Flexible modification of Gauss--Newton method and its stochastic extension
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
This work presents a novel version of recently developed Gauss--Newton method for solving systems of nonlinear equations, based on upper bound of solution residual and quadratic regularization ideas. We obtained for such method global convergence bounds and under natural non-degeneracy assumptions we present local quadratic convergence results. We developed stochastic optimization algorithms for presented Gauss--Newton method and justified sub-linear and linear convergence rates for these algorithms using weak growth condition (WGC) and Polyak--Lojasiewicz (PL) inequality. We show that Gauss--Newton method in stochastic setting can effectively find solution under WGC and PL condition matching convergence rate of the deterministic optimization method. The suggested method unifies most practically used Gauss--Newton method modifications and can easily interpolate between them providing flexible and convenient method easily implementable using standard techniques of convex optimization.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.