This item is non-discoverable
Efficient numerical algorithms for regularized regression problem with applications to traffic matrix estimations
dc.bibliographicCitation.journalTitle | Information Technologies and Systems | eng |
dc.contributor.author | Anikin, Anton | |
dc.contributor.author | Dvurechensky, Pavel | |
dc.contributor.author | Gasnikov, Alexander | |
dc.contributor.author | Golov, Andrey | |
dc.contributor.author | Gornov, Alexander | |
dc.contributor.author | Maximov, Yury | |
dc.contributor.author | Mendel, Mikhail | |
dc.date.accessioned | 2016-06-15T17:44:28Z | |
dc.date.available | 2019-06-28T08:09:56Z | |
dc.date.issued | 2015 | |
dc.description.abstract | In this work we collect and compare to each other many different numerical methods for regularized regression problem and for the problem of projection on a hyperplane. Such problems arise, for example, as a subproblem of demand matrix estimation in IP- networks. In this special case matrix of affine constraints has special structure: all elements are 0 or 1 and this matrix is sparse enough. We have to deal with huge-scale convex optimization problem of special type. Using the properties of the problem we try "to look inside the black-box" and to see how the best modern methods work being applied to this problem. | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/2688 | |
dc.language.iso | eng | eng |
dc.publisher | Cambridge : arXiv | eng |
dc.relation.uri | http://arxiv.org/abs/1508.00858 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.subject.other | Fast gradient method | eng |
dc.subject.other | composite optimization | eng |
dc.subject.other | random coordinate descent | eng |
dc.subject.other | dual problem | eng |
dc.subject.other | Powell’s type method | eng |
dc.subject.other | entropy | eng |
dc.title | Efficient numerical algorithms for regularized regression problem with applications to traffic matrix estimations | eng |
dc.type | ConferenceObject | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | WIAS | eng |
wgl.subject | Mathematik | eng |
wgl.type | Konferenzbeitrag | eng |