How the Selection of Training Data and Modeling Approach Affects the Estimation of Ammonia Emissions from a Naturally Ventilated Dairy Barn—Classical Statistics versus Machine Learning

dc.bibliographicCitation.firstPage1030eng
dc.bibliographicCitation.issue3eng
dc.bibliographicCitation.journalTitleSustainabilityeng
dc.bibliographicCitation.volume12eng
dc.contributor.authorHempel, Sabrina
dc.contributor.authorAdolphs, Julian
dc.contributor.authorLandwehr, Niels
dc.contributor.authorJanke, David
dc.contributor.authorAmon, Thomas
dc.date.accessioned2021-07-12T11:56:19Z
dc.date.available2021-07-12T11:56:19Z
dc.date.issued2020
dc.description.abstractEnvironmental protection efforts can only be effective in the long term with a reliable quantification of pollutant gas emissions as a first step to mitigation. Measurement and analysis strategies must permit the accurate extrapolation of emission values. We systematically analyzed the added value of applying modern machine learning methods in the process of monitoring emissions from naturally ventilated livestock buildings to the atmosphere. We considered almost 40 weeks of hourly emission values from a naturally ventilated dairy cattle barn in Northern Germany. We compared model predictions using 27 different scenarios of temporal sampling, multiple measures of model accuracy, and eight different regression approaches. The error of the predicted emission values with the tested measurement protocols was, on average, well below 20%. The sensitivity of the prediction to the selected training dataset was worse for the ordinary multilinear regression. Gradient boosting and random forests provided the most accurate and robust emission value predictions, accompanied by the second-smallest model errors. Most of the highly ranked scenarios involved six measurement periods, while the scenario with the best overall performance was: One measurement period in summer and three in the transition periods, each lasting for 14 days.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6260
dc.identifier.urihttps://doi.org/10.34657/5307
dc.language.isoengeng
dc.publisherBasel : MDPI AGeng
dc.relation.doihttps://doi.org/10.3390/su12031030
dc.relation.essn2071-1050
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc333.7eng
dc.subject.otherlivestockeng
dc.subject.otherair pollutanteng
dc.subject.otheremission modelingeng
dc.subject.otheremission inventoryeng
dc.subject.otherregressioneng
dc.subject.otherartificial neural networkeng
dc.subject.otherrandom foresteng
dc.subject.othergradient boostingeng
dc.subject.otherGaussian processeng
dc.subject.othertraining sampleeng
dc.titleHow the Selection of Training Data and Modeling Approach Affects the Estimation of Ammonia Emissions from a Naturally Ventilated Dairy Barn—Classical Statistics versus Machine Learningeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorATBeng
wgl.subjectUmweltwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sustainability-12-01030-v2.pdf
Size:
1.32 MB
Format:
Adobe Portable Document Format
Description: