabbo, A.; Di Lorenzo, S.; Erb, A.; Feilitzsch, F.V.; Ferreiro Iachellini, N.; Fichtinger, S.; Fuchs, D.; Fuss, A.; Gorla, P.; Hauff, D.; Ješkovský, M.; Jochum, J.; Kaizer, J.; Kinast, A.; Kluck, H.; Kraus, H.; Langenkämper, A.; Mancuso, M.; Mokina, V.; Mondragon, E.; Olmi, M.; Ortmann, T.; Pagliarone, C.; Palušová, V.; Pattavina, L.; Petricca, F.; Potzel, W.; Povinec, P.; Pröbst, F.; Reindl, F.; Rothe, J.; Schäffner, K.; Schieck, J.; Schipperges, V.; Schmiedmayer, D.; Schönert, S.; Schwertner, C.; Stahlberg, M.; Stodolsky, L.; Strandhagen, C.; Strauss, R.; Usherov, I.; Willers, M.; Zema, V.; Zeman, J.; Brützam, M.; Ganschow, S.In the current direct dark matter search landscape, the leading experiments in the sub-GeV mass region mostly rely on cryogenic techniques which employ crystalline targets. One attractive type of crystals for these experiments is those containing lithium, due to the fact that 7Li is an ideal candidate to study spin-dependent dark matter interactions in the low mass region. Furthermore, 6Li can absorb neutrons, a challenging background for dark matter experiments, through a distinctive signature which allows the monitoring of the neutron flux directly on site. In this work, we show the results obtained with three different detectors based on LiAlO2, a target crystal never used before in cryogenic experiments.