This item is non-discoverable
A Harris-Kesten theorem for confetti percolation
dc.contributor.author | Hirsch, Christian | |
dc.date.accessioned | 2016-07-28T04:18:00Z | |
dc.date.available | 2019-06-28T08:24:22Z | |
dc.date.issued | 2012 | |
dc.description.abstract | Percolation properties of the dead leaves model, also known as confetti percolation, are considered. More precisely, we prove that the critical probability for confetti percolation with square-shaped leaves is 1/2. This result is related to a question of Benjamini and Schramm concerning disk-shaped leaves and can be seen as a variant of the Harris-Kesten theorem for bond percolation. The proof is based on techniques developed by Bollob\'as and Riordan to determine the critical probability for Voronoi and Johnson-Mehl percolation. | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/3404 | |
dc.language.iso | eng | eng |
dc.publisher | Cambridge : arXiv | eng |
dc.relation.uri | http://arxiv.org/abs/1204.5837 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.subject.other | Probability | eng |
dc.title | A Harris-Kesten theorem for confetti percolation | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | WIAS | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |