Spectral sequences in combinatorial geometry: Cheeses, Inscribed sets, and Borsuk-Ulam type theorems
dc.bibliographicCitation.seriesTitle | Oberwolfach Preprints (OWP) | eng |
dc.bibliographicCitation.volume | 2010-08 | |
dc.contributor.author | Blagojevi´c, Pavle V.M. | |
dc.contributor.author | Dimitrijevi´c Blagojevi´c, Aleksandra | |
dc.contributor.author | McCleary, John | |
dc.date.available | 2019-06-28T08:02:05Z | |
dc.date.issued | 2010 | |
dc.description.abstract | Algebraic topological methods are especially suited to determining the nonexistence of continu- ous mappings satisfying certain properties. In combinatorial problems it is sometimes possible to define a mapping from a space X of configurations to a Euclidean space Rm in which a subspace, a discriminant, often an arrangement of linear subspaces A, expresses a desirable condition on the configurations. Add symmetries of all these data under a group G for which the mapping is equivariant. Removing the discriminant leads to the problem of the existence of an equivariant mapping from X to Rm - the discriminant. Algebraic topology may be applied to show that no such mapping exists, and hence the original equivariant mapping must meet the discriminant. We introduce a general framework, based on a comparison of Leray-Serre spectral sequences. This comparison can be related to the theory of the Fadell-Husseini index. We apply the framework to: - solve a mass partition problem (antipodal cheeses) in Rd, - determine the existence of a class of inscribed 5-element sets on a deformed 2-sphere, - obtain two different generalizations of the theorem of Dold for the nonexistence of equivariant maps which generalizes the Borsuk-Ulam theorem. | eng |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 1864-7596 | |
dc.identifier.uri | https://doi.org/10.34657/3228 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/1712 | |
dc.language.iso | eng | eng |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | eng |
dc.relation.doi | https://doi.org/10.14760/OWP-2010-08 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.title | Spectral sequences in combinatorial geometry: Cheeses, Inscribed sets, and Borsuk-Ulam type theorems | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | MFO | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWP2010_08.pdf
- Size:
- 598.85 KB
- Format:
- Adobe Portable Document Format
- Description: