Attractor properties of non-reversible dynamics w.r.t invariant Gibbs measures on the lattice

dc.contributor.authorJahnel, Benedikt
dc.contributor.authorKuelske, Christof
dc.date.accessioned2017-01-04T16:09:57Z
dc.date.available2019-06-28T08:03:39Z
dc.date.issued2014
dc.description.abstractWe consider stochastic dynamics of lattice systems with finite local state space, possibly at low temperature, and possibly non-reversible. We assume the additional regularity properties on the dynamics: a) There is at least one stationary measure which is a Gibbs measure for an absolutely summable potential Phi. b) Zero loss of relative entropy density under dynamics implies the Gibbs property with the same Phi. We prove results on the attractor property of the set of Gibbs measures for Phi: 1. The set of weak limit points of any trajectory of translation-invariant measures contains at least one Gibbs state for Phi. 2. We show that if all elements of a weakly convergent sequence of measures are Gibbs measures for a sequence of some translation-invariant summable potentials with uniform bound, then the limiting measure must be a Gibbs measure for Phi. 3. We give an extension of the second result to trajectories which are allowed to be non-Gibbs, but have a property of asymptotic smallness of discontinuities. An example for this situation is the time evolution from a low temperature Ising measure by weakly dependent spin flips.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2073
dc.language.isoengeng
dc.publisherCambridge : arXiveng
dc.relation.urihttps://arxiv.org/abs/1409.8193
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherMarkov chaineng
dc.subject.otherPCAeng
dc.subject.otherIPSeng
dc.subject.othernon-equilibriumeng
dc.subject.othernon-reversibilityeng
dc.subject.otherattractor propertyeng
dc.subject.otherrelative entropyeng
dc.subject.otherGibbsiannesseng
dc.subject.othernon-Gibbsiannesseng
dc.subject.othersynchronisationeng
dc.titleAttractor properties of non-reversible dynamics w.r.t invariant Gibbs measures on the latticeeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Collections