The Tutte Polynomial of Ideal Arrangements

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume28
dc.contributor.authorRandriamaro, Hery
dc.date.accessioned2024-10-16T15:05:25Z
dc.date.available2024-10-16T15:05:25Z
dc.date.issued2018
dc.description.abstractThe Tutte polynomial is originally a bivariate polynomial enumerating the colorings of a graph and of its dual graph. But it reveals more of the internal structure of the graph like its number of forests, of spanning subgraphs, and of acyclic orientations. In 2007, Ardila extended the notion of Tutte polynomial to hyperplane arrangements, and computed the Tutte polynomials of the classical root systems for a certain prime power of the first variable. In this article, we compute the Tutte polynomials of ideal arrangements. Those arrangements were introduced in 2006 by Sommers and Tymoczko, and are defined for ideals of root systems. For the ideals of the classical root systems, we bring a slight improvement of the finite field method showing that it can applied on any finite field whose cardinality is not a minor of the matrix associated to a hyperplane arrangement. Computing the minor set associated to an ideal of a classical root system permits us particularly to deduce the Tutte polynomials of the classical root systems. For the ideals of the exceptional root systems of type G2, F4, and E6, we use the formula of Crapo.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16891
dc.identifier.urihttps://doi.org/10.34657/15913
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWP-2018-28
dc.relation.issn1864-7596
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subject.ddc510
dc.subject.otherTutte polynomialeng
dc.subject.otherHyperplane arrangementeng
dc.subject.otherRobot systemeng
dc.subject.otherIdealeng
dc.titleThe Tutte Polynomial of Ideal Arrangements
dc.typeReport
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2018_28.pdf
Size:
984.54 KB
Format:
Adobe Portable Document Format
Description: