Faster comparison of stopping cimes by nested conditional Monte Carlo

dc.contributor.authorDickmann, Fabian
dc.contributor.authorSchweizer, Nikolaus
dc.date.available2019-06-28T08:26:59Z
dc.date.issued2014
dc.description.abstractWe show that deliberately introducing a nested simulation stage can lead to significant variance reductions when comparing two stopping times by Monte Carlo. We derive the optimal number of nested simulations and prove that the algorithm is remarkably robust to misspecifications of this number. The method is applied to several problems related to Bermudan/American options. In these applications, our method allows to substantially increase the efficiency of other variance reduction techniques, namely, Quasi-Control Variates and Multilevel Monte Carlo.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3506
dc.language.isoengeng
dc.publisherCambridge : arXiveng
dc.relation.urihttp://arxiv.org/abs/1402.0243
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherAmerican Optionseng
dc.subject.otherBermudan Optionseng
dc.subject.otherBranchingeng
dc.subject.otherImpor- tance Samplingeng
dc.subject.otherMultilevel Monte Carloeng
dc.subject.otherNested Simulationeng
dc.subject.otherOptimal Stoppingeng
dc.subject.otherSplittingeng
dc.subject.otherVariance Reductioneng
dc.titleFaster comparison of stopping cimes by nested conditional Monte Carloeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Collections