Charting lattice thermal conductivity for inorganic crystals and discovering rare earth chalcogenides for thermoelectrics

dc.bibliographicCitation.firstPage3559
dc.bibliographicCitation.issue6
dc.bibliographicCitation.journalTitleEnergy & environmental scienceeng
dc.bibliographicCitation.lastPage3566
dc.bibliographicCitation.volume14
dc.contributor.authorZhu, Taishan
dc.contributor.authorHe, Ran
dc.contributor.authorGong, Sheng
dc.contributor.authorXie, Tian
dc.contributor.authorGorai, Prashun
dc.contributor.authorNielsch, Kornelius
dc.contributor.authorGrossman, Jeffrey C.
dc.date.accessioned2022-12-01T13:15:40Z
dc.date.available2022-12-01T13:15:40Z
dc.date.issued2021
dc.description.abstractThermoelectric power generation represents a promising approach to utilize waste heat. The most effective thermoelectric materials exhibit low thermal conductivity κ. However, less than 5% out of about 105 synthesized inorganic materials are documented with their κ values, while for the remaining 95% κ values are missing and challenging to predict. In this work, by combining graph neural networks and random forest approaches, we predict the thermal conductivity of all known inorganic materials in the Inorganic Crystal Structure Database, and chart the structural chemistry of κ into extended van-Arkel triangles. Together with the newly developed κ map and our theoretical tool, we identify rare-earth chalcogenides as promising candidates, of which we measured ZT exceeding 1.0. We note that the κ chart can be further explored, and our computational and analytical tools are applicable generally for materials informatics.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/10467
dc.identifier.urihttp://dx.doi.org/10.34657/9503
dc.language.isoeng
dc.publisherCambridge : RSC Publ.
dc.relation.doihttps://doi.org/10.1039/d1ee00442e
dc.relation.essn1754-5706
dc.rights.licenseCC BY-NC 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/
dc.subject.ddc690
dc.subject.otherChalcogenideseng
dc.subject.otherCrystal structureeng
dc.subject.otherDecision treeseng
dc.subject.otherRare earthseng
dc.subject.otherThermoelectric energy conversioneng
dc.subject.otherThermoelectricityeng
dc.subject.otherWaste heateng
dc.subject.otherGraph neural networkseng
dc.subject.otherInorganic crystal structure databaseeng
dc.subject.otherInorganic materialseng
dc.subject.otherLattice thermal conductivityeng
dc.subject.otherMaterials informaticseng
dc.subject.otherStructural chemistryeng
dc.subject.otherThermo-Electric materialseng
dc.subject.otherThermal conductivityeng
dc.subject.otherinorganic compoundeng
dc.subject.otherlattice dynamicseng
dc.subject.otherpower generationeng
dc.subject.otherrare earth elementeng
dc.titleCharting lattice thermal conductivity for inorganic crystals and discovering rare earth chalcogenides for thermoelectricseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIFWD
wgl.subjectUmweltwissenschaftenger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Charting_lattice_thermal_conductivity.pdf
Size:
2.97 MB
Format:
Adobe Portable Document Format
Description: