Spectral sequences in combinatorial geometry: Cheeses, Inscribed sets, and Borsuk-Ulam type theorems

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2010-08
dc.contributor.authorBlagojevi´c, Pavle V.M.
dc.contributor.authorDimitrijevi´c Blagojevi´c, Aleksandra
dc.contributor.authorMcCleary, John
dc.date.available2019-06-28T08:02:05Z
dc.date.issued2010
dc.description.abstractAlgebraic topological methods are especially suited to determining the nonexistence of continu- ous mappings satisfying certain properties. In combinatorial problems it is sometimes possible to define a mapping from a space X of configurations to a Euclidean space Rm in which a subspace, a discriminant, often an arrangement of linear subspaces A, expresses a desirable condition on the configurations. Add symmetries of all these data under a group G for which the mapping is equivariant. Removing the discriminant leads to the problem of the existence of an equivariant mapping from X to Rm - the discriminant. Algebraic topology may be applied to show that no such mapping exists, and hence the original equivariant mapping must meet the discriminant. We introduce a general framework, based on a comparison of Leray-Serre spectral sequences. This comparison can be related to the theory of the Fadell-Husseini index. We apply the framework to: - solve a mass partition problem (antipodal cheeses) in Rd, - determine the existence of a class of inscribed 5-element sets on a deformed 2-sphere, - obtain two different generalizations of the theorem of Dold for the nonexistence of equivariant maps which generalizes the Borsuk-Ulam theorem.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/3228
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/1712
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfacheng
dc.relation.doihttps://doi.org/10.14760/OWP-2010-08
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.titleSpectral sequences in combinatorial geometry: Cheeses, Inscribed sets, and Borsuk-Ulam type theoremseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2010_08.pdf
Size:
598.85 KB
Format:
Adobe Portable Document Format
Description: