Perovskite phase heterojunction solar cells

dc.bibliographicCitation.firstPage1170
dc.bibliographicCitation.issue12
dc.bibliographicCitation.journalTitleNature Energyeng
dc.bibliographicCitation.lastPage1179
dc.bibliographicCitation.volume7
dc.contributor.authorJi, Ran
dc.contributor.authorZhang, Zongbao
dc.contributor.authorHofstetter, Yvonne J.
dc.contributor.authorBuschbeck, Robin
dc.contributor.authorHänisch, Christian
dc.contributor.authorPaulus, Fabian
dc.contributor.authorVaynzof, Yana
dc.date.accessioned2024-04-15T06:42:06Z
dc.date.available2024-04-15T06:42:06Z
dc.date.issued2022
dc.description.abstractModern photovoltaic devices are often based on a heterojunction structure where two components with different optoelectronic properties are interfaced. The properties of each side of the junction can be tuned by either utilizing different materials (for example, donor/acceptor) or doping (for example, p–n junction) or even varying their dimensionality (for example, 3D/2D). Here we demonstrate the concept of phase heterojunction (PHJ) solar cells by utilizing two polymorphs of the same material. We demonstrate the approach by forming γ-CsPbI3/β-CsPbI3 perovskite PHJ solar cells. We find that all of the photovoltaic parameters of the PHJ device significantly surpass those of each of the single-phase devices, resulting in a maximum power conversion efficiency of 20.1%. These improvements originate from the efficient passivation of the β-CsPbI3 by the larger bandgap γ-CsPbI3, the increase in the built-in potential of the PHJ devices enabled by the energetic alignment between the two phases and the enhanced absorption of light by the PHJ structure. The approach demonstrated here offers new possibilities for the development of photovoltaic devices based on polymorphic materials.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/14535
dc.identifier.urihttps://doi.org/10.34657/13566
dc.language.isoeng
dc.publisherLondon : Nature Publishing Group
dc.relation.doihttps://doi.org/10.1038/s41560-022-01154-y
dc.relation.essn2058-7546
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subject.ddc333.7
dc.subject.otherHeterojunctionseng
dc.subject.otherLight absorptioneng
dc.subject.otherPerovskite solar cellseng
dc.subject.otherDonor-dopingeng
dc.subject.otherDonor/acceptoreng
dc.subject.otherHeterojunction deviceseng
dc.subject.otherHeterojunction solar cellseng
dc.subject.otherHeterojunction structureseng
dc.subject.otherOptoelectronics propertyeng
dc.subject.otherPerovskite phasiseng
dc.subject.otherPhotovoltaic deviceseng
dc.subject.otherTwo-componenteng
dc.subject.otherabsorptioneng
dc.subject.otherfuel celleng
dc.subject.otherlight intensityeng
dc.subject.otherperformance assessmenteng
dc.subject.otherperovskiteeng
dc.subject.otherphotovoltaic systemeng
dc.subject.otherPerovskiteeng
dc.titlePerovskite phase heterojunction solar cellseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorIFWD
wgl.subjectUmweltwissenschaftenger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41560-022-01154-y.pdf
Size:
2.5 MB
Format:
Adobe Portable Document Format
Description: