Semantic Factorization and Descent
dc.bibliographicCitation.seriesTitle | Oberwolfach Preprints (OWP) | |
dc.bibliographicCitation.volume | 5 | |
dc.contributor.author | Lucatelli Nunes, Fernando | |
dc.date.accessioned | 2024-10-17T05:47:43Z | |
dc.date.available | 2024-10-17T05:47:43Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Let A be a 2-category with suitable opcomma objects and pushouts. We give a direct proof that, provided that the codensity monad of a morphism p exists and is preserved by a suitable morphism, the factorization given by the lax descent object of the higher cokernel of p is up to isomorphism the same as the semantic factorization of p, either one existing if the other does. The result can be seen as a counterpart account to the celebrated Bénabou-Roubaud theorem. This leads in particular to a monadicity theorem, since it characterizes monadicity via descent. It should be noted that all the conditions on the codensity monad of p trivially hold whenever p has a left adjoint and, hence, in this case, we find monadicity to be a 2-dimensional exact condition on p, namely, to be an effective faithful morphism of the 2-category A. | |
dc.description.version | publishedVersion | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/16990 | |
dc.identifier.uri | https://doi.org/10.34657/16012 | |
dc.language.iso | eng | |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | |
dc.relation.doi | 10.14760/OWP-2023-05 | |
dc.relation.issn | 1864-7596 | |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | |
dc.subject | formal monadicity theorem | |
dc.subject | formal theory of monads | |
dc.subject | codensity monads | |
dc.subject | semantic lax descent factorization | |
dc.subject | descent data | |
dc.subject | two-dimensional cokernel diagram | |
dc.subject | opcomma object | |
dc.subject | effective faithful morphism | |
dc.subject | Bénabou-Roubaud theorem | |
dc.subject | lax descent category | |
dc.subject | two-dimensional limits | |
dc.subject.ddc | 510 | |
dc.title | Semantic Factorization and Descent | |
dc.type | Report | |
dc.type | Text |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWP2023_05.pdf
- Size:
- 760.36 KB
- Format:
- Adobe Portable Document Format
- Description: