Stochastic intermediate gradient method for convex problems with inexact stochastic oracle
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
In this paper we introduce new methods for convex optimization problems with inexact stochastic oracle. First method is an extension of the intermediate gradient method proposed by Devolder, Glineur and Nesterov for problems with inexact oracle. Our new method can be applied to the problems with composite structure, stochastic inexact oracle and allows using non-Euclidean setup. We prove estimates for mean rate of convergence and probabilities of large deviations from this rate. Also we introduce two modications of this method for strongly convex problems. For the rst modication we prove mean rate of convergence estimates and for the second we prove estimates for large deviations from the mean rate of convergence. All the rates give the complexity estimates for proposed methods which up to multiplicative constant coincide with lower complexity bound for the considered class of convex composite optimization problems with stochastic inexact oracle.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.