Counting curves on toric surfaces tropical geometry & the Fock space

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2017-18
dc.contributor.authorCavalieri, Renzo
dc.contributor.authorJohnson, Paul D.
dc.contributor.authorMarkwig, Hannah
dc.contributor.authorRanganathan, Dhruv
dc.date.accessioned2017-11-23T21:32:09Z
dc.date.available2019-06-28T08:08:57Z
dc.date.issued2017
dc.description.abstractWe study the stationary descendant Gromov–Witten theory of toric surfaces by combining and extending a range of techniques – tropical curves, floor diagrams, and Fock spaces. A correspondence theorem is established between tropical curves and descendant invariants on toric surfaces using maximal toric degenerations. An intermediate degeneration is then shown to give rise to floor diagrams, giving a geometric interpretation of this well-known bookkeeping tool in tropical geometry. In the process, we extend floor diagram techniques to include descendants in arbitrary genus. These floor diagrams are then used to connect tropical curve counting to the algebra of operators on the bosonic Fock space, and are shown to coincide with the Feynman diagrams of appropriate operators. This extends work of a number of researchers, including Block–Göttche, Cooper–Pandharipande, and Block–Gathmann–Markwig.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/2194
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2618
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfacheng
dc.relation.doihttps://doi.org/10.14760/OWP-2017-18
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.titleCounting curves on toric surfaces tropical geometry & the Fock spaceeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2017_18.pdf
Size:
438.95 KB
Format:
Adobe Portable Document Format
Description: