Abstract bivariant Cuntz semigroups

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2017-04
dc.contributor.authorAntoine, Ramon
dc.contributor.authorPerera, Francesc
dc.contributor.authorThiel, Hannes
dc.date.available2019-06-28T08:06:08Z
dc.date.issued2017
dc.description.abstractWe show that abstract Cuntz semigroups form a closed symmetric monoidal category. Thus, given Cuntz semigroups S and T, there is another Cuntz semigroup JS, TK playing the role of morphisms from S to T. Applied to C*-algebras A and B, the semigroup JCu(A),Cu(B)K should be considered as the target in analogues of the UCT for bivariant theories of Cuntz semigroups. Abstract bivariant Cuntz semigroups are computable in a number of interesting cases. We explore its behaviour under the tensor product with the Cuntz semigroup of strongly self-absorbing C*-algebras and the Jacelon-Razak algebra. We also show that order-zero maps between C*-algebras naturally define elements in the respective bivariant Cuntz semigroup.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/1929
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2377
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfacheng
dc.relation.doihttps://doi.org/10.14760/OWP-2017-04
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherCuntz semigroupeng
dc.subject.othertensor producteng
dc.subject.othercontinuous poseteng
dc.subject.otherC*-algebraeng
dc.titleAbstract bivariant Cuntz semigroupseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2017_04.pdf
Size:
600.2 KB
Format:
Adobe Portable Document Format
Description: