Positive margins and primary decomposition

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2012-06
dc.contributor.authorKahle, Thomas
dc.contributor.authorRauh, Johannes
dc.contributor.authorSullivant, Seth
dc.date.available2019-06-28T08:03:55Z
dc.date.issued2012
dc.description.abstractWe study random walks on contingency tables with fixed marginals, corresponding to a (log-linear) hierarchical model. If the set of allowed moves is not a Markov basis, then there exist tables with the same marginals that are not connected. We study linear conditions on the values of the marginals that ensure that all tables in a given fiber are connected. We show that many graphical models have the positive margins property, which says that all fibers with strictly positive marginals are connected by the quadratic moves that correspond to conditional independence statements. The property persists under natural operations such as gluing along cliques, but we also construct examples of graphical models not enjoying this property. Our analysis of the positive margins property depends on computing the primary decomposition of the associated conditional independence ideal. The main technical results of the paper are primary decompositions of the conditional independence ideals of graphical models of the N-cycle and the complete bipartite graph K2,N2−2, with various restrictions on the size of the nodes.
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/3013
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2117
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWP-2012-06
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.otheralgebraic statisticseng
dc.subject.otherMarkov basiseng
dc.subject.otherconnectivity of fiberseng
dc.subject.otherbinomial primary decompositioneng
dc.titlePositive margins and primary decomposition
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2012_06.pdf
Size:
464.37 KB
Format:
Adobe Portable Document Format
Description: