Large deviation principle for a stochastic Allen-Cahn equation

dc.contributor.authorHeida, Martin
dc.contributor.authorRöger, Matthias
dc.date.accessioned2016-06-28T05:45:31Z
dc.date.available2019-06-28T08:02:12Z
dc.date.issued2015
dc.description.abstractIn this paper we consider the Allen–Cahn equation perturbed by a stochastic flux term and prove a large deviation principle. Using an associated stochastic flow of diffeomorphisms the equation can be transformed to a parabolic partial differential equation with random coefficients. We use this structure and first provide a large deviation principle for stochastic flows in function spaces with Hölder-continuity in time. Second, we use a continuity argument and deduce a large deviation principle for the stochastic Allen–Cahn equation.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/1758
dc.language.isoengeng
dc.publisherCambridge : arXiveng
dc.relation.urihttp://arxiv.org/abs/1501.03917
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherProbabilityeng
dc.titleLarge deviation principle for a stochastic Allen-Cahn equationeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Collections