A series of algebras generalizing the octonions and Hurwitz-Radon identity

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2010-10
dc.contributor.authorMorier-Genoud, Sophie
dc.contributor.authorOvsienko, Valentin
dc.date.available2019-06-28T08:02:05Z
dc.date.issued2010
dc.description.abstractWe study non-associative twisted group algebras over (Z2)n with cubic twisting functions. We construct a series of algebras that extend the classical algebra of octonions in the same way as the Clifford algebras extend the algebra of quaternions. We study their properties, give several equivalent definitions and prove their uniqueness within some natural assumptions. We then prove a simplicity criterion. We present two applications of the constructed algebras and the developed technique. The first application is a simple explicit formula for the following famous square identity: (a21+...+a2N)(b21+...+b2ρ(N))=c21+...+c2N, where ck are bilinear functions of the ai and bj and where ρ(N) is the Hurwitz-Radon function. The second application is the relation to Moufang loops and, in particular, to the code loops. To illustrate this relation, we provide an explicit coordinate formula for the factor set of the Parker loop.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/1881
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/1714
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfacheng
dc.relation.doihttps://doi.org/10.14760/OWP-2010-10
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherGraded commutative algebraseng
dc.subject.othernon-associative algebraseng
dc.subject.otherClifford algebraseng
dc.subject.otheroctonionseng
dc.subject.othersquare identitieseng
dc.subject.otherHurwitz-Radon functioneng
dc.titleA series of algebras generalizing the octonions and Hurwitz-Radon identityeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2010_10.pdf
Size:
626.29 KB
Format:
Adobe Portable Document Format
Description: