A Harris-Kesten theorem for confetti percolation

dc.contributor.authorHirsch, Christian
dc.date.accessioned2016-07-28T04:18:00Z
dc.date.available2019-06-28T08:24:22Z
dc.date.issued2012
dc.description.abstractPercolation properties of the dead leaves model, also known as confetti percolation, are considered. More precisely, we prove that the critical probability for confetti percolation with square-shaped leaves is 1/2. This result is related to a question of Benjamini and Schramm concerning disk-shaped leaves and can be seen as a variant of the Harris-Kesten theorem for bond percolation. The proof is based on techniques developed by Bollob\'as and Riordan to determine the critical probability for Voronoi and Johnson-Mehl percolation.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3404
dc.language.isoengeng
dc.publisherCambridge : arXiveng
dc.relation.urihttp://arxiv.org/abs/1204.5837
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherProbabilityeng
dc.titleA Harris-Kesten theorem for confetti percolationeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Collections