The Subgroup Structure of Pseudo-Reductive Groups

Loading...
Thumbnail Image
Date
2024
Volume
8
Issue
Journal
Series Titel
Oberwolfach Preprints (OWP)
Book Title
Publisher
Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach
Link to publishers version
Abstract

Let $k$ be a field. We investigate the relationship between subgroups of a pseudo-reductive $k$-group $G$ and its maximal reductive quotient $G'$, with applications to the subgroup structure of $G$. Let $k'/k$ be the minimal field of definition for the geometric unipotent radical of $G$, and let $\pi':G_{k'} \to G'$ be the quotient map. We first characterise those smooth subgroups $H$ of $G$ for which $\pi'(H_{k'})=G'$. We next consider the following questions: given a subgroup $H'$ of $G'$, does there exist a subgroup $H$ of $G$ such that $\pi'(H_{k'})=H'$, and if $H'$ is smooth can we find such a $H$ that is smooth? We find sufficient conditions for a positive answer to these questions. In general there are various obstructions to the existence of such a subgroup $H$, which we illustrate with several examples. Finally, we apply these results to relate the maximal smooth subgroups of $G$ with those of $G'$.

Description
Keywords
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.